UAB

Universitat Autdnoma
de Barcelona

Software Engineering

Code: 106561
ECTS Credits: 6

2025/2026
Degree Type Year
Atrtificial Intelligence oT 3
Artificial Intelligence oT 4
Contact

Teaching groups languages

Name: Marc Castello Torrellas
You can view this information at the end of this

Email: marc.castello@uab.cat document

Prerequisites

Since the course is an introduction to software engineering, it will be assumed that no prior knowledge of the
subject is possessed. It is the responsibility of the course itself to provide students with a means to acquire the
knowledge described in the course content section (section 6 of this guide). However, it is recommended to
have passed the first-year course on Fundamentals of Programming.

Objectives and Contextualisation

This course is an introduction to the software engineering process. The general objective is to provide a global
and structured overview of the software development process, which goes beyond programming (which is only
one phase within the entire software engineering process). The fundamental activities that make up the
development process (requirements analysis, design, implementation, testing, and maintenance) will be
introduced, particularly those related to Artificial Intelligence.

The aim is for students to gain a general understanding of what a software development process is, how it is
modeled, which tools are used, how quality is managed, and how a project is administered. More specifically,
the objectives are:

® To provide a general overview of the software development process, its paradigms, activities, and the
objectives of each activity.

® To understand what software modeling is, and the importance and difficulty of requirements
specification and design in its various views.

® To learn the basic concepts of UML in order to work practically on software modeling.

® To introduce students to the principles, concepts, and techniques used to manage and control software
quality.

® To present the management techniques required to plan, organize, monitor, and control software
projects.

® To become familiar with the SCRUM model as the most relevant paradigm of evolutionary development.

Competences

Artificial Intelligence

® Communicate effectively, both orally and in writing, adequately using the necessary communicative

resources and adapting to the characteristics of the situation and the audience.

® Design, implement, analyse and validate efficient and robust algorithmic solutions to computational

problems derived from the design of intelligent systems.

® Introduce changes to methods and processes in the field of knowledge in order to provide innovative

responses to society's needs and demands.

® Students can apply the knowledge to their own work or vocation in a professional manner and have the

powers generally demonstrated by preparing and defending arguments and solving problems within
their area of study.

® Work cooperatively to achieve common objectives, assuming own responsibility and respecting the role

of the different members of the team.

® Work independently, with responsibility and initiative, planning and managing time and available

resources, and adapting to unforeseen situations.

Learning Outcomes

1.

2.

© N

10.

Analyse, design, build and maintain applications in a robust, secure and efficient way, choosing the
most appropriate paradigm and programming languages.

Assure and evaluate the quality of a software system according to software engineering principles,
standards, methodologies and practices.

. Communicate effectively, both orally and in writing, adequately using the necessary communicative

resources and adapting to the characteristics of the situation and the audience.

Design and evaluate human-computer interfaces that guarantee the accessibility and usability of
computer systems, services and applications.

Propose new ways of measuring the success or failure of implementing innovative proposals or ideas.
Students can apply the knowledge to their own work or vocation in a professional manner and have the
powers generally demonstrated by preparing and defending arguments and solving problems within
their area of study.

Understand and apply software engineering principles, methodologies and life cycles.

Weigh up the risks and opportunities of both your own and others' proposals for improvement.

Work cooperatively to achieve common objectives, assuming own responsibility and respecting the role
of the different members of the team.

Work independently, with responsibility and initiative, planning and managing time and available
resources, and adapting to unforeseen situations.

Content

BLOCK 1. SOFTWARE AND SOFTWARE ENGINEERING

Topic 1. Principles of Software Engineering

® Definition and objectives of SE: Definition, characteristics, software applications. Definition of SE and

objectives of SE.

® Software evolution: Stages, software crisis, problems and causes.
® Process, method, and tool: Definitions, activities in the software development process.
® Software development paradigms: Linear sequential model (classic life cycle), prototyping model,

evolutionary model, and spiral model.

BLOCK 2. SOFTWARE PROJECT MANAGEMENT AND DEVELOPMENT

Topic 2. SCRUM

® Introduction, Agile project management methodology.

® SCRUM: Characteristics and history.

® SCRUM components: Roles, artifacts, processes, scalability, and Scrum of Scrums.
® Software tools.

