
Idiomas de los grupos

Puede consultar esta información al delfinal
documento.

Contacto

guillermo.torres@uab.catCorreo electrónico:

Guillermo Eduardo TorresNombre:

2025/2026

1.

2.

Programación Orientada a los Objetos

Código: 104389
Créditos ECTS: 6

Titulación Tipo Curso

Matemática Computacional y Analítica de Datos FB 1

Equipo docente

Enric Sala Esteva

Prerrequisitos

No hay prerequisitos oficiales, pero es necesario saber programar en Python.

Objetivos y contextualización

El objetivo principal es que el estudiante adquiera conocimientos sobre los principios del Diseño Orientado a
Objetos y los Patrones de Diseño, con el fin de elaborar diseños de software que se representen mediante
diagramas UML y se implementen posteriormente en un lenguaje de programación orientado a objetos.

Esto incluye conceptos fundamentales como clases, objetos, métodos, atributos, herencia, composición y
encapsulamiento. A partir de estos principios, se introducen los Patrones de Diseño de Software, que
proporcionan soluciones reutilizables a problemas comunes en el desarrollo de software.

Los diagramas UML permiten representar de forma clara las estructuras y relaciones del software, facilitando
la visualización y comparación de diferentes diseños, así como la planificación de su implementación.

Resultados de aprendizaje

CM09 (Competencia) Desarrollar soluciones algorítmicas eficientes a problemas computacionales de
acuerdo con los requisitos establecidos para la programación orientada a objetos.

CM10 (Competencia) Analizar la complejidad computacional de las soluciones algorítmicas para
1

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

CM10 (Competencia) Analizar la complejidad computacional de las soluciones algorítmicas para
desarrollar e implementar aquella que garantice el mejor rendimiento de la programación orientada a
objetos.
CM11 (Competencia) Asegurar el funcionamiento correcto de una solución algorítmica de acuerdo con
los requisitos del problema a resolver para la programación orientada a objetos.
KM09 (Conocimiento) Reconocer los métodos, sistemas y tecnologías propios de la programación
orientada a objetos.
SM09 (Habilidad) Utilizar los sistemas operativos y programas de uso común en la programación
orientada a objetos.
SM10 (Habilidad) Utilizar las estructuras algorítmicas y de representación de los datos apropiadas para
la resolución de problemas en la programación orientada a objetos.

Contenido

Conceptos de orientación a objetos.
Introducción a los principios fundamentales de la orientación a objetos, como el encapsulamiento, la
herencia, la composición o el uso de interfaces, así como la representación gráfica mediante diagramas
de clases UML.

Programación orientada a objetos en Python.
Uso de un lenguaje de programación para aplicar los conceptos orientados a objetos, incluyendo
características avanzadas del lenguaje.

Principios de diseño orientado a objetos.
Análisis de principios para estructurar software mantenible y escalable, y asignar responsabilidades de
forma coherente entre los componentes.

Patrones de diseño.
Estudio de soluciones reutilizables para problemas comunes en el diseño de software.

Estilo de codificación y buenas prácticas.
Aplicación de convenciones de estilo, documentación del código, uso de comentarios y técnicas para
mejorar la trazabilidad y comprensión del software.

Desarrollo práctico incremental.
Aplicación progresiva de los contenidos teóricos-prácticos mediante ejercicios y un proyecto principal
dividido en fases.

Actividades formativas y Metodología

Título Horas ECTS Resultados de aprendizaje

Tipo: Dirigidas

Clases de prácticas 13 0,52 CM09, CM10, SM09, CM09

Clases de teoria 36 1,44 CM11, KM09, SM10, CM11

Estudiar 50,5 2,02

Programación para la resolución de problemas 50,5 2,02

La asignatura sigue una metodología de , en la que los estudiantesaprendizaje basado en proyectos (ABP)
2

La asignatura sigue una metodología de , en la que los estudiantesaprendizaje basado en proyectos (ABP)
desarrollan progresivamente un proyecto de programación aplicando los principios de la Programación
Orientada a Objetos (POO). El proyecto está estructurado en hitos (), que permiten consolidar losmilestones
contenidos trabajados a lo largo del curso, promoviendo un aprendizaje significativo, activo y orientado a la
práctica.

