

ON THE JACOBIAN CRITERION OF FORMAL SMOOTHNESS

ANTONIO G. RODICIO

Abstract

We give a short proof of the jacobian criterion of formal smoothness using the Lichtenbaum–Schlessinger cotangent complex.

The aim of this note is to get a proof of the following jacobian criterion of formal smoothness:

Theorem 1. *Let A be a ring, B a noetherian A -algebra, J an ideal of B , and $C = B/J$. Let us consider over A and B the discret and J -adic topology, respectively. Then, the following statements are equivalent*

- 1) *The A -algebra B is formally smooth*
- 2) *For every representation $B \simeq R/I$, where R is a smooth A -algebra, the canonical homomorphism*

$$I/I^2 \otimes_B C \longrightarrow \Omega_{R|A} \otimes_R C$$

is left invertible.

This theorem has been obtained by M. André [1, prop. 16.17] using simplicial methods. We shall get a more elementary proof, based on the Lichtenbaum–Schlessinger (co–)homology theory [3], and a counter–example showing that this result is not true for arbitrary B .

First we recall the definition of the Lichtenbaum–Schlessinger (co–)homology functors. Let A be a ring, B an A -algebra and M a B -module. Choose a polynomial algebra R over A such that $B \simeq R/I$, and a free R -module F such that there exists an exact sequence of R -modules

$$0 \longrightarrow U \longrightarrow F \xrightarrow{j} I \longrightarrow 0.$$

Let U_0 be the image of the homomorphism $\phi : F \otimes_R F \rightarrow F$, $\phi(x \otimes y) = j(x)y - j(y)x$ and consider the complex of B -modules

$$L_{B|A} : 0 \longrightarrow U/U_0 \longrightarrow F/IF \longrightarrow \Omega_{R|A} \otimes_R B \longrightarrow 0.$$

Then, $T_i(B|A, M) = H_i(L_{B|A} \otimes_B M)$, $T^i(B|A, M) = H^i(\text{Hom}_B(L_{B|A}, M))$, $i = 0, 1, 2$.

There exist isomorphisms: $T_0(B|A, M) \simeq \Omega_{B|A} \otimes_B M$, $T^0(B|A, M) \simeq \text{Der}_A(B, M) \simeq \text{Hom}_B(\Omega_{B|A}, M)$, $T^1(B|A, M) \simeq \text{Exalcom}_A(B, M)$ the set of equivalence classes of infinitesimal extensions of B over A by M , and $T^1(B|A, M) \simeq \text{Hom}_B(I/I^2, M)$ if $B \simeq A/I$.

Proposition 1. *Let A be a ring, B an A -algebra, J an ideal of B and $C = B/J$. Assume that $B \simeq R/I$, where R is a smooth A -algebra. Then, the following conditions are equivalent*

- 1) *The canonical homomorphism $I/I^2 \otimes_B C \rightarrow \Omega_{R|A} \otimes_R C$ is left invertible*
- 2) *$T_1(B|A, C) = 0$ and $\Omega_{B|A} \otimes_B C$ is a projective C -module*
- 3) *$T_1(B|A, M) = 0$ for all C -module M .*

Proof: Since R is a smooth A -algebra, we have $T_1(R|A, -) = 0 = T^1(R|A, -)$ [3, prop. 3.1.3]. Hence there exist exact sequences [3, 2.3.5]

$$0 \longrightarrow T_1(B|A, C) \longrightarrow I/I^2 \otimes_B C \longrightarrow \Omega_{R|A} \otimes_R C \longrightarrow \Omega_{B|A} \otimes_B C \longrightarrow 0$$

$$0 \longrightarrow \text{Hom}_C(\Omega_{B|A} \otimes_B C, M) \longrightarrow \text{Hom}_C(\Omega_{R|A} \otimes_R C, M) \longrightarrow \\ \text{Hom}_C(I/I^2 \otimes_B C, M) \longrightarrow T^1(B|A, M) \longrightarrow 0,$$

where M is a C -module.

