

ON A CHARACTERIZATION OF AZUMAYA ALGEBRAS

WARREN DICKS

Abstract

A direct proof of Braun's characterization of Azumaya algebras is given.

Let A be a ring (associative, with 1), Z its centre, and $U = A \otimes_Z A^{\text{op}}$. There is an obvious left U -action on A , which we shall denote by $U \times A \rightarrow A$, $(u, a) \mapsto u * a$. Let J denote the kernel of the map $U \rightarrow A$, $u \mapsto u * 1$, so J is just the left annihilator of $1 \in A$. Notice J contains $a \otimes 1 - 1 \otimes a$ for all $a \in A$.

It is well known that the following properties are equivalent, cf. [2, p.52].

- (1) ${}_U A$ is a projective generator; that is, there is some $e \in U$ such that $e * 1 = 1$, $Je = 0$, $UeU = U$.
- (2) A_Z is a projective generator and the natural ring homomorphism $U \rightarrow \text{End}_Z(A)$ is an isomorphism.
- (3) ${}_U A$ is projective; that is, there is some $e \in U$ such that $e * 1 = 1$ and $Je = 0$.

A ring satisfying these equivalent conditions is called an *Azumaya algebra*. In [1, Theorem 4.1], Braun gives the further characterization

- (4) There is some $e \in U$ such that $e * 1 = 1$, $e * A \subseteq Z$.

In fact (1) \Leftrightarrow (2) by Morita equivalence; (1) \Rightarrow (3) is trivial; and (3) \Rightarrow (4) since $J * (e * A) = (Je) * A = 0 * A = 0$ so $e * A \subseteq Z$. The purpose of this note is to give a direct proof that (4) \Rightarrow (1).

Thus, suppose there is some $e \in U$ such that $e * 1 = 1$, $e * A \subseteq Z$. We show first that $UeU = U$. Let $\mathfrak{a} = \{a \in A \mid a \otimes 1 \in UeU\}$. This is clearly a (two-sided) ideal of A ; if $\mathfrak{a} = A$ then $UeU = U$ as desired, so we may assume there is a maximal ideal \mathfrak{m} of A containing \mathfrak{a} .

Let us give U two left U -module structures $U \times U \rightarrow U$, $(u, v) \mapsto u *_1 v$, $u *_2 v$ by setting $u *_1 (a \otimes b) = (u * a) \otimes b$, $u *_2 (a \otimes b) = a \otimes (u * b)$. It is easy to see these are well-defined. Notice $e *_2 (a \otimes b) = a \otimes (e * b) = a(e * b) \otimes 1$; notice also that $U *_2 (UeU) \subseteq UeU$. Hence every element of $e *_2 (UeU)$ is of the form $a \otimes 1$ for some $a \in \mathfrak{a} \subseteq \mathfrak{m}$.

Let $\bar{A} = A/\mathfrak{m}$, $\bar{Z} = Z/(Z \cap \mathfrak{m})$, $\bar{U} = \bar{A} \otimes_{\bar{Z}} \bar{A}^{\text{op}}$ and let the maps $A \rightarrow \bar{A}$, $U \rightarrow \bar{U}$ be denoted $x \mapsto \bar{x}$. Then $\bar{e} * \bar{1} = \bar{1}$, $\bar{e} * \bar{A} \subseteq \bar{Z}$. But \bar{Z} lies in the centre

of \bar{A} , which in turn is acted on trivially by \bar{e} so \bar{Z} is the centre of \bar{A} . Since \bar{A} is simple, it follows that \bar{U} is simple. Also $\bar{e} * \bar{1} = \bar{1}$ so $\bar{e} \neq 0$ and therefore $\bar{U} \bar{e} \bar{U} = \bar{U}$. But $\bar{1} \otimes \bar{1} = \bar{e} *_2 (\bar{1} \otimes \bar{1}) \in \bar{e} *_2 \bar{U} \bar{e} \bar{U} = e *_2 U e U = 0$, a contradiction. This completes the proof that $U e U = U$.

It remains to verify that $J e = 0$.

We claim that for any $u \in U$, $(U e U) *_2 u \subseteq (u *_1 U) U$. Indeed

$$\begin{aligned} v e w *_2 (\sum a_i \otimes b_i) &= \sum a_i \otimes v e w * b_i = \sum a_i \otimes (v * 1)(e w * b_i) \\ &= \sum a_i (e w * b_i) \otimes (v * 1) = \sum_j [(\sum_i a_i \otimes b_i) *_1 (c_j \otimes (v * 1))] (d_j \otimes 1) \end{aligned}$$

where $e w = \sum c_j \otimes d_j$. Now $J e * A = J * (e * A) \subseteq J * Z = 0$ so $J e * A = 0$. But $J e \subseteq U *_2 (J e) = (U e U) *_2 (J e) \subseteq ((J e) *_1 U) U$ which is 0 since $J e * A = 0$, so $J e = 0$ and (1) holds.

Remarks. (i) The above proof of $(3) \Rightarrow (1)$ is more direct than the one given in [2].

(ii) It is clear from (4) that $A \rightarrow Z$, $a \mapsto e * a$, is a retraction of A to Z ; thus in (2) one can strengthen the condition that A_Z be a projective generator to $(A/Z)_Z$ being finitely generated projective.

References

1. A. BRAUN, On Artin's theorem and Azumaya algebras, *J. Algebra* 77 (1982), 323–332.
2. F. DEMAYER, E. INGRAHAM, Separable algebras over commutative rings, *Lecture Notes in Mathematics* 181 (1971), Springer-Verlag, New York.

Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra, SPAIN

Rebut el 28 de Gener de 1988