

Global Change

Code: 42404
ECTS Credits: 9

2025/2026

Degree	Type	Year
Interdisciplinary Studies in Environmental, Economic and Social Sustainability	OT	0

Contact

Name: Jordi Cristobal Rosselló

Email: jordi.cristobal@uab.cat

Teachers

Patrizia Ziveri

Johannes Langemeyer

Miquel Ninyerola Casals

Teaching groups languages

You can view this information at the [end](#) of this document.

Prerequisites

Students are preferably expected to hold an undergraduate degree in fields related to environmental sciences, biology, geography, Earth and marine sciences, or ecology. However, students with a background in social or political sciences are also welcome, provided they have a basic understanding of Earth and physical science principles.

A reasonable level of English proficiency, both spoken and written, is recommended to successfully follow the course content and participate in discussions.

Objectives and Contextualisation

Objectives and Contextualization

Understanding the biological, physical, and social processes related to Global Change, and their complex interactions, represents one of today's most pressing scientific and societal challenges. This complexity is compounded by the urgent need to develop effective solutions to mitigate the negative impacts of these changes.

This course examines the diverse impacts of Global Change across various spatial and temporal scales, with a primary focus on both terrestrial and marine ecosystems, as well as the effects on human societies and the corresponding social responses.

Course Objectives

By the end of the course, students will be able to:

- Identify different types of impacts associated with Global Change.
- Explore the wide range of spatial and temporal scales at which Global Change occurs.
- Consider additional driving forces that interact with Global Change processes.
- Analyze manifestations of Global Change in both terrestrial and marine systems, including biodiversity loss, disruptions to the global carbon cycle, ecosystem degradation, and land-use changes.
- Evaluate various approaches to addressing Global Change through case studies of protected areas such as biosphere reserves, marine protected areas, marine restoration projects, and rural landscapes.

Competences

- Analyze how the Earth functions on a global scale to understand and interpret environmental changes on the global and local scales.
- Communicate and justify conclusions clearly and unambiguously to both specialized and non-specialized audiences.
- Communicate orally and in writing in English.
- Continue the learning process, largely autonomously.
- Seek out information in scientific literature using appropriate channels and use this information to formulate and contextualize research in environmental sciences.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Work in an international, multidisciplinary context.

Learning Outcomes

1. Communicate and justify conclusions clearly and unambiguously to both specialized and non-specialized audiences.
2. Communicate orally and in writing in English.
3. Continue the learning process, largely autonomously.
4. Know the ways in which global change shows itself in different ecosystems.
5. Seek out information in scientific literature using appropriate channels and use this information to formulate and contextualize research in environmental sciences.
6. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
7. Work in an international, multidisciplinary context.

Competences

- Analyse how the Earth functions on a global scale in order to understand and interpret environmental changes on the global and local scales.
- Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- Communicate orally and in writing in English.
- Continue the learning process, to a large extent autonomously.
- Seek out information in the scientific literature using appropriate channels, and use this information to formulate and contextualise research in environmental sciences.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Work in an international, multidisciplinary context.

Learning Outcomes

1. Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
2. Communicate orally and in writing in English.
3. Continue the learning process, to a large extent autonomously.
4. Know the ways in which global change shows itself in different ecosystems.
5. Seek out information in the scientific literature using appropriate channels, and use this information to formulate and contextualise research in environmental sciences.
6. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
7. Work in an international, multidisciplinary context.

Content

Content

The course is organized as follows:

Sub-Module 1: Terrestrial Global Change

1. Introduction to the interdisciplinary approach on Global Change.
2. Responding Locally to Global and Globalizing Changes: land use/cover change.
3. Forest Management as a key factor of global change. Sustainable forest management and its revalorization.
4. Forest health.
5. The Conceptual Framework of (Urban) Ecosystem Services and Green Infrastructure.
6. Assessing (Urban) Ecosystem Services: Methodological Approaches.
7. Oral presentations.

