

Master's Degree Dissertation

Code: 44539

ECTS Credits: 15

2025/2026

Degree	Type	Year
Industrial Chemistry and Introduction to Chemical Research	OB	0

Contact

Name: Felix Busque Sanchez

Email: felix.busque@uab.cat

Teaching groups languages

You can view this information at the [end](#) of this document.

Prerequisites

No requirements needed

Objectives and Contextualisation

The student carries out a pilot project in basic or applied research in a research laboratory or in a chemical company laboratory and must demonstrate the ability to apply knowledge and skills acquired during the first part of the Master

Competences

- Analyse and use the data in autonomous fashion in complex laboratory experiments and relate them with the appropriate chemical, physical or biological theories, and including the use of primary bibliographic sources.
- Be capable of working in a team and adapting to multidisciplinary teams.
- Correctly apply new information capture and organisation technologies to solve problems in professional activity.
- Correctly evaluate the risks and environmental and socio-economic impact associated to special chemical substances.
- Evaluate responsibility in the management of information and knowledge in the field of Industrial Chemistry and Chemical Research.
- Foster innovation and entrepreneurship in chemical industry and research.
- Identify information in the scientific literature using the appropriate channels and integrating said information to approach and contextualise a research issue.
- Innovate in the spaces and environments of the field of work, showing initiative and an entrepreneurial spirit.
- Operate with advanced instrumentation for chemical evaluation and structural determination.
- Show skills in analysing, describing, organising, planning and managing projects.
- Student should possess an ability to learn that enables them to continue studying in a manner which is largely self-supervised or independent

- Students should be able to integrate knowledge and face the complexity of making judgements from information which, being incomplete or limited, include reflections on the social and ethical responsibilities linked to the application of their knowledge and judgements
- Students should know how to apply the knowledge acquired and the capacity to solve problems in new or little-known areas within broader (or multidisciplinary) contexts related to their area of study
- Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously
- Use scientific terminology in the English language to defend experimental results in the context of the chemistry profession.

Learning Outcomes

1. Analyse the results of research in order to obtain new products or processes while evaluating their quality, and industrial and commercial viability for transfer to society.
2. Apply the specific research methodology, techniques and resources to research and produce innovative results in a certain area of specialisation.
3. Be capable of working in a team and adapting to multidisciplinary teams.
4. Correctly apply new information capture and organisation technologies to solve problems in professional activity.
5. Design advanced experiments for the study of chemical systems.
6. Draft an extensive introduction based on the latest bibliography in adequate fashion for written presentation in the English language.
7. Evaluate responsibility in the management of information and knowledge in the field of Industrial Chemistry and Chemical Research.
8. Evaluate the risks and impact associated with the use of new techniques and products in the context of an experimental research project.
9. Identify information in the scientific literature using the appropriate channels and integrating said information to approach and contextualise a research issue.
10. Innovate in the spaces and environments of the field of work, showing initiative and an entrepreneurial spirit.
11. Produce a complete research report written in the English language and orally present it in English.
12. Relate the experimental results obtained with the previous bibliography and discuss their relevance in the area of specialisation.
13. Show skills in analysing, describing, organising, planning and managing projects.
14. Student should possess an ability to learn that enables them to continue studying in a manner which is largely self-supervised or independent
15. Students should be able to integrate knowledge and face the complexity of making judgements from information which, being incomplete or limited, include reflections on the social and ethical responsibilities linked to the application of their knowledge and judgements
16. Students should know how to apply the knowledge acquired and the capacity to solve problems in new or little-known areas within broader (or multidisciplinary) contexts related to their area of study
17. Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously
18. Use scientific terminology in the English language to defend experimental results in the context of the chemistry profession.
19. Use the results of an experimental research project in the area of chemistry to foster innovation and entrepreneurship.
20. Use the right instrumentation in accordance with the objectives of the proposed research project.

Content

See methodology section

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
preparation of the final report and oral presentation	50	2	1, 8, 11, 9, 17, 15, 6, 12, 18, 7
Tutorization activities	5	0.2	1, 4, 2, 8, 13, 16, 17, 15, 12, 18, 7
Type: Supervised			
Meetings with the work supervisor	14	0.56	1, 4, 2, 8, 13, 5, 9, 16, 17, 15, 12, 3, 18, 7
Type: Autonomous			
Autonomous student research	305	12.2	

In the specialty "Advanced chemical research", this experimental work will be carried out in a research laboratory of the Department of Chemistry of the UAB under the supervision of a professor who will act as tutor or in a Research Institute under the supervision of a member researcher of staff with recognized experience. The supervisors will issue a report at the end of the stay that will be used by the Coordination Committee for the evaluation of students. The tasks that will be carried out by the students will be the learning and the practice of analysis and synthesis techniques in a research laboratory.

In the specialty "Chemistry in industry" this experimental work will be carried out in laboratories of chemical companies. Each student will have a supervisor at the company who will guarantee the progress and quality of their work and issue a report at the end of their stay. This report will be used by the Coordination Committee for the evaluation of students. Also the student will have a university supervisor who will guarantee the quality of the final written report. The tasks that the students will be carried out will be the learning and the practice of analysis and synthesis techniques in an industrial chemical laboratory. Students have guaranteed up to a minimum of three interviews with different possible companies interested in hosting the student during the development of the experimental credits of the master's degree; from this moment on, if the student has not managed to be admitted by a company, he will be also responsible for finding a company where develop these credits.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continuous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Final report supervisor	30%	0	0	1, 4, 2, 8, 13, 5, 10, 16, 14, 3, 20
Oral presentation and discussion	50%	1	0.04	1, 11, 9, 17, 15, 12, 19, 18, 7
Quality of the final master thesis written report	20%	0	0	1, 8, 11, 9, 17, 15, 6, 12, 18

The ability to develop a correct activity in the laboratory, to write a correct report and to present and discuss the results will be taken into for the evaluation of the student.

The final grade will be obtained from:

- 50% The Oral presentation and discussion
- 20% The Manuscript written quality
- 30% Final report of the activities carried out by the student provided by the thesis supervisor or tutor.

VERY IMPORTANT: Partial or total plagiarising will immediately result in a FAIL (0) for the plagiarised exercise (first-year students) or the WHOLE subject (second-, third- and fourth-year students). PLAGIARISING consists of copying text from unacknowledged sources -whether this is part of a sentence or a whole text - with the intention of passing it off as the student's own production. It includes cutting and pasting from internet sources, presented unmodified in the student's own text. Plagiarising is a SERIOUS OFFENCE. Students must respect authors' intellectual property, always identifying the sources they may use; they must also be responsible for the originality and authenticity of their own texts.

In the event of a student committing any irregularity that may lead to a significant variation in the grade awarded to an assessment activity, the student will be given a zero for this activity, regardless of any disciplinary process that may take place. In the event of several irregularities in assessment activities of the same subject, the student will be given a zero as the final grade for this subject.

Bibliography

It will depend upon the specific student project

Software

Chem draw professional

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.