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NONASSOCIATIVE REAL H*-ALGEBRAS

M. CABRERA, J. MARTINEZ, A. RODRIGUEZ

Abstract

We prove that, if A denotes a topologically simple real (non-associative)
H*-algebra, then either A is 2 topologically simple complex H*-algebra
regarded as real H*-algebra or there is a topologically simple complex
H?-algebra B with *-involution T such that 4 = {b € B : 7{(b) = #*}.
Using this, we obtain our main resull, namely: {algebraically) isomorphic
topologically sirnple real H*-algebras are actually *-isometrically isomor-
phic.

0. Introduction

Since the work by Ambrose [1] introducing complex associative H *-algebras
and obtaining for they a complete structure theory, many papers on particular
and/or general nonassociative complex H*-algebras have been published with
the aim of finding a similar complete structure theory in their context (see [4,
5, 6, 12, 14, 15, 17, 18]).

From a general nonassociative point of view the most remarkable results are
the fellowing:

Decomposition Theorem. (6] (See also [8]). Every non zere (nonassocia-
tive) complez H*-algebra with zero annibilator 13 the closure of the orthogonal
sum of {automatically *-invariant) closed ideals which are topologically simple
H* -algebras.

Essential Uniqueness of the Topologically simple #*-Algebra Struc-
ture [5]. Once a complez algebra A has been struciured as a topologically simple
H*-algebra, every H™-algebra structure on A 15 {up to a positive multiple of the
mner product) toially isomorphic to the given one.

The theory of real H*-algebras begins with the almost simultaneous works by
Balachandran [2] De la Harpe {9] and Unsain [16] on real Lie H*-algebras. Only
very recently the theory of real associative H*-algebras has been achieved by
Balachandran and Swaminathan [3]. Also we must cite the work by Cuenca and
Sanchez on real noncommutative Jordan H*-algebras [7]. In all these particular
cases it is remarked that the decomposition theorem for real H*-algebras with
zero annihilator in the class under consideration follows essentially from the
same techniques used in the proof of the corresponding decomposition theorem
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in the complex case. Actually the proof of the general decomposition theo-
rem for nenassociative complex H*-algebras with zero annihilator given in [6]
does not depend of the base field, so decomposition theorem is also true for
nonassociative real H*-algebras with zero annihilator.

The situation for the essential uniqueness of the topologically simple H*-
algebra structure is not the same, because the proof given in {5] for the com-
plex case depends in the most of the steps of the base field €. Thus the main
purpese in this paper is to prove the essential unigueness of the H*-algebra stru-
cture for topologically simple nonassociative real H*-algebras. This is achieved
in Section 2. The proof uses the resuits in [5] and a Theorem (to which is
devoted Section 1), previously known in the case of Lie algebras (2, 9, 16},
stating that, if A is a topologically simple real H*-algebra, then either A 15 2
topologically simple complex H*-algebra regarded as real H*-algebra or there
is a topologically simple complex H*-algebra B with *-mmvolation T such that
A={be B: r(b) =b}.

1. Building topologically simple real H*-algebras from
topologically simple complex H*-algebras

We recall that an H*-algebra over K{(= R or C} is a nonassociative algebra
A over K with (conjugate-linear) algebra involution *, called the H*-algebra
involution of A, which is also a Hilbert space over K under an inner product
( [/ ) satisfying

(zy/2) = (z/2y") = {y/2"2)
for all z,y,2 in A.

All the results obtained in section 1 of [6] for complex H*-algebras are true
also in the real case because the arpuments used there for the proofs of these
results are not dependent of the base field. In particular the product of any H*-
algebra is continuous for the topology of the Hilbert norm = — ||z(| := /{z/z),
so (by multiplying the inner product by a suitable positive number if necessary)
every H*-algebra is a (complete) normed algebra in the usual sense of the word.

