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Abstract

NONASSOCIATIVE REAL H*-ALGEBRAS

M . CABRERA, J . MARTÍNEZ, A . RODRÍGUEZ

We prove that, if A denotes a topologically simple real (non-associative)
H*-algebra, then either A is a topologically simple complex H*-algebra
regarded as real H*-algebra or there is a topologically simple complex
H*-algebra B with *-involution r such that A = {b E B : r(b) = b*} .
Using this, we obtain our main result, namely : (algebraically) isomorphic
topologically simple real H*-algebras are actually *-isometrically isomor-
phic .

0. Introduction

Since the work by Ambrose [1] introducing complex associative H*-algebras
and obtaining for they a complete structure theory, many papers on particular
and/or general nonassociative complex H*-algebras have been published with
the aim of finding a similar complete structure theory in their context (see [4,
5, 6, 12, 14, 15, 17, 181) .
From a general nonassociative point of view the most remarkable results are

the following :
Decomposition Theorem. [6] (See also [8]) . Every non zero (nonassocia-

tive) complex H*-algebra with zero annihilator is the closure of the orthogonal
sum of (automatically *-invariant) closed ideals which are topologically simple
H*-algebras .

Essential Uniqueness of the Topologically simple H*-Algebra Struc-
ture [5] . Once a complex algebra A has been structured as a topologically simple
H*-algebra, every H*-algebra structure on A is (up to a positive multiple of the
inner product) totally isomorphic to the given one .
The theory of real H*-algebras begins with the almost simultaneous works by

Balachandran [2] De la Harpe [9] and Unsain [16] on real Lie H*-algebras . Only
very recently the theory of real associative H*-algebras has been achieved by
Balachandran and Swaminathan [3] . Also we must cite the work by Cuenca and
Sanchez en real noncommutative Jordan H*-algebras [7] . In all these particular
cases it is remarked that the decomposition theorem for real H*-algebras with
zero annihilator in the caass under consideration follows essentially from the
same techniques used in the proof of the corresponding decomposition theorem
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in the complex case . Actually the proof of the general decomposition theo-
rem for nonassociative complex H*-algebras with zero annihilator given in [6]
does not depend of the base field, so decomposition theorem is also true for
nonassociative real H*-algebras with zero annihilator .
The situation for the essential uniqueness of the topologically simple H*-

algebra structure is not the same, because the proof given in [5] for the com-
plex case depends in the most of the steps of the base field C . Thus the main
purpose in this paper is to prove the essential uniqueness of the H*-algebra stru-
cture for topologically simple nonassociative real H*-algebras . This is achieved
in Section 2. The proof uses the results in [5] and a Theorem (to which is
devoted Section 1), previously known in the case of Lie algebras [2, 9, 16],
stating that, if A is a topologically simple real H*-algebra, then either A is a
topologically simple complex H*-algebra regarded as real H*-algebra or there
is a topologically simple complex H*-algebra B with *-involution T such that
A= {bEB : -r(b) =b*} .

1 . Building topologically simple real H*-algebras from
topologically simple complex H*-algebras

We recall that an H*-algebra over K(= l8 or C) is a nonassociative algebra
A over K with (conjugate-linear) algebra involution *, called the H*-algebra
involution of A, which is also a Hilbert space over K under an inner product
(

	

/

	

) satisfying
(xy/z) = (x/zy* ) = (y/x*z)

for all x, y, z in A .
All the results obtained in section 1 of [6] for complex H*-algebras are true

also in the real case because the arguments used there for the proofs of there
results are not dependent of the base field . In particular the product of any H*-
algebra is continuous for the topology of the Hilbert norm x -> 114 := (x/x),
so (by multiplying the inner product by a suitable positive number if necessary)
every H*-algebra is a (complete) normed algebra in the usual sense of the word .

