UAB

Universitat Autdnoma
de Barcelona

Estructuras de Datos

Codigo: 104347
Créditos ECTS: 6

2025/2026
Titulacion Tipo Curso
Ingenieria de Datos OB 2
Contacto

Nombre: Gema Sanchez Albaladejo

Correo electronico: gemma.sanchez@uab.cat
Equipo docente

Gema Sanchez Albaladejo

Daniel Soto Alvarez

Idiomas de los grupos

Puede consultar esta informacion al final del
documento.

Prerrequisitos

La asignatura no tiene ningun prerrequisito oficial. De todas formas, se asume que el alumnado ha cursado las
asignaturas previas de Fundamentos de programacién y Programacién Avanzada, asi como Grafos,
Topologia y Geometria Discreta. Por lo tanto, sabe utilizar las estructuras basicas y avanzadas de la
programacion, Orientacion a objetos y el concepto de grafo con los diferentes métodos de recorrido sobre
ellos.

Objetivos y contextualizacion

Esta asignatura forma parte de la materia Representacion de los Datos y debe verse como la continuacion
I6gica de la asignatura Programacion Avanzada y la continuacion practica de la asignatura de matematica
Discreta. El objetivo basico es profundizar en las estructuras de datos basicos introducidas en Fundamentos
de programacion junto con las nociones de programacion orientada a objetos introducidas en Programacion
Avanzada y ampliar con otras estructuras de datos mas complejas asi como algoritmos eficientes para recorre
la foto. Se introducira el concepto de algoritmo recursivo con algoritmos recursivos simples y mas complejos
como los relacionados con recorridos de arboles y grafos

De esta forma, los objetivos formativos que se proponen para la asignatura son los siguientes:

® Ser capaz de analizar un problema complejo, disefiar una solucién optima, implementarla, calcular su
coste y probarla.

® Entender y saber utilizar estructuras de datos complejas como arboles, grafos etc. y utilizarlas
correctamente y de una manera eficiente para resolver problemas algoritmicos complejas.



® Dotar al alumno de la capacidad de disefio de algoritmos para la resolucion de problemas complejos,
viendo algoritmos complejos de recorrido y busqueda en estructuras de datos complejas. Ademas de
analizar la complejidad temporal y espacial de ellos a fin de elegir la solucién que mas se adapte a las
necesidades de cada momento.

® Introducir el concepto de recursividad y su aplicacion al recorrido de estructuras complejas recursivas,
ademas de ser capaz de analizar la complejidad de algoritmos recursivos.

® Programar en un lenguaje de programacion real y ser capaz de depurar los propios programas.

® Desarrollar los programas siguiendo unas normas de estilo tendentes ac onseguir programas de
calidad.

Competencias

® Buscar, seleccionar y gestionar de manera responsable la informacién y el conocimiento.

® Desarrollar un pensamiento y un razonamiento critico y saber comunicarlo de manera efectiva, tanto en
las lenguas propias como en inglés.

® Disefar soluciones algoritmicas eficientes para problemas computacionales, implementarlas en forma
de desarrollo de software robustos, estructurados y faciles de mantener, y verificar su validez.

® Trabajar cooperativamente, en entornos complejos o inciertos y con recursos limitados, en un contexto
multidisciplinar, asumiendo y respetando el rol de los diferentes miembros del equipo.

Resultados de aprendizaje

1. Buscar, seleccionar y gestionar de manera responsable la informacién y el conocimiento.

2. Desarrollar programas con un buen estilo de programacién y bien documentados y saber depurarlos,
testearlos y corregirlos.

3. Desarrollar un pensamiento y un razonamiento critico y saber comunicarlo de manera efectiva, tanto en
las lenguas propias como en inglés.

4. Seleccionar y aplicar la combinacion de estructuras de datos y estrategias de resolucion mas apropiada
para resolver de manera eficiente un problema informatico.

5. Trabajar cooperativamente, en entornos complejos o inciertos y con recursos limitados, en un contexto
multidisciplinar, asumiendo y respetando el rol de los diferentes miembros del equipo.

Contenido

0. Introduccion
Objetivos y presentacion de la asignatura. Repaso de Programacion avanzada.

1. Estructuras de datos linieals. Listas, colas, pilas.

Representaciéon y manipulacion de estructuras de datos dinamicas: repaso de listas, introduccion a las pilas y
colas.