Sub-Module 2: Marine Global Change

1. Introduction to ocean, climate, and global change. The perturbation of the carbon cycle and the consequences on the marine ecosystems and biogeochemistry
2. Cumulative pressures on the marine system focusing on marine pollution, marine litter and micro-plastics
3. Considering different temporal scales of global changes from marine historical ecology and paleo-reconstructions. Discussing the new trend in blue economy focusing on blue carbon. Marine Protected Areas, ocean conservation and restoration.
4. Oral presentations

Sub-Module 3: Field trip

- New trends in Mediterranean landscapes conservation (Montseny Natural Park and Biosphere Reserve).

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Lectures	42	1.68	5, 2, 4, 7
Theory lessons in fieldwork	6	0.24	4, 3, 7

Type: Supervised

Fieldwork	6	0.24	4, 6
Tutorship	34	1.36	5, 6, 1
Type: Autonomous			
Oral presentation training	40	1.6	5, 4, 6, 3, 7
Reading articles, books and studying for each of the given lectures and the final exam	91	3.64	5, 4, 6, 1, 3

Metodologia

Les classes magistrals combinaran l'ensenyament dirigit pel professor i debats guiats, amb el suport de lectures assignades que s'espera que els estudiants completin per avançat.

El curs també inclou activitats de treball de camp dissenyades per investigar manifestacions a escala local dels impactes del Canvi Global, proporcionant als estudiants coneixements pràctics i reals sobre el contingut del curs. També es realitzarà una anàlisi espacial integrada per avaluar la biodiversitat a nivell de paisatge i les pressions a què s'enfronta sota el canvi global.

Anotació: D'acord amb el calendari establert pel centre acadèmic o el programa de grau, es destinaran 15

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Class assignments	20%	0	0	4, 3, 7
Final Exam	50%	3	0.12	2, 6, 1
Two oral presentations	30%	3	0.12	5, 4, 6, 1, 3, 7

Requirements for Assessment

Assessment of learning is based on the results of practical assignments completed independently. At least 80% of these assignments must be submitted within the deadlines established by the instructor. Students who have not submitted the required assignments by the specified deadlines will not be allowed to take the exam, and their final grade will be recorded as "Not Assessable."

Attendance will be monitored for both theoretical and practical classes. To be eligible for assessment, students must attend at least 80% of the scheduled sessions. Otherwise, the final grade will be recorded as "Not Assessable." Additionally, students who pass the course and have met the minimum attendance requirement will receive a 5% bonus on their final grade.

Assessment activities

The final mark will be the weighted average of the following assessments:

Type	Grade percentage (%)	Comments
Oral presentations	30	Two oral presentations (15% each one) covering Terrestrial and Marine Global Change
Class assignments	20	One class assignment covering Terrestrial Global Change
Final test	50	3-hour test covering most aspects of the course but Forest Health. In this case a take-home test will be provided.

If a student fails to achieve at least 40% in any of the individual assessment components -namely oral presentations (12%), class assignments (8%), or the final test (20%)- they will be required to retake the specific component(s) to be eligible to pass the subject. In such cases, the student will be contacted to arrange a new submission date or test session and the maximum grade for any resubmitted work is 5. Additionally, to pass the subject overall, the student must obtain a minimum of 50% in the final grade.

IMPORTANT:

- Final Exam Format: In the final exam, students will be provided with limited space to answer each question. Responses must demonstrate a clear understanding and mastery of the key concepts and ideas introduced throughout the course.
- Field Trip: A field trip to the Montseny Natural Park and Biosphere Reserve will be organized to explore the local impacts of Global Change in a Mediterranean landscape. Students are required to wear appropriate clothing and footwear suitable for outdoor activities.
- Class Participation: Attendance and active participation in class sessions will be considered when evaluating students' overall performance.

IRREGULARITIES BY THE STUDENT, COPYING AND PLAGIARISM

Assessment activities evaluated under this procedure are non-recoverable. If passing any of these activities is required to pass the subject, failure due to academic misconduct will result in automatic failure of the subject, with no opportunity for recovery within the same academic year.

The following are considered serious irregularities, among others:

- Copying, in whole or in part, any practice, report, or other assessment activity.
- Allowing others to copy your assessment work.
- Submitting group work that was not fully completed by all listed group members.
- Presenting work prepared by a third party on your own, including translations, adaptations, or any content not original and exclusive to the student.
- Possessing or using communication devices (e.g., mobile phones, smartwatches) during individual theoretical or practical assessments (e.g., exams).