If B is a complex H*-algebra the underlying real algebra By, obtained by
restriction of the base field, can and will be considered as a real H*-algebra
{caled the realization of B) under the same H*-algebra involution that of B
and the real inner product Re( [/ }. Clearly closed *-subalgebras of the real
H*- algebra Bp are new examples of real H*-algebras. But we are interested
in a very particular case of this last situation. Assume that the H*-algebra
involution of B is continuous and let T be any continuous "*-involution” of B
{inear antiautomorphism of period two such that 7{d*) = [7(b)]* for 2ll b in
B). Then the set {b€ B :7{b) = b"} is a closed *-subalgebra of Br so a real
H*-algebra. We remark that the assumption of continuity for the H *-algebra
involution of B and for the *-involution 7 is superfluous if B has zerc annihilator
(where the annihilutor of B is defined as the closed ideal {6 € B: bB = Bt =
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= {0}}) because of the uniqueness of the complete algebra norm topology of
B in this case [13, Remark 2.8.(i)]. Actually i B has zerc annihilator its H”-
algebra involution is isometric [6, Proposition 2. (ix)] and if in particular B is
"topologically simple” (non zero product and with no non zero proper closed
ideals) also the *-involution 7 is isometric, |5, Corollary 3.5] ({see also our
Lemma 2 below), so if b,¢ are in B with 7(b} = ¥ and 7(c) = ¢* then the
inner product {(b/c) is a rezl number and the passing to Re( [/ ) in the real
H*-algebra {b € B : 7(&} = b*} is unnecessary.

Now we are in position to give the canonical method for obtaining topologi-
cally simple real H*-algebras from the complex cnes.

Proposition 1. If B is a topologically simple complex H*-algebra, By is a
topolegically simple real H* -algebra. Moreaver, if v is any *-involuiion of B,
then {b € B : 7(b) = b*} is also a topelogically simple real H" -algebra.

Proof: Let M be a closed ideal of Bg. Then M Nidf is a closed ideal of
B so, by the topological simplicity of B, we have either M NiM = B, in
which case M = Bg, or M NiM = 0. From this last equality we deduce
MB = M(iB) = {(MB) ¢ M nN::M = 0 and, analogously, BM = 0 so
M C Ann(B) = 0 and so Bg is topologically simple. Now let 7 be a *-
involution of B, let A denote the real H*-algebra {b € B : 7(b) = 4"} and
let M be a closed ideal of 4. The fact that for any &in B b+ 7(b*} and
i(r(d*) — b) lie in 4 yields to the equality B = A$ A as topological direct sum
of real subspaces. Now it is clear that M + iM is a closed ideal of B so either
M4+iM =B {andso M = A) or M + iM = 0 (and so M = 0}. Therefore A
is topologically simple, B

Qur next result will show that the topologically simple real H*-algebras
obtained in the above proposition are the only topologically simple real H*-
algebras. For the proof we recall the concept of "complexification™ of a real
algebra A. The complexification of 4 is the complex algebra Ac 1= A @4
with addition, multiplication by complex numbers and product defined by

(z+iy}+(z+it)=(z+2)+iy+ 1)
(@ +1if)(z + iy) = (ax — By} + i{ay + Sz}
{z +iy¥z +1t) = (zz — yt} + (2t + yz)

for all z,y,2,t in 4 and «, 3 real numbers. If 4 is actually a real H*-algebra,
then A¢ can and will be considered in a natural way as a complex H"-algebra
with H*-algebra invclution the extension by conjugate-linearity of the one of
A and inner product the extension by sesquilinearity of the one of 4. Moreover
the extension by linearity of the H*-algebra involution of A gives a *-involution
of Ac which will be called the canonicel *-invelution of the complex H*-algebra
Ac.
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Theorem 1. Let A be o topologically simple real H* -algebra. Then either
A 13 the realization of o topologically simple complex H*-algebra or there exist
a topologically simple complex H*-algebra B with *-involution v such that

A={bec B:1{b)=b"}.

