
Idiomas de los grupos

Puede consultar esta información al  delfinal
documento.

Contacto

javier.sanchez.pujadas@uab.catCorreo electrónico:

Francisco Javier Sánchez PujadasNombre:

2025/2026

Compiladores

Código: 102782
Créditos ECTS: 6

Titulación Tipo Curso

Ingeniería Informática OB 3

Ingeniería Informática OT 4

Equipo docente

Jorge Bernal del Nozal

Prerrequisitos

Se aconseja haber cursado las asignaturas:

Fundamentos de Informática
Metodología de la Programación
Laboratorio Programación

Conocimientos que podrán ser útiles para esta asignatura son:

Los conocimientos sobre lenguajes de programación imperativos y orientados a objeto como C / C ++
facilitarán la comprensión de los ejemplos prácticos dados en teoría.
Por la parte de generación de código serán útiles los conocimientos sobre assamblador.
Los conocimientos sobre recursividad de la asignatura Análisis y Diseño de Algoritmos ayudarán a
comprender el funcionamiento del análisis sintáctico.

Objetivos y contextualización

Conocimientos:

Introducir los conceptos y estructuras fundamentales de un compilador de lenguajes imperativos.
Mejorar el uso y comprensión de los compiladores (eficiencia, límites del lenguaje, etc.), y los lenguajes
de programación.
Implementación práctica de parsers simples.

Reconocedores de ficheros de configuración con parámetros complejos.
1



1.  
2.  

3.  

4.  
5.  
6.  
7.  

1.  
2.  

3.  

Reconocedores de ficheros de configuración con parámetros complejos.
Flexibilización de diálogos con el usuario.

Resolver problemas utilizando técnicas sintácticas y semánticas.
Definición e implementación de gramáticas para resolver problemas.
Decisión entre implementar un compilador entero o utilizar una herramienta para generar
compiladores en función del tipo de problema a resolver.

Implementar algoritmos complejos.
Estrategias de test de programas complejos.
Implementación de algoritmos recursivos.
Uso de herramientas que generan código.
Modularización en subproblemas fuertemente acoplados.
Adaptación y utilización de un programa ya hecho.

Habilidades:

Mejorar la calidad de los programas creados gracias al mayor conocimiento del funcionamiento de los
compiladores.
Utilización correcta de las estructuras de los lenguajes de programación para obtener programas más
óptimos.
Resolución de problemas de una fuerte complejidad aplicando los principios de modularidad y
recursividad.
Utilización de herramientas de programación automática.

Competencias

Ingeniería Informática
Adquirir hábitos de pensamiento.
Adquirir hábitos de trabajo personal.
Capacidad para concebir, desarrollar y mantener sistemas, servicios y aplicaciones informáticas
empleando los métodos de la ingeniería del software como instrumento para el aseguramiento de su
calidad.
Capacidad para conocer los fundamentos teóricos de los lenguajes de programación y las técnicas de
procesamiento léxico, sintáctico y semántico asociadas, y saber aplicarlas para la creación, diseño y
procesamiento de lenguajes.

Resultados de aprendizaje

Adaptar paradigmas existentes a problemas concretos y resolverlos computacionalmente.
Aplicar los conocimientos de análisis léxico, sintáctico y semántico a la generación de código en un
compilador básico.
Conocer y comprender los procesos de análisis léxico, sintáctico y semántico de los lenguajes de
programación, y analizar las diferentes alternativas en cada uno de ellos.
Desarrollar un pensamiento y un razonamiento crítico.
Gestionar el tiempo y los recursos disponibles. Trabajar de forma organizada.
Prevenir y solucionar problemas.
Tomar decisiones propias.

Contenido

I. Introducción. Conceptos básicos.

Introducción a los compiladores.
Estrategias de construcción de un compilador.

Definición de compilador y sus partes.
2



3.  
4.  

1.  
2.  
3.  
4.  

Definición de compilador y sus partes.
Presentación de los siguientes temas del curso.

II. Análisis lexicográfica: SCANNER.

Definición de análisis lexicográfico
expresiones regulares
Implementación de un analizador lexicográfico (Scanner)
Análisis lexicográfica.