2. Estructuras de datos no lineales. hash
Técnicas de "Hashing". Listas hash. Funciones hash. Como se implementan en python. Diccionarios.
3. Recursividad y Algoritmos de ordenacion

Introduccion a los algoritmos recursivos. Método de la burbuja, QuickSort, mergesort. Recursividad. Calculo
complejidad.

4. Estructuras de datos no lineales. grafos
Representaciones y recorridos. BFS, DFS, Resolucion de problemas con grafos.



5. Estructuras de datos no lineales. Arboles.

Definicion y representacion de un arbol. Recorridos de arboles es. Binary Heaps.

Actividades formativas y Metodologia

Titulo Horas ECTS Resultados de aprendizaje
Tipo: Dirigidas

Clases presenciales 48 1,92 1,2,3,4,5

Trabajo auténomo 93 3,72 1,2,3,4,5

La metodologia docente de la asignatura parte del principio que dice que "programar es la Unica forma de
aprender a programar" y, por tanto, estara centrada principalmente en el trabajo practico del alumnado. Las
sesiones presenciales de clase se organizaran para introducir los contenidos teéricos de la asignatura, desde
una perspectiva muy practica a partir de ejemplos y de ejercicios y problemas de programacion que se
deberan resolver a cla sse directamente con el ordenador. El objetivo principal de la asignatura es que el
alumnado sepa resolver un problema dado, de manera eficiente, utilizando estructuras de datos complejas, si
es necesario. Por esta razén el aprendizaje se centrara en acompanar al alumnado en su tarea de resolucién
de problemas a partir de unos conceptos tedéricos estudiados previamente de manera autonoma. Se utilizara
principalmente el lenguaje de programacién Python.

Por otra parte, se realizara un proyecto de programacién que se tendra que ir desarrollando de forma
principalmente auténoma durante todo el curso (con seguimiento y control por parte del profesor en sesiones
puntuales) y que supondra integrar de forma practica casi todos los conceptos y herramientas de
programacion introducidos en las sesiones presenciales en la resolucion de un problema real complejo.
Ademas, se propondra un conjunto de ejercicios que deberan resolverse de forma individual a lo largo del
curso (algunos de los cuales se resolveran y discutiran en las sesiones presenciales) que deben servir para
comprender, integrar y aplicar los conceptos desarrollados en las sesiones presenciales. En las actividades
del curso (sesiones presenciales, problemas y practicas) se utilizara principalmente el lenguaje de
programacion Python.

A nivel presencial, las sesiones de clase se organizaran en cuatro horas semanales y se haran en un aula con
ordenadores o electrificadas para facilitar el trabajo practico del alumnado. Es necesario que el alumno lleve
su propio portatil a clase si las aulas no disponen de uno. En las sesiones presenciales se iran introduciendo
los conceptos que se detallan en el temario de la asignatura. en algunos casos, se podran poner a disposicion
del alumnado videos explicativos u otro material complementario que el alumnado debera visionar antes de la
sesion de clase. Las sesiones de clase tendran un enfoque bastante practico con ejemplos y ejercicios que se
plantearan a los alumnos para facilitar la comprension y aprendizaje de los conceptos explicados. Estos
ejercicios se realizaran y discutiran durante la sesion y serviran para ir introduciendo los contenidos de la
asignatura y ver su aplicacion practica.

El alumnado debera completar las clases presenciales con el trabajo personal autbnomo en la realizacion de
los ejercicios que se vayan proponiendo y que deben servir para acabar de entender los contenidos de la
asignatura. Hay que tener presente que el temario de la asignatura tiene una continuidad légica a lo largo del
curso, por lo que para poder seguir correctamente una clase necesario haber asimilado lo explicado en las
sesiones anteriores. Algunos de estos ejercicios se entregaran de forma individual como parte de la
evaluacion de la asignatura.

Ademas, el alumnado debera hacer en grupos de 2 un proyecto de programacion que se desarrollara de
forma auténoma durantetodo el curso fuerade las sesiones presenciales. El proyecto de programacion



permitira abordar un problema de programacion de cierta complejidad que integre la mayoria de los conceptos
explicados durante el curso. durante el curso, se dedicaran algunas sesiones presenciales el control,
seguimiento y evaluacion del trabajo realizado por el alumnado en el proyecto de programacion.