® Other agile models: Lean, Extreme Programming, Kanban.

® A case study: Building a city with Lego using Scrum.

BLOCK 3. SOFTWARE MODELING
Topic 3. Software Requirements Analysis
® Introduction: Types of requirements, tasks to be carried out.
® Understanding the problem: Communication techniques, associated problems, principles of analysis.
® Requirements specification: Desirable properties of an RS, SE standards, review and validation of the
specification.
Topic 4. Software Design
® Introduction: Design process, data design, architectural design, interface design, procedural design, and
design principles (objectives).
® Design concepts: Abstraction, modularity, and refinement.
® Effective modular design: Functional independence, cohesion, coupling, heuristics for effective modular
design.
® User Interface Design.
Topic 5. UML (Unified Modeling Language)
® Evolution and history of UML.
® UML views: Use case view, logical view, component view, and deployment view.
BLOCK 4. SOFTWARE QUALITY MANAGEMENT
Topic 6. Software Quality

® |ntroduction: Quality concepts.
® Software testing: Testing strategies, testing of conventional applications, testing of web applications.
® Software configuration management.

Activities and Methodology

Title Hours ECTS Learning Outcomes

Type: Directed

Preparation and Study 30 1.2 1,7
Seminars/Problems 14 0.56 3,4,8,5,6,9
Theory Classes 30 1.2 1,2,7

Type: Supervised

Interviews/Tutorials for Case Study 15 0.6 1,2,3,7,6,9,10

Type: Autonomous

Practical Work 38 1.52 1,2,3,7,4,8,6,9, 10

Tutoring 15 0.6 1,2,7

The Software Engineering course has a strong applied component, but it also requires a theoretical foundation,
based on experience, from which practical decisions are implemented. Therefore, the course will not follow a
purely PBL (Problem-Based Learning) approach, but rather a combination of PBL and traditional methodology.
Students will be presented with a practical case (a generic problem) of real-world scale, around which
problem-solving sessions and practical work will be structured. The student must assume the role of software
analyst/architect in order to make the appropriate decisions leading to the construction of a design proposal for
the proposed system. The instructor will take on the role of tutor and, in certain situations, act as a client,
encouraging developer-client dialogue simulations.

The course consists of 4 weekly in-person hours. No formal distinction is made between lecture,
problem-solving, and lab sessions. During class hours, lectures, problem-solving sessions, or practical work
will alternate according to a schedule that will be provided on the first day. In general, the fundamental
theoretical content will be covered during the first sessions of the course (approximately the first 6 weeks), but
some problem-solving and case-based sessions will also be progressively included. Once the theoretical
content has been delivered, all remaining sessions will be dedicated to problem-based work, with certain
mandatory attendance sessions where practical work will take place (in teams of n people, with n defined at
the beginning of the course) or problems will be solved and submitted at the end of the session.

THEORY

Consists of lectures with multimedia material available on the UAB Virtual Campus. The main goal of these
lectures is to introduce the basic concepts of the processes, methods, and tools related to the software life
cycle from an engineering perspective. Principles and paradigms of Software Engineering, the various
activities, and the tasks to be carried out in each activity will be presented. These theory classes are intended
to provide students with a realistic view of the rigor, planning, and systematic approach required in professional
software development.

SEMINARS / PROBLEM SESSIONS

Seminars are participatory sessions involving student engagement. They serve a dual purpose: on one hand,
linking with the lectures, and on the other, with the practical sessions related to the problem to be solved in
teams. Seminars will complement the technical content presented in the lectures, supporting a deeper
understanding. At the same time, they will provide the framework in which the guide problem is discussed, its
foundations are established, and development is carried out. Students will be given the necessary knowledge
to advance in the practical work or will be guided on how to acquire it. Seminars primarily foster analytical and
synthesis skills, as well as critical reasoning and decision-making by the students when addressing the guide
problem. Since this is a very practical course and the theoretical content is relatively straightforward, practical
work is often reinforced with problem-solving or participatory activities. Seminar content will be coordinated
with the stages of the practical project.