Clases de teoría. Se introducen los conceptos clave del paradigma orientado a objetos y se proporcionan las
bases necesarias para afrontar el desarrollo del proyecto. Estas clases incluyen también la resolución de
pequeños problemas de diseño y programación orientada a objetos. Además, se ofrecen referencias
bibliográficas (libros, artículos, recursos en línea) que complementan las sesiones presenciales. Las
transparencias utilizadas en clase no deben considerarse como única fuente de estudio; se espera que los
estudiantes consulten activamente los materiales recomendados, disponibles en el campus virtual de la
asignatura.

Clases de prácticas. Al inicio del curso, los estudiantes se organizan en pequeños grupos de trabajo. Durante
estas sesiones, 1) se revisa semanalmente el progreso en el proyecto y se resuelven dudas técnicas y/o
conceptuales, y 2) se realiza una evaluación continua, tanto grupal como individual, según el baremo definido
en el enunciado de la práctica. Estas sesiones no están diseñadas para desarrollar el proyecto completo
desde cero, sino para hacer seguimiento y evaluar el trabajo que los grupos han avanzado previamente de
manera autónoma.

Trabajo autónomo. El aprendizaje de la programación requiere dedicación y práctica constante. Por ello, se
espera que los estudiantes trabajen de forma autónoma fuera del aula: estudiando los contenidos teóricos,
resolviendo ejercicios, revisando ejemplos y avanzando de manera continua en el desarrollo del proyecto.

El campus virtual contiene todos los materiales de la asignatura, así como la planificación detallada del curso.
Todos los contenidos escritos están redactados en inglés.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación
para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de
la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título Peso Horas ECTS Resultados de aprendizaje

Exámenes 50% 0 0 CM11, KM09, SM10

Práctica 50% 0 0 CM09, CM10, SM09

La evaluación de la asignatura se basa en un sistema de evaluación continuada que combina actividades
individuales y grupales, con el objetivo de valorar tanto la comprensión conceptual como la aplicación práctica
de los contenidos teórico-prácticos.

Cálculo de la nota final (FM)

Todas las notas están sobre 10 puntos. La nota final se calcula según el siguiente algoritmo:

EX = max(0.5 * (EX1 + EX2), EXR) + EXextra
PR = 0.5 * (M1 + M2)

 if (EX >= 4.0)and (PR >= 4.0):

 FM = 0,5 * (EX + PR)
3

 FM = 0,5 * (EX + PR)
else:

 FM = min(EX, PR)

Para aprobar el curso se requiere que FM >= 5 puntos.

Donde:

EX1 y EX2 corresponden alprime examen y segundo examen, dos pruebas escritas individuales
realizadas durante el curso.
EXR es el examen de recuperación que puede sustituir al promedio de EX1 y EX2 si mejora la nota.
M1 y M2 son los hitos (milestones) de evaluación de las prácticas en grupo e individual realizados a lo
largo del curso.
EX son los puntos adicionales obtenidos mediante ejercicios opcionales.extra

Evaluación Única: Esta asignatura no prevé el sistema de evaluación única.

Evaluación de la práctica

La práctica se divide en varias partes o "hitos", evaluadas in situ durante las sesiones prácticas.
Cada parte tiene una puntuación específica indicada en el enunciado correspondiente.
Estas evaluaciones no tienen recuperación.
Las entregas se realizarán a través del campus virtual. Las entregas fuera de plazo podrán obtener
como máximo una puntuación de 5 puntos.
En caso de dudas sobre la autoría o contribución individual dentro del grupo, la calificación pasará a
ser individual, asignando la nota en función de la aportación de cada miembro.
Las sesiones de práctica son esenciales para asimilar los conceptos teóricos-prácticos, y su realización
debe hacerse de forma progresiva durante el curso.

Evaluación de los exámenes

Se realizarán dos pruebas escritas (EX1 y EX2) a lo largo del curso.
Existe unexamen de recuperación (EXR) que permite mejorar la nota si es superior a la media de EX1
y EX2.
Los ejercicios opcionales (EX) podrán sumar puntos adicionales a la nota de teoría (EX) y noextra
tienen recuperación.