La gestion de la docencia de la asignatura se realizara a través de Caronte (http://caronte.uab.cat/), y de
campus virtual (https://cv.uab.cat/) .

Nota: se reservaran 15 minutos de una clase dentro del calendario establecido por el centro o por la titulaciéon

para que el alumnado rellene las encuestas de evaluacion de la actuacion del profesorado y de evaluacion de

la asignatura o modulo.

Evaluacién

Actividades de evaluacién continuada

Titulo Peso Horas ECTS Resultados de aprendizaje
Examen de recuperacion 50% Nota final 3 0,12 3,4

Primer Parcial 25% Nota final 2 0,08 3,4

Problemas 20% Nota final 0 0 1,2,3,4

Proyecto 30% Nota final 2 0,08 1,2,3,4,5

Segundo parcial 25% Nota final 2 0,08 3,4

La evaluacion de la asignatura tendra en cuenta tres tipos de actividades de evaluacion: entrega de
problemas, evaluacion individual y proyecto de programacion. la nota final de la asignatura se obtiene
combinando la evaluacion de estas 3 actividades de la siguiente manera:

Nota Final = (0.2 * Evaluacién Problemas) + (0.3 * Proyecto) + (0.5 * Evaluacion Individual)

® Entrega de problemas: en este apartado se incluye la entrega de los ejercicios que se propongan a lo
largo del curso y otras actividades que se realicen en las sesiones de problemas.

Se debera conseguir una nota minima de 5 en esta actividad para poder aprobar la asignatura.

Los ejercicios que se entreguen fuera de plazo o que tengan una evaluacion de suspendido se podran
recuperar y volver a entregar en cualquier momento del curso antes de la fecha del examen final de la
asignatura, con una reduccién sobre la nota del 20%. Los problemas estaran ponderados segun el peso del
tema al conjunto de la asignatura, y el nimero de problemas que tengan que entregar por cada tema.

® Evaluacion individual: en este apartado se incluye el resultado de las pruebas individuales que se
haran a lo largo del curso. Habra dos pruebas parciales que se realizaran durante el periodo lectivo del
curso en horarios de clase y una prueba final durante el periodo oficial de examenes. Esta prueba final
sera de recuperacion y sélo tendran que hacer los estudiantes que no hayan superado alguno de los
dos parciales. Si se ha superado uno de los dos parciales, pero el otro no, en esta prueba sélo se ha
de recuperar la parte de la asignatura correspondiente al parcial que no se haya superado.

Se debera conseguir una nota minima de 4 en cada uno de los dos parciales y una nota promedio minima de
5 para poder aprobar la asignatura.

La nota final sera la media de los dos parciales: Evaluacion Individual = (0.5 * Parcial1) + (0.5 * Parcial2)



® Proyecto: incluye todo el trabajo del proyecto de programacién. Incluye la evaluacién de las dos
entregas del proyecto (una entrega parcial a mitad de curso y la entrega final) y la evaluacion del
seguimiento del proyecto que se hara a las sesiones presenciales que corresponda. La nota final se
calculara de la forma siguiente:

Proyecto = (0.2 * Evaluacion seguimiento proyecto) + (0.3 * Entrega Parcial 1) + (0.5 * Entrega Final)

® Se debera conseguir una nota minima de 4 en la evaluacion del seguimiento del proyecto y una nota
minima de 5 en el entrega final del proyecto para poder aprobar el proyecto.

® Se debera conseguir una nota minima de 5 en el proyecto para poder aprobar la asignatura.

® | a nota de la entrega final del proyecto se podra recuperar si la nota del proyecto es> = 3 y la nota dela
evaluacion individual es> = 5.

No evaluable: Un alumno se considerara no evaluable (NA) si no hace como minimo el 50% de las entregas
de ejercicios y no hace ninguna de las pruebas de evaluacioén: parcial 1, parcial 2, prueba final de
recuperacion, entrega final de la practica.

suspendidos: Si el calculo de la nota final es igual o superior a 5 pero no se llega al minimo exigido en alguna
de las actividades de evaluacion, la nota final sera suspendido y se pondra un 4.5 en la nota del expediente
del alumno.