Proof: If the complex H*-algebra A¢ is topologically simple, call it B and
let T denote its canonical *-involution. Clearly 4 = {6 ¢ B : r{d) = §"} and
we are ia the last situation of the statement. Qtherwise A¢ has a non zero
proper closed ideal M and such an ideal can not be invariant under r (use the
topological simplicity of A and the fact that closed ideals of A¢ are *-invariant
[6, Proposition 2.(v)]) Therefore M N7{#)} =0, soc M and 7(M) are mutually
orthogenal [6, Proposition 2.(vil}), and so Ac = M & 7(M) because M © (M)
is a non zero closed r-invariant ideal of Ac. Now from the fact that A is an
arbitrary non gero proper closed ideal of A¢ it follows easily that M and 7(M)
are the only non zero proper closed ideals of A¢ and, as a consequence, that
M is a topologically simple (complex)H™*-algebra. Now routine verification
shows that the mapping m — m + 7(m*)} is a total isomorphism {isometric
*-isomorphism) from the realization of the topologically simple complex H*-
algebra M {once its inner product has been multiplied previously by two) onto
A =

The proof of the above theorem shows that the two posibilities in the sta-
tement for the topologically simple real H*-algebra A are mutually exclusive
because they depend on wether or not Ac is topologically simple. The following
corollary exhibits more explicitly this fact. We recall that the centroid C{A4)
of a nonassociative algebra A is defined as the set of mappings T from A into
A such that T(ay) = T(a}y = aT(y) for all x,y in A. As in [11,Theorem 2.1],
if A is a (nonassociative) complete normed algebra with zero annihilater, then
C(A) is a closed commutative subalgebra of BL{A4) (the Banach algebra of all
continuous linear operators on 4) containing the identity operator.

Corollary 1. Let A be a topologically simple real H*-algebra. Then the
centroid of A is isomorphic to C or R according to A 1s the realization of o to-
pologically simple complezr H™ -algebra or there ts o topologically simple complez
H*.ulgebra B with *-involution v such that

A={bec B :7(l)="0"}

Proof: If A is the realization of a topologically simple complex H*-algebra we
have C{ A} = C since the centroid is not dependent of the base field and so (5,
Theorem 1.2] can be applied. Otherwise, by Theorem 1, A = {be B: r(b) =
= b*} for suitable topologically simple complex H*-algebra B and *-involution
T of B, Since B = A @ iA {recall the proof of Proposition 1), every element in
C{A) can be exented by linearity to an element in C(B). Therefore C(4) = R
because C{B) = C {5, Theorem 1.2]. B
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2. Isomorphisms of real H*-algebras

Qur aim in this section is to prove that algebraically isomorphic topologically
simple real H*-algebras are actually totally isomorphic. The first step to this
end is the following theorem on decomposition of iscmorphisms between real
H*-algebras with zero annihilator, from which it follows that isomorphic real
H*-algebras with zero annihilator are *-isomorphic. The points for the proot
are the analogous result for complex H*-algebras (3] and the fact that the
complexification of a real H*-algebra is a complex H”-algebra which has zero
annihilator if the same is true for the given one.

If T is any linear mapping from an H*-algebra A into another one B, we
denote by T™ the (linear} mapping from A into B defined by

T*(a) = (T(a"})" for all g in A.

Theorem 2. Let A and B be real H*-algebras with zero annihilaior and F
be an isomorphism from A onte B. Then F can be written in o unigue way

as F = Gexp{D) with G a *-isomorphism from A onte B and D a continuous
derivation of A such thet D* = —D.

Proof: The mapping F¢ from Ac onto Be defined by Fel(z + y) = Fz) +
+F(y) is an isomorphism so, by (8, Theorem 3.3 and Corollary 2.3], F¢ can be
written in a unique way as F¢ = Geezp{ ) where Gy 15 a *-isomerphism from
Ac onto B¢ and Dj a continuous derivation of Ag with Dj = —Dy,

If T (resp.: ') denotes the canonical *-involution of A¢ (resp.: Bc}, clearly
we have

Fe=1'(Fe)'r

S0

Fe =7(Go exp (D)7 = 7'Go exp (—Dp)r =
= 7'GorT exp (— Dy )r = 7' Gor exp (—7Dp7).