Otros aspectos relevantes

No se convalidan prácticas, ejercicios ni exámenes de cursos anteriores.
En caso de no entregar un examen o una parte de la práctica, la nota de esa parte será cero.
La nota final será "no evaluable" si el estudiante no ha presentado ninguna actividad evaluable.
La calificación de Matrícula de Honor (MH) se concederá discrecionalmente a estudiantes con nota
final superior a 9.0, valorando todas las actividades realizadas.
Las fechas de entrega y evaluación se publicarán en el campus virtual y podrán modificarse en caso de
incidencias, informándose siempre mediante dicho medio.
Para los exámenes escritos se indicará fecha y lugar para la revisión por parte del estudiante; si no
asiste, no se hará revisión posterior.
Plagios, copias o cualquier irregularidad en actividades evaluables supondrán una calificación de cero
en dicha actividad sin posibilidad de recuperación en el mismo curso académico, y en su caso, la
suspensión de la asignatura.
En ningún caso se podrá utilizar inteligencia artificial (IA) generativa para suplantar la actividad de
aprendizajedelestudiante. Las tareas sospechosas de habersido generadas por estas técnicas se
evaluarán con un 0.

El Uso de IA:

Uso de la IA. Las herramientas de inteligencia artificial podrán utilizarse como herramientas de apoyo al
aprendizaje (por ejemplo, para mejorar la redacción, el estilo, la claridad expositiva, la corrección

lingüística o para obtener asistencia en aspectos técnicos). En ningún caso podrán sustituir y/o
4

lingüística o para obtener asistencia en aspectos técnicos). En ningún caso podrán sustituir y/o
suplantar la actividad de aprendizaje del estudiante, ni su adquisición de los conocimientos específicos
de la asignatura.
No es aceptable utilizar herramientas de inteligencia artificial para generar contenidos del trabajo que
estén sometidos a evaluación. Las tareas/actividades evaluables que se sospeche que han sido
generadas por una IA en lugar del estudiante serán consideradas como una copia y se evaluarán con
un 0.

Bibliografía

Básica

Las clases de teoría se basan en un conjunto de transparencias que sintetizan los conceptos clave del curso.
Estos materiales están pensados como guía, por lo que se recomienda consultar las siguientes obras para
una mejor comprensión y para ampliar conocimientos:

Patrones de diseño. E. Gama, R. Helm, R. Johnson, J. Vlissides. Pearson Educación 2003.
Es un clásico del patrones de diseño orientado a objeto, por los autores que propusieron este concepto. La
versión original en inglés es de 1995 y por ello sus ejemplos y diagramas pueden parecer desactualizados,
explica muy bien los fundamentos.

 Libro on-line,Design patterns explained simply. Alexander Shvets.
https://sourcemaking.com/design-patterns-ebook. Tambien del mismo autor otro libro online en
https://refactoring.guru/design-patterns
Ofrece explicaciones claras e ilustradas con ejemplos en múltiples lenguajes, incluídos Python, C++ y Jave.
Ideal como introducción práctica.

Complementaria

Head first Design Patterns. E. Freeman & E. Robson, 2021.
Un libro muy didáctico sobre patrones de diseño que utiliza ejemplos sencillos explicados con humor.

Python: master the art of design patterns. D. Phillips, C. Giridhar, S. Kasampalis. Packt Publishing, 2016.
Obra extensa (más de 700 páginas) centrada en la implementación detallada de patrones de diseño en
Python. Muy útil para ver cómo se aplican realmente en este lenguaje.

Mastering object-oriented Python. Steven F.Lott. Packt publishing, 2014.
Aporta una visión avanzada del lenguaje Python, profundizando en aspectos clave de la programación
orientada a objetos. Destacan capítulos como el dedicado al sistema de logging y otros temas específicos del
lenguaje.

Software

Python junto con el gestor de paquetes Pip o Anaconda para instalar librerías como NumPy y
Matplotlib.
IDE Spyder para programar y depurar código Python.

Grupos e idiomas de la asignatura

5

La información proporcionada es provisional hasta el 30 de noviembre de 2025. A partir de esta fecha, podrá
consultar el idioma de cada grupo a través de este . Para acceder a la información, será necesarioenlace
introducir el CÓDIGO de la asignatura

Nombre Grupo Idioma Semestre Turno

(PLAB) Prácticas de laboratorio 1 Catalán/Español segundo cuatrimestre manaña-mixto

(PLAB) Prácticas de laboratorio 2 Catalán/Español segundo cuatrimestre tarde

(TE) Teoría 1 Español segundo cuatrimestre manaña-mixto

6

https://sia.uab.cat/servei/ALU_TPDS_PORT_ESP.html