III. Gramáticas y análisis sintáctico: PARSER.

Definición de gramáticas libres de contexto.
Notaciones para definir gramáticas.
Características de las gramáticas y sus Lenguajes de Programación asociados.
Gramáticas LL (1).
Parsers LL (1).
Recuperación de errores en parsers LL (1).
Parsers LR, SLR, LALR.
Consideraciones prácticas.

IV. Análisis semántico.

Traducción dirigida por la Sintaxis.
Tabla de Símbolos.
Análisis semántico de declaraciones.
Análisis semántico de expresiones.

V. Organización de la memoria en tiempo de ejecución.

Ambiente de ejecución y asignación estática de memoria.
Asignación de la pila.
Heap.

VI. Generación de código.

Máquina abstracta.
Generación de código de expresiones.
Proceso de referencias a estructuras de datos.
Generación de código de funciones.
Generación de código de estructuras de control.

Actividades formativas y Metodología

Título Horas ECTS Resultados de aprendizaje

Tipo: Dirigidas

Clases unificadas (teoría, problemas y prácticaas) 46 1,84 1, 2, 3, 4, 5, 7, 6

Tipo: Autónomas

Estudio de la materia impartida en clases teóricas 36 1,44 1, 2, 3, 4

Preparación e implementación de la práctica 47 1,88 1, 2, 3, 4, 5, 7, 6

Preparación y resolución de problemas 12 0,48 1, 2, 3, 4, 5, 7, 6

3



Esta asignatura tiene un vínculo muy fuerte entre lo que es la teoría, donde se hará una explicación de cómo
funcionan y se pueden crear compiladores, y la práctica o los problemas, donde se explica cómo se crea
realmente un compilador. Durante las clases de teoría se explican conceptos y técnicas que son necesarios
para poder resolver la práctica. Los conceptos de práctica y problemas están relacionados, dado que el
alumno diseñará una solución para resolver un problema y la implementará en la práctica. De esta forma, el
proceso de aprendizaje del alumno se basará en estos tres tipos de actividades: clases de teoría, seminarios
o explicaciones de cómo aplicar los conceptos teóricos a la práctica y las clases prácticas o de problemas en
que los alumnos presentarán y discutirán sus soluciones.

Sesiones de clase unificadas

No se hace diferencia entre clases de teoría, problemas y prácticas. De esta forma se empieza la sesión
explicando los conceptos teóricos como en una clase de teoría. Luego se aplican estos conceptos en
problemas o prácticas. Así la sesión acaba como una clase de problemas o prácticas.

Teoría

Las clases de teoría servirán para introducir los conceptos que se detallan en el temario de la asignatura. Se
basarán en las explicaciones del profesor, que se ayudará de material complementario en forma de fotocopias
o transparencias. El alumno deberá completar las clases de teoría con las horas de estudio, que deben servir
para acabar de entender los contenidos de la asignatura y poder preparar correctamente las sesiones de
prácticas. Hay quetener presente que las clases de teoría presentan una continuidad a lo largo del curso, por
lo que para poder seguir correctamente una clase se tiene que haber asimilado lo explicado en las clases
anteriores.

Problemas

Las clases de problemas se dedicarán básicamente a la explicación detallada de cómo aplicar los conceptos
teóricos de manera práctica, y servirán de puente entre las clases teóricas y las prácticas. Los profesores
plantearán problemas e indicarán cómo se resuelven preparando a los alumnos para resolver las prácticas. Es
muy importante tener asimilados los conceptos teóricos previos para poder seguir correctamente las clases de
problemas.

Antes de cada sesión de problemas el profesor propondrá una lista de ejercicios que los alumnos deberán
intentar resolver previamente para poder presentar dudas a la hora de clase. En algunas sesiones se
prepararán o discutirán problemas comunes surgidos en las prácticas.