Since 7'Gg7 is a *-isomorphism from A¢ onto Be and —7.0;7 is a continuous
derivation of A¢ with (—7Dg7)* = —{—7Dg7), by the uniqueness of the decom-
position for Fi, we have 7'Go7 = G¢ and —7Dgr = Dg. Therefore Go{d) =B
and Dy(A) C A. Now, if we consider the mapping G {from A onto B } and
D (from A into A} defined by G{a} = Gp{z) and D{z) = Dy{z) for all z in
A, these satisfy the requirements in the statement of the theorem. The uni-
queness of the decomposition for F follows easily from the uniqueness of the
decomposition for Fe. B

Qur next purpose is to show that x-isomorphisms between given topologically
simple real H*-algebras are constant positive multiples of isometries. The proof
depends on Theorem 1 and the following two lemmas. Actually Lemma 2 s a
little improvement of |5, Corollary 3.4].
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Lemma 1. Let A and B be topslogically stmple complexr H* -algebras. Then
any tsomorphism from Am onile Br 13, as mapping from A to B, either hnear
or conjugate linear.

Proof: Let F be an isomorphism from Ag onto Bg. As in [10, Theorem
x.5] F induces a ring-isomorphism v from C(A4) onto C(B} (both equal C [5,
Theorem 1.2} such that FiAz) = u(A}F(z) for all 7 in A and all A in €. The
proof is concluded by observing that in our case u is real-linear. W

Lemma 2. Let A and B be topologically simple complez H™ -algebras. Then
there is a positive number K (K = 1 if A = B} such that for every isomorphism
or anitisomorphism F from A onte B we have that F" = K(F*)™'.

Proof: We recall that F is automatically contimucus and that I is then
defined as the unique continuous linear mapping from B into A satisfying
(F(a}/(b) = (a/F (b)) for all e in 4 and b in B. By [5, Corollary 3.4] there
is a posttive number K(N = 1 if 4 = B) such that ' = K(F*)™?! for every
isomorphism F from A onto B and also, by regarding each antiisomorphism
from A onto B as an isomorphism from A onto the H*-algebra obtained by
reversion of the product of B, there is K such that G = K'(G*}™} for every
antiisomorphism & from 4 onto B. Therefore we must show that if A and
B are at the same time isomorphic and antiisomorphic, then K = K'. Fust
assume A4 = B and let F be an antiavtomorphism of A. Then, since F? is an
automorphism, we have (F?) = (F?*}™? and also clearly {F?) = K?(F?*)~!
so K' = 1 in this particular case. In general let (7 be an antiisomorphism from
A onto B and H be an antiautomorphism of A. Then GH is an isomorphism
from A onto B, so we have

K{GHYY ' =(GHY = H'G = K'(H*)y"{G*)' = K'{GH*).
and so K = K’ as required. ®

Theorem 3. Let A and B -be topologically simple real H*-algebras. Then
there 15 ¢ positive number K{K = 1 if A = B) such that for every isomorphism
F from A onto B we have that F" = K(F*)™1.

Proof: We may assume obviously that A and B are isomorphic. If A and
B are complex H*-algebras reparded as real H*-algebras, then the eguality
H = K{H*)"! is true for suitable positive number K and every complex
isomorphism or antlisomorphism H from A onto B (Lemma 2). But if ¥
denotes any real isomorphism from A onto B, by Lemma 1, F is either a linear
complex isomorphism or a conjugate-linear complex isomorphisin in which case
the mapping z — F(z)" is a linear complex antiisomorphism. In both cases,
taking into account for the second one that the H*-algebra involution of B is
isometric, we have clearly " = K{F*)~!. In view of Corollary 1 and Theorem
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1 only remains to consider the case of existence of topologically simple complex
H*-algebras C and D with #-involutions 7 and 7', respectively, such that

A={ceC: 7e)=c"}and B={de D:7'(d)=d"}].

Now, since ' = A@iA and D = B ©¢B, each isomorphism from A onto B
extends in a unique way to an isomorphism from € onto I so in this case the
statement of cur theorem follows directely from the analogous one for complex
algebras (Lemma 2). ®

Corollary 2. Let A and B be topologically simple real H*-algebras. Then
there is @ positive number L such that, for every x-tsomorphism I from A onto
B, LF is an tsomelric mapping.

With the above corollary cur purpose in this paper is achieved. If A and
B are isomorphic topelogically simple real H*-algebras, they are *-1somorphic
(Theorem 2) and #-isomorphisms from 4 onto B are constant positive multiples
of isometries. This is the essential uniqueness of the H*-algebra structure for
topologically simple real H*-algebras.
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