If B is a complex H*-algebra the underlying real algebra Ba, obtained by
restriction of the base field, can and will be considered as a real H*-algebra
(called the realization of B) under the same H*-algebra involution that of B
and the real inner product Re( / ) . Clearly closed *-subalgebras of the real
H*- algebra Ba are new examples of real H*-algebras . But we are interested
in a very particular case of this last situation . Assume that the H*-algebra
involution of B is continuous and let r be any continuous "*-involution." of B
(linear antiautomorphism of period two such that r(b*) = [T(b)]* for all b in
B) . Then the set {b E B : -r(b) = b*} is a closed *-subalgebra of Ba so a real
H*-algebra . We remark that the assumption of continuity for the H*-algebra
involution of B and for the *-involution T is superfluous if B has zero annihilator
(where the annihilator of B is defined as the closed ideal {b E B : bB = Bb =
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_ {0}}) because of the uniqueness of the complete algebra norm topology of
B in this case [13, Remark 2.8 .(i)] . Actually if B has zero annihilator its H*-
algebra involution is isometric [6, Proposition 2 . (ix)] and if in particular B is
"topologically simple" (non zero product and with no non zero proper closed
ideals) also the *-involution T is isometric, [5, Corollary 3.5 .] (see also our
Lemma 2 below), so if b, c are in B with r(b) = b* and r(c) = c* then the
inner product (blc) is a real number and the passing to Re( ) in the real
H*-algebra {b E B : r(b) = b*} is unnecessary.
Now we are in position to give the canonical method for obtaining topologi-

cally simple real H*-algebras from the complex ones .

Proposition 1 . If B is a topologically simple complex H*-algebra, BR is a
topologically simple real H*-algebra. Moreover, if r is any *-involution of B,
then {b E B : -r(b) = b*} is also a topologically simple real H*-algebra .

Proof.. Let M be a closed ideal of BR . Then M n iM is a closed ideal of
B so, by the topological simplicity of B, we have either M n iM = B, in
which case M = BR, or M n iM = 0 . From this last equality we deduce
MB = M(iB) = i(MB) C M n iM = 0 and, analogously, BM = o so
M C Ann(B) = 0 and so BR is topologically simple . Now let r be a *-
involution of B, let A denote the real H*-algebra {b E B : r(b) = b*} and
let M be a closed ideal of A. The fact that for any b in B b + r(b*) and
i(T(b*) - b) lie in A yields to the equality B = A® iA as topological direct sum
of real subspaces . Now it is clear that M + iM is a closed ideal of B so either
M + iM = B (and so M = A) or M + iM = 0 (and so M = 0) . Therefore A
is topologically simple .

Our next result will show that the topologically simple real H*-algebras
obtained in the above proposition are the only topologically simple real H*-
algebras . For the proof we recall the concept of "complexification" of a real
algebra A. The complexification of A is the complex algebra Ac := A ® iA
with addition, multiplication by complex numbers and product defined by

(x + ?y) + (z + zt) = (x + z) + ?(y + t)
(a + z0)(x + zy) _ (o x - Qy) + z(ay + fix)
(x + iy)(z + zt) _ (xz - yt) + i(xt + yz)

for all x, y, z, t in A and a, f3 real numbers . If A is actually a real H*-algebra,
then AC can and will be considered in a natural way as a complex H*-algebra
with H*-algebra involution the extension by conjugate-linearity of the one of
A and inner product the extension by sesquilinearity of the one of A . Moreover
the extension by linearity of the H*-algebra involution of A gives a *-involution
of AC which will be called the canonical *-involution of the complex H*-algebra
Ac .
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Theorem 1 . Le¡ A be a topologically simple real H*-algebra . Then either
A is the realization of a topologically simple complex H*-algebra or there exist
a topologically simple complex H*-algebra B with *-involution r such that

A= {bEB :T(b)=b*} .