In accordance with current academic regulations, and without prejudice to any additional disciplinary actions, any irregularity that may affect the integrity of the evaluation process will result in a grade of zero (0) for the affected activity.

ASSESSMENT POLICY FOR REPEATING AND CURRENT STUDENTS

If a student from a previous edition of the Master's program is repeating the course, their previous grades for the course's practical components will not be retained.

If a current student does not pass the course, he/she will be required to retake the failed components. In such cases, the final grade for those components will be capped at 5.

ACCESS TO ONLY CAMPUS COMPUTERS

If you are unable or prefer not to install the GIS software on your personal computer (for example, if you use Mac, Linux, or do not have a suitable device), you can access the software remotely through UAB's online campus computers at:

https://sidciencies.uab.cat/sidcib/#acces_remot_aules

Choose: PC1D x Windows or PC4 x Lynux

USE OF ARTIFICIAL INTELLIGENCE

The use of Artificial Intelligence (AI) technologies is permitted in this course as part of completing assignments, provided the result reflects a significant personal contribution from the student in terms of analysis and critical reflection. Students must: (i) identify which parts have been generated using AI; (ii) specify the tools used; and (iii) include a critical reflection on how these tools have influenced the process and the outcome of the assignment. Failure to be transparent about the use of AI in assessable activities will be considered academic misconduct and will result in a grade of zero for the affected work, with no opportunity for recovery, or even more severe penalties in cases of serious breaches.

Bibliography

Bibliography

Terrestrial Global Change

Anthony MA, Crowther TW, van der Linde S et al. 2022. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. *ISME Journal* 16.

Department of Sustainability and Environment. 2004. Vegetation Quality Assessment Manual-Guidelines for applying the habitat hectares scoring method. Version 1.3. Victorian Government. Department of Sustainability and Environment, Melbourne.

Grantham HS, Duncan A, Evans TD et al. 2020. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. *Nature Communications* 11: 5978.

Hengl et al. 2018. Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. *PeerJ* 6:e5457.

Jaworek-Jakubska J, Filipiak M, Napierała-Filipiak A. 2020. Understanding of Forest Cover Dynamics in Traditional Landscapes: Mapping Trajectories of Changes in Mountain Territories (1824-2016), on the Example of Jeleniogórska Basin, Poland. *Forests* 11:867.

Peñuelas J, Germain J, Álvarez E, Aparicio E, Arús P, Basnou C, Blanché C, Bonada N, Canals P, Capodiferro M, et al. 2021. Impacts of Use and Abuse of Nature in Catalonia with Proposals for Sustainable Management. *Land* 10(2):144.

Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. 2004. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. *BioScience* 54:6.

Sandker M, Finegold Y, D'Annunzio R, Lindquist E. 2017. Global deforestation patterns: comparing recent and past forest loss processes through aspatially explicit analysis. *International Forestry Review* 19:3.

Stellmes M, Röder A, Udelhoven T, Hill J. 2013. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. *Land Use Policy* 30.

Zhu Z, Piao S, Myneni R et al. 2016. Greening of the Earth and its drivers. *Nature Climate Change* 6.

Marine Global Change

Rosas-Navarro A., Langer G., Ziveri P. "Temperature affects the morphology and calcification of *Emiliania huxleyi* strains". *Biogeosciences*. 2016

Milner S., Langer G., Grelaud M., Ziveri P. "Ocean warming modulates the effects of acidification on *Emiliania huxleyi* calcification and sinking". *Limnology and Oceanography*. 2016

Rembauville M., Meilland J., Ziveri P., Schiebel R., Blain S., Salter I. "Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau". *Deep-Sea Research Part I: Oceanographic Research Papers*. 2016, vol. 111, p. 91-101

Lacoue-Labarthe T. , Nunes P.A.L.D., Ziveri P., Cinar M., Gazeau F., Hall-Spencer J.M., Hilmi N., Moschella P., Safa A., Sauzade D., Turley C. "Impacts of ocean acidification in a warming Mediterranean Sea: An overview". *Regional Studies in Marine Science*. 2016, vol. 5, p. 1-11

Incarbona A., Martrat B., Mortyn P.G., Sprovieri M., Ziveri P., Gogou A., Jordà G., Xoplaki E., Luterbacher J., Langone L., Marino G., Rodríguez-Sanz L., Triantaphyllou M., Di Stefano E., Grimalt J.O., Tranchida G., Sprovieri R., Mazzola S. "Mediterranean circulation perturbations over the last five..."