PRACTICAL WORK MONITORING

There will be no dedicated in-person lab sessions. Students will solve the guide problem autonomously insmall
groups, with progress monitored during the regular class schedule. The practical sessions (12 hours over the
course) will consist of two parts. First, each practical team will present their project progress to the rest of the
class (the presentation will be done by the team member acting as Scrum Master for that iteration). In the
second part of the session, the practical tutor will hold an individual interview with each team to monitor and
evaluate their progress. Development will follow a SCRUM-based approach, where each increment, or sprint,
corresponds to a session.

Attendance to the follow-up interviews is MANDATORY for all students. Absences will negatively affect the
evaluation of the practical work, and failure to attend more than 15% of the sessions will result in not passing
this component. In case of justified absence, instructors may provide compensation mechanisms. Team sizes
will be determined at the beginning of the course, and as a guideline, teams will consist of 5 members. Since
attendance to follow-up sessions is mandatory and takes place during class hours, it is important that all team
members are enrolled in and attend the same group.

PRACTICAL PROJECT

At the beginning of the course, students will be given a guide problem. This problem serves two purposes.
First, it will be used as an example in seminar sessions, where relevant parts will be addressed in line with the
course content. Second, it functions as the specification for a practical assignment that will be progressively
solved in stages throughout the semester. Students will organize themselves into work teams. The project will
be carried out autonomously, with the weekly follow-up process described above.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be
reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title Weighting Hours ECTS Learning Outcomes
Practical Evaluation 60% 4 0.16 1,2,3,4,8,5,6,9, 10
Theoretical Evaluation 40% 4 0.16 2,7,6

INDICATORS AND ASSESSMENT
This course does not offer the single-assessment system.

Assessment will be based on the practical work developed by the student and included in their portfolio (final
resolution of the guide problem, material generated in seminar activities), the degree of involvement in
seminars, and the technological knowledge acquired in the subject. The following assessment instruments will
be considered:

® Theoretical Assessment (TA). An in-person written test to evaluate the degree of knowledge acquired
by the student on an individual basis. Two midterm tests will be held during the course that will allow
students to exempt content, provided the grade is equal to or higher than 4. Each midterm will account
for 50% of the final theoretical assessment grade.

® Practical Assessment (PA). Evaluation of the overall performance of the different working groups in
solving the guide problem (project) and the various activities presented in seminars (problems). It
consists of two components:

Project Grade

Documentation submitted by the students about their practical work. The technical resolution of the
guide problem will be assessed, as well as the defense of the work during submissions, monitoring
of work progress, and active participation in seminars.

Assessment will be based on interviews with the professor, short written tests, submissions, or
presentations of problems and case studies presented during the activities. Although this instrument
is collective, at the tutor's discretion, it may be graded individually in cases where a student's
participation stands out (positively or negatively) compared to their group.

Problem Grade
During the course, the professor will ask students to solve some problems independently, in addition
to those solved jointly during problem sessions. These submissions are individual.

The final grade will be calculated according to the following table:

Grade Minimum Grade Average Grade Minimum Grade Average Grade

Midterm 1 4 TA=0.5 Midterm_1+0.5 Midterm_2 5
FG=04TA+0.6 PA

Midterm 2 4
Problems 5 PA=0.5 Problems+0.5 Project 5
Project 5

At the time of publishing each evaluation, a review period will be established. These review periods will be
strictly respected, and no grades will be reviewed outside of the official review period.

The course will be graded as "Not Assessable" only if the student has not attended any of the evaluation
activities and has not submitted the assigned work (in full or partially).

If the student does not pass the course because any of the evaluation activities do not reach the required
minimum grade, the final grade recorded will be the lower value between 4.5 and the weighted average of all
marks.

Exceptions:

® A "Not Assessable" grade will be given to students who do not participate in any evaluation activity.

® A grade of zero (0) will be given in the event of irregularities during an assessment activity, in which
case passing by compensation will not be possible.

Honours distinctions will be awarded according to UAB regulations (depending on the number of enrolled
students) to the highest grades equal to or above 9.

For each evaluation activity, the place, date, and time of the review will be indicated so that students may
review the activity with the instructor. In this context, claims regarding the grade can be submitted and will be
evaluated by the responsible teaching staff. If the student does not attend the review session, the activity will
not be reviewed later.

See the "PLAGIARISM" section for measures related to irregularities in evaluation activities.