Proof- If the complex H*-algebra AC is topologically simple, call it B and
let T denote its canonical *-involution . Clearly A = {b E B : ~r(b) = b*} and
we are in the last situation of the statement . Otherwise AC has a non zero
proper closed ideal M and such an ideal can not be invariant under -r (use the
topological simplicity of A and the fact that closed ideals of AC are *-invariant
[6, Proposition 2.(v)]) Therefore M fl T(M) = 0, so M and T(M) are mutually
orthogonal [6, Proposition 2.(vii)], and so Ac = M® r(M) because M ®T(M)
is a non zero closed T-invariant ideal of Ac . Now from the fact that M is an
arbitrary non zero proper closed ideal of Ac it follows easily that M and r(M)
are the only non zero proper closed ideals of Ac and, as a consequence, that
M is a topologically simple (compdex)H*-algebra. Now routine verification
shows that the mapping m -> m + T(m*) is a total isomorphism (isometric
*-isomorphism) from the realization of the topologically simple complex H*-
algebra M (once its inner product has been multiplied previously by two) onto
A. E

The proof of the above theorem shows that the two posibilities in the sta-
tement for the topologically simple real H*-algebra A are mutually exclusive
because they depend on wether or not Ac is topologically simple . The following
corollary exhibits more explicitly this fact . We recall that the centroid C(A)
of a nonassociative algebra, A is defined as the set of mappings T from A into
A such that T(xy) = T(x)y = xT(y) for all x, y in A. As in [11,Theorem 2.1],
if A is a (nonassociative) complete normed algebra with zero annihilator, then
C(A) is a closed commutative subalgebra of BL(A) (the Banach algebra of all
continuous linear operators on A) containing the identity operator .

Corollary 1 . Le¡ A be a topologically simple real H*-algebra . Then the
centroid of A is isomorphic to C or 1$ according to A is ¡he realization of a to-
pologically simple complex H*-algebra or there is a topologically simple complex
H*-algebra B with *-involution T such that

A= {bEB :-r(b)=b*}

Proof: If A is the realization of a topologically simple complex H*-algebra we
have C(A) = C since the centroid is not dependent of the base field and so [5,
Theorem 1 .2] can be applied . Otherwise, by Theorém 1, A = {b E B : r(b) =
= b*} for suitable topologically simple complex H*-algebra B and *-involution
T of B, Since B = A ® iA (recall the proof of Proposition 1), every element in
C(A) can be exented by linearity to an element in C(B) . Therefore C(A) = ff8

because C(B) = C [5, Theorem 1 .2] .
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2 . Isomorphisms of real H*-algebras

Our aim in this section is to prove that algebraically isomorphic topologically
simple real H*-algebras are actually totally isomorphic . The first step to this
end is the following theorem on decomposition of isomorphisms between real
H*-algebras with zero annihilator, from which it follows that isomorphic real
H*-algebras with zero annihilator are *-isomorphic . The points for the proof
are the analogous result for complex H*-algebras [5] and the fact that the
complexification of a real H*-algebra is a complex H*-algebra which has zero
annihilator if the same is true for the given one .

If T is any linear mapping from an H*-algebra A into another one B, we
denote by T* the (linear) mapping from A into B defined by

T*(a) = (T(a*))* for all a in A .

Theorem 2. Let A and B be real H*-algebras with zero annihilator and F
be an isomorphism from A onto B . Then F can be written in a unique way
as F = Gexp(D) with G a *-isomorphism from A onto B and D a continuous
derivation of A such that D* = -D.

Proof.. The mapping Fe from Ac onto Be defined by FC(x + iy) = F(x) +
íF(y) is an isomorphism so, by [5, Theorem 3.3 and Corollary 2.3], Fc can be
written in a unique way as FC = Goexp(DO) where Go is a *-isomorphism from
AC onto BC and Do a continuous derivation of AC with D* = -Do .

If r (resp . : r') denotes the canonical *-involution of AC (resp . : BC), clearly
we have

so

Fc = T'(Fc)*r

Fc ='r'(Go exp (Do))*r = r'Go exp (-DO ) ,r =

= T ' Gp7T exp (-DO)T = T ' Gor exp (-TDoT) .

Since T'Gor is a *-isomorphism from AC onto BC and --rDOT is a continuous
derivation of AC with (-TDoT)* _ -(-TDo r), by the uniqueness of the decom-
position for Fc, we have r'Gor = Go and -TDoT = Do. Therefore Go(A) = B
and Do (A) C A. Now, if we consider the mapping G (from A onto B ) and
D (from A into A) defined by G(x) = Go(x) and D(x) = Do(x) for all x in
A, these satisfy the requirements in the statement of the theorem . The uni-
queness of the decomposition for F follows easily from the uniqueness of the
decomposition for FC.