Chaabane S., López Correa M., Montagna P., Kallel N., Taviani M., Linares C., Ziveri P. "Exploring the oxygen and carbon isotopic composition of the Mediterranean red coral (*Corallium rubrum*) for seawater temperature reconstruction". *Marine Chemistry*. 2016

Oviedo A., Ziveri P., Gazeau F. "Coccolithophore community response to increasing pCO₂ in Mediterranean oligotrophic waters". *Estuarine, Coastal and Shelf Science*. 2016

Mallo M., Ziveri P., Mortyn P.G., Schiebel R., Grelaud M. "Low planktic foraminiferal diversity and abundance observed in a 2013 West-East Mediterranean Sea transect". *Biogeosciences Discussions*. 2016

Martínez-Botí M.A., Marino G., Foster G.L., Ziveri P., Henehan M.J., Rae J.W.B., Mortyn P.G., Vance D. "Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation". *Nature*. 2015, vol. 518, p. 210-222

Wolhowe, M.D., Prahl F.G., Langer G., Oviedo A.M. , Ziveri P. "Alkenone δD as an ecological indicator: A culture and field study of physiologically-controlled chemical and hydrogen-isotopic variation in C37 alkenones". *Geochimica et Cosmochimica Acta*. 2015, vol. 162, p. 166-182

Oviedo A., Ziveri P., Álvarez M., Tanhua T. "Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?". *Ocean Science*. 2015, vol. 11, num. 1, p. 13-32

Rodrigues LC., van den Bergh J.C.J.M., Massa F., Theodorou JA., Ziveri P., Gazeau P. "Sensitivity of Mediterranean Bivalve Mollusc Aquaculture to Climate Change, Ocean Acidification, and Other Environmental Pressures: Findings from a Producer Survey". *Journal of Shellfish Research*. 2015, vo...

Hassoun, A. El Rahman, Gemayel, E., Krasakopoulou, E., Goyet, C., Saab, M. A.-A., Ziveri, P., Touratier, F., Guglielmi, V., Falco, C. "Modeling of the Total Alkalinity and the Total Inorganic Carbon in the Mediterranean Sea". *Journal of Water Resources and Ocean Science*. 2015, vol. 4, num....

Gemayel E., Hassoun A.E.R., Benallal M.A., Goyet C., Rivaro P., Abboud-Abi Saab M., Krasakopoulou E., Touratier F., Ziveri P. "Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters". *Earth System Dynamics* . 2015, vol. 6, ...

Gemayel E., Hassoun A.E.R., Benallal M.A., Goyet C., Rivaro P., Abboud-Abi Saab M., Krasakopoulou E., Touratier F., Ziveri P. "Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters". *Earth System Dynamics* . 2015, vo...

Meier K. J. S., Beaufort L., Heussner S., Ziveri P. "The role of ocean acidification in *Emiliana huxleyi* coccolith thinning in the Mediterranean Sea". *Biogeosciences Discussions*. 2014, vol. 11, p. 2857-2869

Bordiga M., Cobianchi M., Lupi C. , Pelosi N., Venti N.L., Ziveri P. "Coccolithophore carbonate during the last 450 ka in the NW Pacific Ocean (ODP site 1209B, Shatsky Rise)". *Journal of Quaternary Science*. 2014, vol. 29, num. 1, p. 57-69

Horigome M.T., Ziveri P., Grelaud M., Baumann K.-H., Marino G., Mortyn P.G. "Environmental controls on the *Emiliana huxleyi* calcite mass". *Biogeosciences*. 2014, vol. 11, p. 2295-2308

