A REPRESENTATION THEOREM FOR CERTAIN BOOLEAN LATTICES

JOSÉ RÍOS MONTES

Abstract

Let R be an associative ring with 1 and R-tors the complete brouwerian lattice of all hereditary torsion theories on the category of left R-modules. A well known result asserts that R is a left semiartinian ring iff R-tors is a complete atomic boolean lattice. In this note, we prove that if \mathcal{L} is a complete atomic boolean lattice then, there exists a left semiartinian ring R such that \mathcal{L} is lattice-isomorphic to R-tors.

1. Background. Throughout the following, R will denote an associative ring with unit element and R-tors will denote the complete brouwerian lattice of all hereditary torsion theories on the category R-mod of unitary left R-modules. Notation and terminology concerning R-tors will follow [1].

If $M \in R$-mod, let us denote by $\xi(M)$ the smallest element of R-tors respect to which M is torsion; the unique minimal element of R-tors is then $\xi = \xi(0)$. We will denote by R-simp a complete set of representatives of isomorphism classes of simple left R-modules.

A lattice \mathcal{L} is said to be complete if arbitrary meets and joins are defined in \mathcal{L}. In particular, in a complete lattice there are a minimal element and a maximal element, which will be denoted by ξ and χ respectively. An element a of a complete lattice \mathcal{L} is an atom if $a \neq \xi$ and $b < a$ implies $b = \xi$; we will denote by $\mathfrak{A}(\mathcal{L})$, the set of atoms of \mathcal{L}. \mathcal{L} is said to be atomic if for every $x \in \mathcal{L}$, there exists $a \in \mathfrak{A}(\mathcal{L})$ such that $a \leq x$. \mathcal{L} is locally atomic if every element of \mathcal{L} is a join of atoms. A complemented distributive lattice is called a boolean lattice; in a boolean lattice, complements are unique.

For any ring R, the atoms of R-tors are the torsion theories of the form $\xi(S)$ with $S \in R$-simp. As a result, R-tors is an atomic lattice and R is left semiartinian iff R-tors is a complete atomic boolean lattice or iff R-tors is locally atomic. See III of [1] for details.

2. Complete Atomic Boolean Lattices. In [2], professor Golan asks if for every boolean lattice \mathcal{L}, there exists a left semiartinian ring R such that \mathcal{L} is lattice-isomorphic to R-tors. Inasmuch as for every ring R, R-tors is complete atomic lattice, in this note, we will consider complete atomic boolean lattices.
Lemma 1. If \mathcal{L} is a complete atomic boolean lattice, then

a) \mathcal{L} is locally atomic

b) The decomposition of every element $x \in \mathcal{L}$, $x \neq \xi$ as join of atoms is unique.

Proof: The proof follows easily by using proposition 4.5 of Ch. III of [3]. $lacksquare$

Corollary 2. Let \mathcal{L} and \mathcal{L}' be complete atomic boolean lattices; if $\varphi : \mathfrak{A}(\mathcal{L}) \rightarrow \mathfrak{A}(\mathcal{L}')$ is a bijection, then φ can be extend to a lattice isomorphism $\overline{\varphi} : \mathcal{L} \rightarrow \mathcal{L}'$.

Theorem 3. Let \mathcal{L} be a complete atomic boolean lattice; then there exists a left semiartinian ring R such that \mathcal{L} is lattice-isomorphic to R-tors.

Proof: Let \mathcal{L} be a complete atomic boolean lattice; by Corollary 2, it is enough to show a left semiartinian ring R and a bijective correspondence from $\mathfrak{A}(\mathcal{L})$ to R-simp, then we will have that \mathcal{L} is isomorphic to R-tors.

Case 1: $\mathfrak{A}(\mathcal{L})$ is a finite set.

Let us supose $|\mathfrak{A}(\mathcal{L})| = n < \infty$ and let $R = \mathbb{Z}_2^n$ be the ring direct product of n copies of \mathbb{Z}_2, the integers modulo 2. Then $|R$-simp$| = n$ and inasmuch as R is semiartinian ring, we are done.

Case 2: $\mathfrak{A}(\mathcal{L})$ is an infinite set.

Let us denote $\mathfrak{A}(\mathcal{L}) = \alpha$ and let $A = \mathbb{Z}_2^\alpha$ the ring direct product of α copies of \mathbb{Z}_2. Now, let R be the subring of A generated by the sum $I = \mathbb{Z}_2^{(\alpha)}$ and the unit element of A. In R, the projective simple modules are, except by isomorphisms, the simple direct sumands in the decomposition $I = \mathbb{Z}_2^{(\alpha)}$. On the other hand, the singular simple modules are all isomorphic to R/I. Then $|R$-simp$| = \alpha$ and so, there exists a bijection between $\mathfrak{A}(\mathcal{L})$ and R-simp.

Finally, it is not difficult to prove that R is a semiartinian ring, and so we complete the proof.

References

 Instituto de Matemáticas
 Área de la Investigación Científica
 Circuito Exterior, Ciudad Universitaria
 México 04510, D. F. MÉXICO.

 Rebut el 3 de Juny de 1987