Our next purpose is to show that *-isomorphisms between given topologically
simple real H*-algebras are constant posit " ve multiples of isometries . The proof
depends on Theorem 1 and the following two lemmas . Actually Lemma 2 is a
little improvement of [5, Corollary 3.4] .
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Lemma 1. Leí A and B be topologically simple complex H*-algebras . Then
any isomorphism from AR onío BR is, as mapping from A to B, either linear
or conjugate linear .

Proof. Let F be an isomorphism from AR onto BR .

	

As in [10, Theorem
x.5] F induces a ring-isomorphism ti from C(A) onto C(B) (both equal C [5,
Theorem 1 .2]) such that F(Ax) = u(.\)F(x) for ale x in A and ale .\ in C . The
proof is concluded by observing that in our case u is real-linear . " ;

Lemma 2 . Leí A and B be topologically simple complex H*-algebras . Then
there is a positive number K (K = 1 if A = B) such that for every isomorphism
or antiisomorphism F from A onto B we have that F' = K(F*)-1 .

Proo£ We recale that F is automatically continuous and that F is then
defined as the unique continuous linear mapping from B into A satisfying
(F(a)1(b) = (alF'(b)) for ale a in A and b in B. By [5, Corollary 3 .4] there
is a positive number K(K = 1 if A = B) such that F' = K(F* )-1 for every
isomorphism F from A onto B and also, by regarding each antiisomorphism
from A onto B as an isomorphism from A onto the H*-algebra obtained by
reversion of the product of B, there is K' such that G' = K'(G*) -1 for every
antiisomorphism G from A onto B . Therefore we must show that if A and
B are at the same tiene isomorphic and antiisomorphic, then K = K' . First
assume A = B and let F be an antiautomorphism of A . Then, since F2 is an
automorphism, we have (FZ)' = (FZ*)-1 and also clearly (FZ)' = K'2(F2*)-1
so K' = 1 in this particular case . In general let G be an antiisomorphism from
A onto B and H be an antiautomorphism of A. Then GH is an isomorphism
from A onto B, so we have

K((GH)*) -1 = (GH)' = H'G' = K'(H*)-1(G*)-1 = K'((GH*)-1 .

and so K = K' as required .

Theorem 3 . Le¡ A and B -be topologically simple real H*-algebras .

	

Then
there is a positive number K(K = 1 if A = B) such that for every isomorphism
F from A onto B we have that F'= K(F* )- 1 .

Proof. We may assume obviously that A and B are isomorphic . If A and
B are complex H*-algebras regarded as real H*-algebras, then the equality
H' = K(H* ) - 1 is true for suitable positive number K and every complex
isomorphism or antiisomorphism H from A onto B (Lemma 2) . But if F
denotes any real isomorphism from A onto B, by Lemma 1, F is either a linear
complex isomorphism or a conjugate-linear complex isomorphism in which case
the mapping x -> F(x)* is a linear complex antiisomorphism . In both cases,
taking into account for the second one that the H*-algebra involution of B is
isometric, we have clearly F' = K(F*)-1 . In view of Corollary 1 and Theorem
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1 only remains to consider the case of existence of topologically simple complex
H*-algebras C and D with *-involutions r and T', respectively, such that

A= {cEC : r(c) =c*}and B= {dED :,r'(d)=d*} .

Now, since C = A ® iA and D = B ® iB, each isomorphism from A onto B
extends in a unique way to an isomorphism from C onto D so in this case the
statement of our theorem follows directely from the analogous one for complex
algebras (Lemma 2) .

Corollary 2 . Leí A and B be topologically simple real H*-algebras. Then
there is a positive number L such that, for every *-isomorphism F from A onto
B, LF is an isometric mapping.

With the aboye corollary our purpose in this paper is achieved . If A and
B are isomorphic topologically simple real H*-algebras, they are *-isomorphic
(Theorem 2) and *-isomorphisms from A onto B are constant positive multiples
of isometries . This is the essential uniqueness of the H*-algebra structure for
topologically simple real H*-algebras .
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