

Food Processing Methods I

Code: 103555
ECTS Credits: 6

2025/2026

Degree	Type	Year
Food Science and Technology	OB	3

Contact

Name: Jordi Saldo Periago

Email: jordi.saldo@uab.cat

Teachers

Manuel Castillo Zambudio

Teaching groups languages

You can view this information at the [end](#) of this document.

Prerequisites

There are no official prerequisites, but it is appropriate for the student to have obtained the contents of the Foundations of Process Basics, Analysis and control of food quality and Unit Operations.

The practical contents of the subject are in *Pilot Plant Practices*, and the student should simultaneously take both subjects to take better advantage of the learning process.

Objectives and Contextualisation

This is a third-year subject, which is compulsory. It deals with the physical processes of transformation and/or conservation of foods in general, without entering into detailing the processing of food in particular, since this study is carried out in greater depth in the optional subjects that refer to the technologies of raw materials specific

On the other hand, it is necessary to focus on the teaching of this subject in the industrial aspects of the processes, since other subjects cover the basic knowledge related to them.

The objectives of the subject are:

- recognize the balance between preservation and transformation in foods;
- compare the processes of transformation and conservation of foods;
- select the most suitable in each situation;
- demonstrate that you know the processes of conditioning and storage of raw materials;
- analyze the operation of the machinery, with all its complementary elements;
- optimize the processes, regardless of the complexity of the equipment

- select the most respectful process alternative with the product and the environment.

Competences

- Apply knowledge of the basic sciences to food science and technology.
- Apply the principles of processing techniques and evaluate their effects on the quality and safety of the product.
- Develop individual learning strategies and planning and organisation skills.
- Make changes to methods and processes in the area of knowledge in order to provide innovative responses to society's needs and demands.
- Search for, manage and interpret information from different sources.
- Show understanding of the mechanisms by which raw materials deteriorate and the reactions and changes that take place during storage and processing, and apply the methods for controlling this.
- Take account of social, economic and environmental impacts when operating within one's own area of knowledge.
- Use IT resources for communication, the search for information within the field of study, data processing and calculations.

Learning Outcomes

1. Build models to predict the effect of technological treatments on food components.
2. Design complex processes in accordance with the established quality criteria.
3. Develop individual learning strategies and planning and organisation skills.
4. Make changes to methods and processes in the area of knowledge in order to provide innovative responses to society's needs and demands.
5. Relate the characteristics of foods to their physical properties.
6. Search for, manage and interpret information from different sources.
7. Select processes of conservation, transformation, transport and storage that are suited to foods of animal and plant origin.
8. Take account of social, economic and environmental impacts when operating within one's own area of knowledge.
9. Use IT resources for communication, the search for information within the field of study, data processing and calculations.

Content

Block 0. Introduction and basic principles

Block 1. Mechanical treatments

- 1.1. Previous treatments
- 1.2. Changes in the dimensions of food
 - 1.2.1. Reduction in size and mixture of solids
 - 1.2.2. Emulsion and homogenization
- 1.3. Texture and extrusion
- 1.4. Separations
 - 1.4.1. Sedimentation

1.4.2. Centrifugation

1.4.3. Filtering

Block 2. Processes of control of water activity

2.1. Evaporation of liquid foods

2.2. Concentration by tangential filtration

2.3. Drying and dehydration

2.4. Lyophilization and cryo-concentration

2.5. Osmotic dehydration (salting and confit)

Block 3. Processes of control of the redox potential and pH

3.1. Subcritical and supercritical CO₂

3.2. Food acidification processes

3.3. Packaging gases

Block 4. Processes of chemical conservation and/or transformation

4.1. Application of additives and technological aids

4.2. Smoked

4.3. Ionizing radiation

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Case study presentations and flipped classroom exercises	2	0.08	6, 1, 3, 2, 5, 7, 9
Expositive lectures	36	1.44	1, 2, 5, 7
Type: Supervised			
Mentoring	4	0.16	8, 1, 3, 2, 4
Quizzes and continuous evaluation	4	0.16	8, 3, 2, 4, 5, 7, 9
Type: Autonomous			
Preparation of work, case preparation	40	1.6	6, 1, 3, 2, 5, 7, 9
Self-study work	52	2.08	6, 1, 3, 2, 5, 7

The methodology used in this subject to achieve the learning process is based on making the student work on the information that is made available to them. The teacher's role is to give him the information or indicate where he can get it, and help and tutor him so that the learning process can be carried out effectively. To achieve this objective, the subject is based on the following activities:

Part of the content of the theory program will be taught by the teacher in the form of lectures. The theoretical classes will be complemented with the viewing of animations and videos related to the topics covered in class. The visual aids used in class by the teacher will be available on the Virtual Campus. It is recommended that students print out this material and bring it to class to use as a support when taking notes. Although it is not essential to expand the contents of the classes taught by the teacher, unless the teacher expressly requests it, students should regularly consult the books recommended in the Bibliography section to consolidate and clarify, if necessary, the contents explained in class.

With these sessions, the student acquires the basic scientific and technical knowledge of the subject that must be complemented with personal study of the topics explained.

For some topics, flipped classroom sessions will be developed. Students will be instructed to work on the study materials prior to the face-to-face session, where the time of contact with the teacher will be dedicated to carrying out exercises to apply the knowledge that has been previously studied autonomously. The result of these exercises will be part of the evaluation of the subject, together with the resolution of cases.