Convalidaciones: No se convalidaran proyectos de afios anteriores.

MH: Se daran tantas matriculas como puedan dentro de la normativa de la universidad, empezando por las
notas mas altas y siempre y cuando la nota minima sea un 9.

revisiones: Para cada actividad de evaluacion, se indicara un lugar, fecha y hora de revision en la que el
estudiante podra revisar la actividad con el profesor. En este contexto, se podran hacer reclamaciones sobre
la nota de la actividad, que seran evaluadas por el profesorado responsable de la asignatura. Si el estudiante
no se presenta en esta revision, no se revisara posteriormente esta actividad.

Nota importante sobre copias y plagios:

Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, y de acuerdo con la normativa
académica vigente, las irregularidades cometidas por un estudiante que puedan conducir a una variacion de la
calificacién se calificaran con un cero (0). las actividades de evaluacion calificadas de esta forma y por este
procedimientono seran recuperables. Si es necesario superar cualquiera de estas actividades de evaluacion
para aprobar la asignatura, esta asignatura quedara suspendida directamente, sin oportunidad de recuperarla
en el mismo curso. Estas irregularidades incluyen, entre otros:

® |a copia total o parcial de una practica, informe, o cualquier otra actividad de evaluacion;

® dejar copiar;

® presentar un trabajo de grupo no hecho integramente por los miembros del grupo;

® presentar como propios materiales elaborados por un tercero, aunque sean traducciones o
adaptaciones, y en general trabajos con elementos no originales y exclusivos del estudiante;

® tener dispositivos de comunicacién (como teléfonos moviles, smart watches, etc.) accesibles durante
las pruebas de evaluacion tedrico-practicas individuales (examenes).

En estos casos, la nota numérica del expediente sera el valor menor entre 3.0 y la media ponderada de las
notas (y por tanto no sera posible el aprobado por compensacion).

En la evaluacion de las entregas de problemas y practicas se utilizaran herramientas de deteccion de copia
del cédigo del programa.

Nota sobre la planificacion de las actividades de evaluacion:

Las fechas de evaluacion continua y entrega de trabajos se publicaran en el principio de curso y pueden estar
sujetos a cambios de programacién por motivos de adaptacién a posibles incidencias. Siempre se informara a
Caronte sobre estos cambios ya que se entiende que esta es la plataforma habitual de intercambio de
informacion entre profesores y estudiantes.

Evaluacion unica:



Esta asignatura no preveé el sistema de evaluacion unica.
Uso de la IA:

Uso restringido: Para esta asignatura, se permite el uso de tecnologias de Inteligencia Artificial (I1A)
exclusivamente en labores de soporte, como la busqueda bibliografica o de informacion, la correccion de
textos o las traducciones. El estudiante tendra que identificar claramente qué partes han sido generadas con
esta tecnologia, especificar las herramientas utilizadas e incluir una reflexion critica sobre como éstas han
influido en el proceso y el resultado final de la actividad. La no transparencia del uso de la IA en esta actividad
evaluable se considerara falta de honestidad académica y puede acarrear una penalizacion parcial o total en
la nota de la actividad, o sanciones mayores en casos de gravedad.

Bibliografia

Problem solving with algorithms and data Structures using Python. Bradley N. Miller and David L. Ranum.
Franklin, Beedle and associates, 2005.

Python Programming: an introduction to computer science. John Zelle. Franklin,Beedle and associates, 2004.

Data Structures and Algorithms in python. Michael T. Googrich, Roberto Tamassia, Michael H. Goldwasser.
Ed. Wiley. 2013.

https://www.geeksforgeeks.org/python-programming-language/?ref=ghm

Software

Spyder (Anaconda)

Grupos e idiomas de la asignatura

La informacién proporcionada es provisional hasta el 30 de noviembre de 2025. A partir de esta fecha, podra
consultar el idioma de cada grupo a través de este enlace. Para acceder a la informacion, sera necesario
introducir el CODIGO de la asignatura

Nombre Grupo Idioma SEINERC) Turno
(PAUL) Practicas de aula 81 Catalan primer cuatrimestre manafia-mixto
(PAUL) Practicas de aula 82 Catalan primer cuatrimestre manaha-mixto



https://sia.uab.cat/servei/ALU_TPDS_PORT_ESP.html