Mejía L.M., Ziveri P., Cagnetti M., Bolton C., Zahn R., Marino G., Stoll H. "Effects of midlatitude westerlies on the paleoproductivity at the Agulhas Bank slope during the penultimate glacial cycle: Evidence from coccolith Sr/Ca ratios". *Paleoceanography*. 2014, vol. 29, num. 7, p. 697-714

Oviedo, A.M., Ziveri P., Álvarez M., Tanhua T. "Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?". *Ocean Science*. 2014, vol. 11, p. 613-653

Pfister C., Esbaugh A., Frieder C., Baumann H., Bockmon E., White M., Carter B., Benway H., Carter B., Blanchette C., Carrington E., McClintock J., McCorkle D., McGillis W., Mooney T., Ziveri P. "Detecting the unexpected: A research framework for ocean acidification". *Environmental Science &...*

Ziveri P, Passaro M., Incarbona A., Milazzo M., Rodolfo-Metalpa R., Hall-Spencer J.M. "Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO₂ gradient". *The Biological Bulletin*. 2014, vol. 226, num. 3, p. 282-290

Salter I., Schiebel R., Ziveri P., Movellan A., Lampitt R., Wolff G.A. "Carbonate counter pump stimulated by natural iron fertilization in the Polar FrontalZone". *Nature Geoscience*. 2014, vol. 7, p. 885-889

Gazeau F., Alliouane S., Bock C., Bramanti L., López Correa M., Gentile M., Hirse T., Pörtner H.-O., Ziveri P. "Impact of ocean acidification and warming on the Mediterranean mussel (*Mytilus galloprovincialis*)". *Frontiers in Marine Science*. 2014, vol. 1, num. 62

Bramanti L., Movilla J., Gurón M., Calvo E., Gori A., Dominguez-Carrio C., Grinyo J., Lopez-Sanz A., Martínez-Quintana A., Pelejero C., Ziveri P., Rossi S. "Detimental effects of ocean acidification on the economically important Mediterranean red coral (*Corallium rubrum*)". *Global Change Biology...*

Horigome M.T., Ziveri P., Grelaud M., BaumannK.-H.,Marino G., Mortyn P.G. "Environmental controls on the *Emiliana huxleyi* calcite mass". *Biogeosciences Discussions*. 2013, vol. 10, p. 9285-9313

Incarbona A., Sprovieri M., Di Stefano A., Di Stefano E., Salvagio Manta D., Pelosi N., Ribera d'Alcalá M., Sprovieri R., Ziveri P. "Productivity modes in the Mediterranean Sea during Dansgaard-Oeschger (20,000-70,000 yr ago) oscillations". *Palaeogeography, Palaeoclimatology, Palaeoecology....*

Marino G., Zahn R., Ziegler M., Purcell C., Knorr G., Hall I.R., Ziveri P., Elderfield H. "Agulhas salt-leakage oscillations during abrupt climate changes of the Late Pleistocene". *Paleoceanography*. 2013, vol. 28, num. 3, p. 599-606

Van de Waal D.B., John U., Ziveri P., Reichart G.-J., Hoins M., Sluijs A., Rost B. "Ocean acidification reduces growth and calcification in a marine dinoflagellate". *PLOS ONE*. 2013, vol. 8, num. 6

Dedert M., Stoll H.M., Kroon D., Shimizu N., Kanamaru K., Ziveri P. "Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)". *Climate of the Past*. 2012, vol. 8, num. 3, p. 977-993

Grelaud M., Marino G., Ziveri P., Rohling E.J. "Abrupt shoaling of the nutricline in response to massive freshwaterflooding at the onset of the last interglacial sapropel event". *Paleoceanography*. 2012

Hönisch B., Ridgwell A., Schmidt D.N., Thomas E., Gibbs S., Sluijs A., Zeebe R., Kump L., Martindale R.C., Greene S.E., Kiessling W., Ries J., Zachos J.C., Royer D.L., Barker S., Marchitto Jr. T.M., Moyer R., Pelejero C., Ziveri P., Foster G. L., Williams B. "The geological record of ocean acidifica...