Students will work in groups to solve cases based on real situations, which will serve to achieve other parts of the theory program of the subject. The teacher will present each case to the class group and will give guidelines for the resolution of the case. Throughout the time that the students will spend working on the case, the teacher will offer tutorial sessions, and immediately after delivering the case will be resolved in the classroom. Students will present a report with their conclusions on the case, which will be evaluated.

The autonomous work of the student will consist of the personal study of the material presented in the expository classes, the comprehensive reading of texts and the search for bibliographic material. All this will allow the student to understand and assimilate the theoretical contents addressed in the subject, as well as to interrelate the concepts studied with other subjects of the degree, especially with the practical and applied aspects of the subject of Pilot Plant Practices.

The tutorial sessions aim to direct and help the student in their training. The hours of free tutoring can be requested by students to resolve doubts about the contents of the subject. Students can take advantage of the tutorials to ask questions, make comments or raise doubts that have arisen throughout the course. There will be some tutorial sessions scheduled to solve the cases and exams after the exercises have been delivered by the students. This is intended to ensure that the evaluation actions are also training actions.

For this subject, the use of Artificial Intelligence (AI) technologies is allowed exclusively in support tasks, such as bibliographic or information research, text correction or translations. The writing of the resolutions of the cases must reflect a significant contribution of the student in the analysis and personal reflection. The student will have to clearly identify which parts have been generated with this technology, specify the tools used and include a critical reflection on how they have influenced the process and the final result of the activity. The non-transparency of the use of AI in this assessable activity will be considered a lack of academic honesty and may lead to a partial or total penalty in the grade of the activity, or greater sanctions in cases of seriousness.

Note: 15 minutes of a class will be reserved, within the calendar established by the degree, for the complementation by the students of the surveys of evaluation of the performance of the teaching staff and the evaluation of the subject.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continuous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Case study and flipped classroom	35%	4	0.16	8, 6, 1, 3, 2, 4, 5, 7, 9
Partial exams	45%	4	0.16	1, 2, 5, 7
Quizzes and continuous evaluation	20%	4	0.16	1, 2, 5, 7

The subject is designed for the student to make a distributed effort throughout the course, in the form of continuous assessment. The evaluation will be obtained from the evaluation of cases, continuous evaluation tasks and partial exams. Partial exams will be considered passed with a grade of 4.5 or higher. There will be a recovery exam for the partials. In retaken, a grade equal to or higher than 4.5 will be required to pass any of the partial exams.

For students who decide to take a single assessment, submit a motivated request to the centre, which will consist of a single test in which the contents of the entire subject program will be assessed. The test will consist of questions on the application of the contents in the form of solving cases based on the information provided in the corresponding statements and topics to be developed. The questions solved in writing and posed in the exam room will be worth 80% of the grade of this evaluation and the oral test on a case prepared in advance will weigh 20%. The joint grade obtained in this final exam will account for 100% of the final grade of the subject. The single assessment test will be held on the same day, time and place as the last midterm exam of the subject. The single assessment can be retaken on the day set for the retake of the subject.

A student will be considered not to be assessed if he or she has participated in assessment activities that represent $\leq 15\%$ of the final grade, both for continuous assessment and for single assessment.

Bibliography

The texts highlighted in bold are considered more basic. The rest are good complements for specific subjects.

Berk, Z. 2009. Food Process Engineering and Technology. Elsevier. (online version <http://www.sciencedirect.com/science/book/9780123736604>)

Brennan J.G. 1998. Food engineering operations. Acribia, Zaragoza.

Earle, R.L. 1988. Food engineering. Basic operations applied to food technology. Acribia, Zaragoza (online version of the original edition <http://www.nzifst.org.nz/unitoperations/index.htm>)

Fellows, P. J. 2009. Food Processing Technology - Principles and Practice (3rd Edition). Woodhead Publishing. (online version <http://www.knovel.com>)

Guy R. 2002. Extrusion of food. Technology and applications. Acribia, Zaragoza.

Ibarz, A. y Barbosa Cánovas, G.V. 2005. Unit Operations in Food Engineering. Ed. Mundiprensa, Madrid.

Ramaswamy H. i Marcotte M. 2006. Food Processing: Principles and Applications. CRC Press, Boca Raton, Florida, USA.

Rodríguez, F. (Ed.) 1999. Engineering of the food industry. Ed. Synthesis Madrid

Volume I. Basic concepts

Volume II. Food Processing Operations

Volume III. Food Conservation Operations

Singh, R.P. and Heldman, D.R. 2009. Introduction to food engineering (4th edition). Academic Press. (Online version at <http://app.knovel.com>)

Zeuthen, Peter; Bøgh-Sørensen, Leif. 2003. Food Preservation Techniques. Woodhead Publishing. (online version <http://www.knovel.com/>)

Software

It will be necessary to use some office automation package to elaborate the works that the teachers commission. The contents will be conveyed through the Virtual Campus of the subject.

In case it is necessary to do synchronous activities remotely, the Teams platform will be used, where students must access using their institutional e-mail.

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.

Name	Group	Language	Semester	Turn
(TE) Theory	1	Catalan/Spanish	first semester	morning-mixed