RECOVERIES

® Theoretical Assessment (TA): Two midterm theory exams will be conducted during class time. Students
who do not pass one or both tests will have a chance to recover via an exam scheduled on the official
final evaluation date of the program.

® Practical Assessment (PA): The practical work is assessed through continuous evaluation during
follow-up sessions. Therefore, there will be no recovery activity at the end of the course. However,
regarding project resolution, failure to submit or pass an intermediate delivery may be recovered by

rescheduling the project plan for later sessions during the course, subject to agreement with the
instructor.

ASSESSMENT DATES

Thedates for continuous assessment and work submissions will be published on the virtual campus and may
be subject to changes due to unforeseen circumstances. All changes will be communicated through the virtual
campus, which is the standard channel for information exchange between teacher and students.

REPEATING STUDENTS

Partial grades (theory or practice) from previous years are not retained. However, at the discretion of the
instructor and based on prior assessments, some compensations may be granted.

PLAGIARISM

Without prejudice to any disciplinary measures deemed appropriate, and in accordance with current academic
regulations, any irregularities committed by a student that may affect grading will result in a zero (0).

For example, plagiarizing, copying, allowing copying, etc., will result in failing that assessment activity with a
zero (0).

These activities will not be recoverable.

If passing such an activity is necessary to pass the course, the entire course will be failed, with a grade of zero
(0), and no opportunity to recover it within the same academic year.

Such irregularities include, among others:
® Total or partial copying of a practice, report, or any other assessed activity.
® Allowing others to copy.
® Submitting a group project not entirely completed by all group members.

® Presenting material created by a third party as one's own, including translations or adaptations, or any
work with non-original content.

® Having communication devices (e.g., mobile phones, smartwatches, etc.) accessible during individual
theoretical-practical exams.

A student who commits irregularities during an assessment will not have any of their other evaluation activities
validated.

In short: copying, allowing to copy, or plagiarizing (or attempting to) in any assessment activity equals a FAIL
with a zero (0), non-compensable, and not valid for future course recognition.

USE OF ARTIFICIAL INTELLIGENCE (Al)

The use of Al technologies as part of the project development is permitted as long as the final result reflects a
significant personal contribution by the student in the analysis and reflection process.

Students must clearly indicate which parts were generated using Al, specify the tools used, and include a
critical reflection on how these tools influenced the process and the final outcome.

Lack of transparency in the use of Al will be considered academic dishonesty and may result in grade penalties
or more severe sanctions in serious cases.

FINAL CLARIFICATION

In case of doubt or discrepancy, the most updated information communicated on the course presentation day
and published on the virtual campus will prevail.

Bibliography
G. Booch, J. Rumbaugh, I. Jacobson. El lenguaje unificado de modelado. Addison-Wesley, 2001.
I. Jacobson, G. Booch, J. Rumbaugh. El proceso unificado de desarrollo de software. Addison-Wesley, 2000.

J. Rumbaugh, I. Jacobson, G. Booch. El lenguaje unificado de modelado: manual de referencia.
Addison-Wesley, 2007.

T. Quatrani. Visual Modeling with Rational Rose 2000 and UML. Addison-Wesley, 2000.
P. Krutchen. The Rational Unified Process. An Introduction. Addison-Wesley, 2000.
Roger S. Pressman, Ingenieria del software, un enfoque practico. Mc Grah-Hill, 7a. edici6 , 2010.

A. Alvarez Garcia, R. de las Heras del Dedo, C. Lasa Gémez, Métodos Agiles y Scrum. Anaya Multimedia,
2012.

K. Pohl, C. Rupp. Requeriments Engineering Fundamentals. Rocky Nook Inc. 2011.

Atés que avui en dia molts materials estan en linia, molt més actualitzats que les fonts bibliografiques, durant
el curs es proporcionen enllagos a documentacio lliure a la xarxa,video-lectures, etc.

Software

Jira (https://www.atlassian.com/)
Miro (https://miro.com/)

Figma (https://www.figma.com/)

Balsamiq (https://balsamiqg.com/)

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this link. To
consult the language you will need to enter the CODE of the subject.

NETg [Group Language Semester Turn

(PAUL) Classroom practices 71 English second semester morning-mixed

(TE) Theory 71 English second semester morning-mixed

https://sia.uab.cat/servei/ALU_TPDS_PORT_ENG.html