Ziveri P., Thoms S., Probert I., Geisen M., Langer G. "A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms". *Biogeosciences*. 2012, vol. 9, num. 3, p. 1025-1032

Incarbona A., Ziveri P., Sabatino N., Manta D.S., Sprovieri M. "Conflicting coccolithophore and geochemical evidence for productivity levels in the Eastern Mediterranean sapropel S1". *Marine Micropaleontology*. 2011, vol. 81, num. 3-4, p. 131-143

Rosell-Melé A., Balestra B., Kornilova O., McClymont E.L., Russell M., Monechi S., Troelstra S., Ziveri P. "Alkenones and coccoliths in ice-rafted debris during the Last Glacial Maximum in the North Atlantic: Implications for the use of UK 37' as a sea surface temperature proxy". *Journal of Quat...*

Balestra B., Ziveri P., Baumann K.H., Troelstra S., Monechi S. "Surface water dynamics in the Reykjanes Ridge area during the Holocene as revealed by coccolith assemblages". *Marine Micropaleontology*. 2010, vol. 76, num. 1-2, p. 1-10

Incarbona A., Ziveri P., Di Stefano E., Lirer F., MortynG., Patti B., Pelosi N., Sprovieri M., Tranchida G., Vallefuoco M., Albertazzi S., Bellucci L.G., Bonanno A., Bonomo S., Censi P., Ferraro L., Giuliani S., Mazzola S., Sprovieri R. "The impact of the Little Ice Age on coccolithophores in the c...

Incarbona A., Ziveri P., Di Stefano E., Lirer F., Mortyn P.G., Patti B., Pelosi N., Sprovieri M., Tranchida G., Vallefuoco M., Albertazzi S., Bellucci L.G., Bonanno A., Bonomo S., Censi P., Ferraro L., Giuliani S., Mazzola S., Sprovieri R. "Calcareous nannofossil assemblages from the Central Mediter...

Aulisherliaty L., Stoll H.M., Ziveri P., Malinverno E., Triantaphyllou M., Stravrakakis S., Lykousis V. "Coccolith Sr/Ca ratios in the eastern Mediterranean: Production versus export processes". *Marine Micropaleontology*. 2009, vol. 73, num. 3-4, p. 196-206

Colonese A.C., Troelstra S., Ziveri P., Martini F., Lo Vetro D., Tommasini S. "Mesolithic shellfish exploitation in SW Italy: Seasonal evidence from the oxygen isotopic composition of *Ostrea turbinata* shells". *Journal of Archaeological Science*. 2009, vol. 36, num. 9, p. 1935-1944

Langer G., Nehrke G., Probert I., Ly J., Ziveri P. "Strain-specific responses of *Emiliania huxleyi* to changing seawater carbonate chemistry". *Biogeosciences*. 2009, vol. 6, num. 11, p. 2637-2646

Malinverno E., Triantaphyllou M.V., Stavrakakis S., Ziveri P., Lykousis V. "Seasonal and spatial variability of coccolithophore export production at the South-Western margin of Crete (Eastern Mediterranean)". *Marine Micropaleontology*. 2009, vol. 71, num. 3-4, p. 131-147

Triantaphyllou M.V., Antonarakou A., Kouli K., Dimiza M., Kontakiotis G., Papanikolaou M.D., Ziveri P., Mortyn P.G., Lianou V., Lykousis V., Dermitsakos M.D. "Late Glacial-Holocene ecostratigraphy of the south-eastern Aegean Sea, based on plankton and pollen assemblages". *Geo-Marine Letters*...

Triantaphyllou M.V., Ziveri P., Gogou A., Marino G., Lykousis V., Bouloubassi I., Emeis K.-C., Kouli K., Dimiza M., Rosell-Melé A., Papanikolaou M., Katsouras G., Nunez N. "Late Glacial-Holocene climate variability at the south-eastern margin of the Aegean Sea". *Marine Geology*. 2009, vol. 2...

