

FACTORING ROSENTHAL OPERATORS

TERESA ALVAREZ

Abstract

In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of ℓ_1 .

All spaces are to be Banach spaces. If X is a Banach space, X'' denotes the bidual of X , J_X is the canonical isometry embedding X in X'' , B_X is the closed unit ball of X and I_X denotes the identity operator on X . Let $L(X, Y)$ be the set of all continuous linear operators from X into Y .

Recall that an operator $T \in L(X, Y)$ is said to be *completely continuous* if every weakly convergent sequence (x_n) is mapped into a norm convergent sequence (Tx_n) . The class of all completely continuous operators from X into Y is denoted by $Cc(X, Y)$ and $Co(X, Y)$ will denote the space of all compact operators from X into Y .

Let $T \in L(X, Y)$. Then T is called a *Rosenthal operator* if $ST \in Co(X, Y_0)$ for all $S \in Cc(Y, Y_0)$, where Y_0 is an arbitrary Banach space. Using a theorem which is due to Rosenthal [8] and Dor [2] in the real and complex case, respectively, one gets that T is a Rosenthal operator if and only if it maps bounded sequences into sequences possessing weak Cauchy subsequences (see for example [6]), and hence T is a Rosenthal operator if and only if $T(B_X)$ is $\sigma(Y'', Y')$ -relatively sequentially compact in Y'' .

The Rosenthal operators are called weak Cauchy operators by [5] and conditionally weakly convergent operators by [7].

An operator $T \in L(X, Y)$ is called a *ℓ_1 -singular operator* if for each $S \in L(\ell_1, X)$, the composition TS is not an isomorphic embedding [5]. So, $T \in L(X, Y)$ is a Rosenthal operator if and only if it is a ℓ_1 -singular operator. $Ro(X, Y)$ will denote the class of all Rosenthal operators from X into Y .

Let $N\ell_1$ be the space ideal of all Banach spaces containing no isomorphic copy of ℓ_1 and let $Op(N\ell_1)$ be the operator ideal of all operators which factor through spaces in $N\ell_1$.

In this note we shall prove that $Op(N\ell_1)$ coincides with the class of all Rosenthal operators. For this end we shall use the construction of Davies-Figiel-Johnson-Pelczynski [1]. Let W be a convex, symmetric and bounded

subset of a Banach space X . For $n = 1, 2, 3, \dots$, the Minkowski functional $\|\cdot\|_n$ of the set $U_n = 2^n W + 2^{-n} B_X$ is a norm equivalent to $\|\cdot\|$. Define, for $x \in X$, $\|\cdot\|_n = (\sum_{n=1}^{\infty} \|x\|_n^2)^{\frac{1}{2}}$; let $Z = \{x \in X : \|\cdot\|_n < \infty\}$ and let j denote the identity embedding of Z into X ; then $(Z, \|\cdot\|)$ is a Banach space and j is continuous [1, lemma 1, (ii)].

Theorem. *Let X, Y be Banach spaces and let $T \in L(X, Y)$. Then the following properties are equivalent:*

- (i) $T \in \text{Ro}(X, Y)$
- (ii) $T \in \text{Op}(N\ell_1)(X, Y)$.

Proof: (i) \implies (ii). Suppose that $T \in \text{Ro}(X, Y)$. With reference to [1], put $W = T(B_X)$, $M = \{y \in Y : \|\cdot\|_n < \infty\}$ and let j denote the identity embedding of M into Y . Let (y_n) be a sequence of elements of W , then (y_n) has a subsequence (y_{n_j}) such that $(j_Y y_{n_j})$ is (Y'', Y') -convergent in Y'' . Hence $J_Y W$ is $\sigma(Y'', Y')$ -sequentially compact in Y'' and so by virtue of [1, lemma 1, (xii)], $J_M B_M$ is $\sigma(M'', M')$ -sequentially compact in M'' . This implies that $M \in N\ell_1$.

The operators $j^{-1}T : X \longrightarrow M$ and $j : M \longrightarrow Y$ provide the required factorization.

(ii) \implies (i). It is trivial. ■

Remark 1. In a 1980 paper [4], S. Heinrich showed that if $T \in \text{Ro}(X, Y)$ then $T \in \text{Op}(N\ell_1)(X, Y)$ proving that the operator ideal of all Rosenthal operators is injective surjective and satisfy the Σ_p -condition for $1 < p < \infty$. That is, for arbitrary Banach spaces $X_n, Y_n, n \in N$, the followings holds:

If $T \in T((\Sigma X_n)_p, (\Sigma Y_n)_p)$, and $Q_n T P_m \in \text{Ro}(X_m, Y_n)$, $n, m \in N$ then $T \in \text{Ro}((\Sigma X_n), (\Sigma Y_n))$ where P_m and Q_n denote the projections of $(\Sigma X_n)_p, (\Sigma Y_n)_p$ onto the coordinates X_m and Y_n , respectively.

Remark 2. Other characterizations of the Rosenthal operators were obtained by A. Fakhouri [3].

References

1. W.J. DAVIS, T. FIGIEL, W.B. JOHNSON AND A. PELCZYNISKY, Factoring weakly compact operators, *J. Funct. Anal.* **17** (1974), 311–327.
2. L.E. DOR, On sequences spanning a complex ℓ_1 -space, *Proc. Amer. Math. Soc.* **47** (1975), 515–516.
3. H. FAKHOURY, Sur les espaces de Banach ne contenant pas $\ell_1(N)$, *Math. Scand.* **41** (1977), 277–289.
4. S. HEINRICH, Closed operator ideals and Interpolation, *J. Functional Analysis* **35** (1980), 397–411.

5. H. HOWARD, A generalization of reflexive Banach spaces and weakly compact operators, *Com. Math. Univ. Carolina* **13** (1972), 673–684.
6. A. PIETSCH, *Operator Ideals*, *North-Holland* (1980).
7. O. J. REINOV, Certain classes of continuous linear operators, *Math. Notes* **23, no. 2** (1978), 154–159.
8. H. P. ROSENTHAL, A characterization of Banach spaces containing ℓ^1 , *Proc. Nat. Acad. Sci. USA* **71** (1974), 2411–2413.

Departamento Teoria de Funciones
Facultad de Ciencias
Universidad de Santander
Santander, SPAIN.

Rebut el 18 de Maig de 1987