Práctica

La práctica consistirá en hacer modificaciones sobre el compilador explicado a teoría. La práctica se realizará
en grupos de 1, 2 o 3 personas. Las sesiones de prácticas estarán divididas en 3 bloques: Análisis sintáctico,
Análisis semántico y Generación de código. Cada bloque tendrá uno o más entregas. El alumno podrá probar
cada entrega con un autotest formado por las pruebas que debe pasar la práctica para aprobar. Después el
profesor pasará un test más completo que será la base para obtener la nota de la práctica de grupo. La
práctica se podrá probar con un corrector web todas las veces que el alumno necesiteantes de la fecha de
entrega. Además, se podrá evaluar la entrega, y los conocimientos obtenidos por cada alumno del grupo con
una pequeña prueba oral o escrita por la nota individual.

Competencias transversales: Las competencias transversales serán trabajadas y evaluadas en varios
momentos a lo largo del curso. Algunos ejemplos de cómo se trabajan son los siguientes:

T01.01 - Desarrollar un modo depensamiento y razonamiento críticos:
En las clases de teoría se explican ejemplos de lenguajes y compiladores existentes de los que
se valora los pros, contras y errores de diseño.
En las clases de problemas, los alumnos han de crear un modelo abstracto del problema para
poder resolver.
En la práctica el alumnado debe deducir qué restricciones semánticas debe comprobar el
compilador.

T02.03 - Gestionar el tiempo y los recursos disponibles. Trabajar de manera organizada:
4



T02.03 - Gestionar el tiempo y los recursos disponibles. Trabajar de manera organizada:
En las prácticas, el alumnado debe decidir en qué orden resuelven los diversos problemas de la
práctica y cuál es su estrategia para encararlos.

T02.04 - Prevenir y solucionar problemas:
En la práctica existen fuertes dependencias entre las diferentes etapas de la compilación. El
alumnado debe tomar decisiones sobre qué hace a las primeras etapas para asegurar que las
siguientes no se compliquen demasiado.

T02.05 - Tomar decisiones propias:
Tan a problemas como las prácticas, el alumnado debe tomar decisiones sobre cómo resuelve
los diversos problemas que apareceré

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación
para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de
la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título Peso Horas ECTS
Resultados de
aprendizaje

Análisis semántico de la práctica Ver actividades e instrumentos de
evaluación

1 0,04 1, 3, 4, 5, 7, 6

Análisis sintáctico de la práctica Ver actividades e instrumentos de
evaluación

1 0,04 1, 3, 4, 5, 7, 6

Examen de Prácticas Ver actividades e instrumentos de
evaluación

1 0,04 1, 2, 4

Examen final de teoría Ver actividades e instrumentos de
evaluación

3 0,12 1, 2, 3, 4

Examen/s parcial/es Ver actividades e instrumentos de
evaluación

2 0,08 1, 2, 3, 4

Generación de código de la
práctica

Ver actividades e instrumentos de
evaluación

1 0,04 2, 4, 5, 7, 6

Criterios e indicadores de evaluación:

Comprensión de los conceptos teóricos de la asignatura.
Utilización correcta de las principales herramientas utilizadas para construir un compilador.
Aplicación de los principios generales de diseño en la resolución de problemas complejos.
Testear problemas complejos.

Actividades e instrumentos de evaluación:

Nota Prácticas: En este apartado hay una nota de grupo y una individual:
Nota de grupo: Corresponde a la nota obtenida a las entregas por grupos de la práctica.
Nota individual: Es la puntuación obtenida en el examen de prácticas.

Nota Teoría: corresponde al examen final o exámenes parciales de teoría sobre la asignatura. Se han
de aprobar los exámenes parciales para eliminar materia en el examen de recuperación.

Nota de Problemas: corresponde a una media ponderada de los problemas entregados por los
5



Nota de Problemas: corresponde a una media ponderada de los problemas entregados por los
alumnos.

La nota final de la asignatura se obtiene combinando la evaluación de estas dos actividades de la siguiente
manera:

Nota Final = 0.4 * Nota Prácticas + 0.4 * Nota Teoría + 0,2* Nota problemas.

Nota Prácticas = 0.2 * Nota Individual + 0.8 * Nota Grupo
Nota Individual = Examen de prácticas.
Nota Grupo = 0.2 * Grupo A. Sintáctico + 0.3 * Grupo A. Semántica + 0.5 * Grupo Generación de Código

Las notas de grupo de análisis sintáctico, semántica y generación de código pueden corresponder a una
media ponderada de varias entregas.