De Bernardi B., Ziveri P., Erba E., Thunell R.C. "Calcareous phytoplankton response to the half century of interannual climatic variability in Santa Barbara Basin (California)". *Paleoceanography*. 2008, vol. 23, num. 2

Malinverno E., Prahl F.G., Popp B.N., Ziveri P. "Alkenone abundance and its relationship to the coccolithophore assemblage in Gulf of California surface waters". *Deep-Sea Research Part I: Oceanographic Research Papers*. 2008, vol. 55, num. 9, p. 1118-1130

Stoll H.M., Arevalos A., Burke A., Ziveri P., Mortyn P.G., Shimizu N., Unger D. "Seasonal cycles in biogenic production and export in Northern Bay of Bengal sediment traps". *Deep-Sea Research Part II: Topical Studies in Oceanography*. 2007, vol. 54, num. 5-7, p. 558-580

Stoll H.M., Shimizu N., Archer D., Ziveri P. "Coccolithophore productivity response to greenhouse event of the Paleocene-Eocene Thermal Maximum". *Earth and Planetary Science Letters*. 2007, vol. 258, num. 1-2, p. 192-206

Stoll H.M., Ziveri P., Shimizu N., Conte M., Theroux S. "Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea". *Deep-Sea Research Part II: Topical Studies in Oceanography*. 2007, vol. 54, num. 5-7, p. 581-600

Ziveri P., de Bernardi B., Baumann K.-H., Stoll H.M., Mortyn P.G. "Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean". *Deep-Sea Research Part II: Topical Studies in Oceanography*. 2007, vol. 54, num. 5-7, p. 659-675

Bendle J., Rosell-Melé A., Ziveri P. "Variability of unusual distributions of alkenones in the surface waters of the Nordic seas". *Paleoceanography*. 2005, vol. 20, num. 2, p. 1-15

de Bernardi B., Ziveri P., Erba E., Thunell R.C. "Coccolithophore export production during the 1997-1998 El Niño event in Santa Barbara Basin (California)". *Marine Micropaleontology*. 2005, vol. 55, num. 1-2, p. 107-125

Balestra B., Ziveri P., Monechi S., Troelstra S. "Coccolithophorids from the Southeast Greenland Margin (Northern North Atlantic): production, ecology and the surface sediment record". *Micropaleontology*. 2004, num. 50, p. 23-34

Crudeli D., Young J.R., Erba E., de Lange G.J., Henriksen K., Kinkel H., Slomp C.P., Ziveri P. "Abnormal carbonate diagenesis in Holocene-late Pleistocene sapropel-associated sediments from the Eastern Mediterranean; evidence from *Emiliania huxleyi* coccolith morphology". *Marine Micropaleontology*...

Triantaphyllou M.V., Ziveri P., Tselepidis A. "Coccolithophore export production and response to seasonal surface water variability in the oligotrophic Cretan Sea (NE Mediterranean)". *Micropaleontology*. 2004, num. 50, p. 127-144

Malinverno E., Ziveri P., Corselli C. "Coccolithophorid distribution in the Ionian Sea and its relationship to eastern Mediterranean circulation during late fall to early winter 1997". *Journal of Geophysical Research-C: Oceans*. 2003, vol. 108, num. C9

Ziveri P., Stoll H., Probert I., Klass C., Geisen M., Ganssen G., Young J. "Stable isotope 'vital effects' in coccolith calcite". *Earth and Planetary Science Letters*. 2003, vol. 210, num. 1-2, p. 137-149

Renaud S., Ziveri P., Broerse A.T.C. "Geographical and seasonal differences in morphology and dynamics of the coccolithophore *Calcidiscus leptoporus*". *Marine Micropaleontology*. 2002, vol. 46, num. 3-4, p. 903-924

Stoll H.M., Ziveri P. "Controls over the chemistry of coccolith calcite". *Geochimica et Cosmochimica Acta*. 2002, vol. 66, num. 1

Stoll H.M., Ziveri P. "Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity". *Marine Micropaleontology*. 2002, vol. 46, num. 1-2, p. 209-221

Stoll H.M., Ziveri P., Geisen M., Probert I., Young J.R. . "Potential and limitations of Sr/Ca ratios in coccolith carbonate: New perspectives from cultures and monospecific samples from sediments ". *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering*

Software

Specific GIS software might be used to complete the course: ArcGIS Pro, MiraMon or QGIS. All of them are freely available for SAES students.

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.

Name	Group	Language	Semester	Turn
(TEm) Theory (master)	1	English	first semester	morning-mixed