Convalidación de prácticas:

No se convalidan prácticas de años anteriores.

Recuperación de prácticas: En el caso de haber suspendido una entrega de grupo, se podrá recuperar en las
siguientes entregas de la práctica. La nota será 0.8 * (max (nota recuperación, nota entrega suspendida) -Nota
entrega suspendida) + nota entrega suspendida. En el caso de suspender el examen de prácticas, el alumno
deberá presentarse a un examen de recuperación de prácticas el mismo día del examen final.

Condiciones para aprobar la asignatura:

Nota Final> = 5
Nota práctica> = MinMedia y haber aprobado cada una de las entregas individuales y de grupo.
Nota teoría> = MinMedia y haber aprobado por separado las partes que tenga el examen de teoría (nota
examen>=MinMedia).

MinMedia será 4 si se asistió a un mínimo del 50% de las clases. De lo contrario, será 5.

Condiciones no evaluable:

No tener ninguna parte de la asignatura suspendida.

Condiciones suspenso:

No alcanzar una nota media superior o igual a 5.
Suspender alguna de las actividades de evaluación de la asignatura, aunque la media supere el 5. En este
caso, la nota será la nota mínima obtenida de alguna de las partes (exámenes o prácticas).

Condiciones para la matrícula de honor:

La matrícula de honor se puede conseguir con una nota media superior o igual a 9,0.
Debido a que hay un número limitado de matrículas de honor que se pueden dar por grupo, se otorgarán por
orden de nota de mayor a menor.

Prácticas, trabajos o exámenes copiados:

Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, y de acuerdo con la normativa
académica vigente, las irregularidades cometidas por un estudiante que puedan conducir a una variación de la
calificación se calificarán con un cero (0). Las actividades de evaluación calificadas de esta forma y por este
procedimiento no serán recuperables. Si es necesario superar cualquiera de estas actividades de evaluación
para aprobar la asignatura, esta asignatura quedará suspendida directamente, sin oportunidad de recuperarla
en el mismo curso. Estas irregularidades incluyen, entre otros:
- la copia total o parcial de una práctica, informe, o cualquier otra actividad de evaluación;
- dejar copiar;
- presentar un trabajo de grupo no hecho íntegramente por los miembros del grupo;

- presentar como propios materiales elaborados por un tercero, aunque sean traducciones o adaptaciones, y
6



- presentar como propios materiales elaborados por un tercero, aunque sean traducciones o adaptaciones, y
en general trabajos con elementos no originales y exclusivos del estudiante;
- tener dispositivos de comunicación (como teléfonos móviles, smart watches, etc.) accesibles durante las
pruebas de evaluación teórico-prácticas individuales (exámenes).

En caso de que el estudiante haya cometido irregularidades en un acto de evaluación, la nota numérica del
expediente será el valor menor entre 3.0 y la nota que le correspondería según el método de evaluación de la
asignatura (y, por tanto, no será posible el aprobado por compensación).

En resumen: copiar, dejar, copiar o plagiar en cualquiera de las actividades de evaluación equivale a un
SUSPENSO con nota inferior a 3.0.

Uso de inteligencia artificial.

Está permitido un uso restringido de la inteligencia artificial. Puede utilizarse para resolver dudas y otros usos
que puedan mejorar el aprendizaje. Para verificar esto, el profesorado podrá pedir al alumnado que demuestre
la adquisición de conocimientos asociada a cualquier trabajo entregado. Si la alumna no demuestra que tiene
los conocimientos que le han permitido desarrollar el trabajo, se considerará como caso de práctica, trabajo o
exámenes copiados.

Publicación notas, fechas de exámenes, etc:

Las fechas de evaluación continua y entrega de trabajos se publicarán en el campus virtual y pueden estar
sujetos a cambios de programación por motivos de adaptación a posibles incidencias. Siempre se informará
en el campus virtual sobre estos cambios, ya que se entiende que es el mecanismo habitual de intercambio de
información entre profesor y estudiantes.

Puesto que se utiliza un servidor de corrección, las fechas de entrega de prácticas y problemas también
podrán estar publicadas en ese servidor, aunque normalmente se publicarán en el campus virtual.

Procedimiento de revisión de las calificaciones

Para cada actividad de evaluación, se indicará un lugar, fecha y horade revisión en la que el estudiante podrá
revisar la actividad con el profesor. En este contexto, se podrán hacer reclamaciones sobre la nota de la
actividad, que serán evaluadas por el profesorado responsable de la asignatura. Si el estudiante no se
presenta en esta revisión, no se revisará posteriormente esta actividad.

Evaluación única:

Se evaluará al igual que la evaluación continua. Pero con las siguientes diferencias:

Las prácticas y problemas se entregarán el día del examen de recuperación de la asignatura. En este
caso, las prácticas no tienen la posibilidad de recuperación, ya que el alumno no puede corregir y ver la
nota las veces que quiera antes de la entrega.
Debido a que no existe un seguimiento del trabajo del alumno, será obligatorio realizar un examen de
validación de prácticas, que es obligatorio aprobar.
Los exámenes de teoría y prácticas se realizarán el día del examen de recuperación de la asignatura.
En caso de que sea necesario, se convocará a los alumnos para realizar los exámenes de
recuperación de teoría y prácticas.

Bibliografía

Bibliografía básica

Charles N. Fischer & Richard J. Leblanc jr.: . The Benjamin / CummingsCrafting a Compiler with C
Publishing Company inc., 1991.

Jean-Paul Tremblay & Paul G. Sorenson: .The Theory and Practice of Compiler Writing
7



Jean-Paul Tremblay & Paul G. Sorenson: .The Theory and Practice of Compiler Writing
MCGRAW-HILL, 1985.
David A. Watt: . Prentice Hall, 1990.Programming Language Concepts and Paradigms
Alicia Garrido & all: . Publicaciones Universidad de Alicante, 2002.Diseño de compiladores

Bibliografía de consulta

David A. Watt.: . Prentice Hall, 1993.Programming Language Processors
Anthony J. Field & Peter G. Harrison: . Addison-Wesley, 1988.Functional Programming
Terrence W. Pratt: . Prentice Hall InternationalProgramming Languages: Design and Implementation
Editions, 1984.
Edited by G. Goos and J. Hartmanis: . Springer-Verlag,Compiler Construction. An Advanced Course
1974
Jean-Paul Tremblay & Paul G. Sorenson: .An Implementation Guide to Compiler Writing
MCGRAW-HILL, 1982.
Ronald Mak: . Wiley, 1991.Writing Compilers & Interpreters: An Applied Approach
J. P. Brown: . Wiley, 1979.Writing Interactive Compilers and Interpreters
Allen Y. Holub: . Prentice Hall, 1990.Compiler Design in C

Web:

 https://es.wikipedia.org/wiki/CompiladorCompilador,
Historia de la construcción de los compiladores,
https://es.wikipedia.org/wiki/Historia_de_la_construcci%C3%B3n_de_los_compiladores
Tutorial de diseño de compiladores para principiantes: guía completa,
https://www.guru99.com/es/compiler-tutorial.html

Software

La práctica se hace con el sistema operativo Windows. Para hacer la práctica se utiliza un generador de
compiladores basado en el lenguaje de programación Cosel. Todo el software necesario se puede encontrar
en el campus virtual.
Además, se utiliza un corrector automático de las prácticas que pueden utilizar los alumnos.

Es necesario llevar portátil con Windows para realizar las prácticas y problemas en clase.

Grupos e idiomas de la asignatura

La información proporcionada es provisional hasta el 30 de noviembre de 2025. A partir de esta fecha, podrá
consultar el idioma de cada grupo a través de este . Para acceder a la información, será necesarioenlace
introducir el CÓDIGO de la asignatura

Nombre Grupo Idioma Semestre Turno

(PAUL) Prácticas de aula 440 Catalán segundo cuatrimestre manaña-mixto

(PAUL) Prácticas de aula 441 Catalán segundo cuatrimestre manaña-mixto

8

https://sia.uab.cat/servei/ALU_TPDS_PORT_ESP.html