The result follows from this sequences having into account that $\Omega_{R|A} \otimes_R C$ is a projective C -module [3, prop. 3.1.3].

For every C -module M , the homomorphisms $A \rightarrow B \rightarrow B_n = B/J^n$ induce an exact sequence

$$T^1(B_n|B, M) \longrightarrow T^1(B_n|A, M) \longrightarrow T^1(B|A, M) \longrightarrow T^2(B_n|B, M)$$

and, therefore, an exact sequence

$$\varinjlim T^1(B_n|B, M) \longrightarrow \varinjlim T^1(B_n|A, M) \longrightarrow T^1(B|A, M) \\ \longrightarrow \varinjlim T^2(B_n|B, M).$$

The formal smoothness of B over A is equivalent, by [2, prop. 19.4.4], to the vanishing of $\varinjlim T^1(B_n|A, M)$ for all C -module M . Then, Theorem 1 is a consequence of Proposition 1 and

Proposition 2. *Let A be a noetherian ring, I an ideal of A , $A_n = A/I^n$, and M an A/I -module. Then*

- i) $\varinjlim T^1(A_n|A, M) = 0$.
- ii) $\varinjlim T^2(A_n|A, M) = 0$.

Part i) is easy: $\varinjlim T^1(A_n|A, M) \simeq \varinjlim \text{Hom}_{A/I^n}(I^n/I^{2n}, M) \simeq \varinjlim \text{Hom}_{A/I}(I^n/I^{n+1}, M) = 0$.

To prove part ii) we need the following lemmas.

Lemma 1. Let A be a ring, I an ideal of A , $B = A/I$, and M a B -module. Then, there exists a natural monomorphism of B -modules $T^2(B|A, M) \rightarrow \text{Ext}_A^1(I, M)$.

Proof: Let F be a free A -module such that there exists an exact sequence of A -modules $0 \rightarrow U \rightarrow F \xrightarrow{j} I \rightarrow 0$. Let U_0 be the image of the homomorphism $\phi: F \otimes_A F \rightarrow F$, $\phi(x \otimes y) = j(x)y - j(y)x$. Then, $T^2(B|A, M) = \text{Coker}(\text{Hom}_A(F, M) \rightarrow \text{Hom}_A(U/U_0, M))$. The result follows from the diagram of exact sequences

$$\begin{array}{ccccccc}
 & & & 0 & & & \\
 & & & \downarrow & & & \\
 \text{Hom}_A(F, M) & \longrightarrow & \text{Hom}_A(U/U_0, M) & \longrightarrow & T^2(B|A, M) & \longrightarrow & 0 \\
 \parallel & & \downarrow & & \downarrow & & \\
 \text{Hom}_A(F, M) & \longrightarrow & \text{Hom}_A(U, M) & \longrightarrow & \text{Ext}_A^1(I, M) & \longrightarrow & 0
 \end{array}$$

Lemma 2. Let A be a noetherian ring, I an ideal of A and $n > 0$ an integer number. Then, there exists $s \geq n$ such that the canonical homomorphism

$$\text{Tor}_1^A(I^s, A/I) \longrightarrow \text{Tor}_1^A(I^n, A/I)$$

is trivial.

Proof: We have $\text{Tor}_1^A(I^n, A/I) \simeq \text{Tor}_2^A(A/I^n, A/I) \simeq \text{Tor}_1^A(A/I^n, I)$. Let $0 \rightarrow U \rightarrow F \rightarrow I \rightarrow 0$ be an exact sequence of A -modules where F is free and of finite type. Then

$$\text{Tor}_1^A(A/I^n, I) \simeq (U \cap I^n F)/I^n U.$$

By Artin-Rees lemma [4, th. 15] there exists $r > 0$ such that $I^t F \cap U = I^{t-r}(I^r F \cap U)$ for $t > r$. Taking $s = n + r$ we obtain $I^s F \cap U \subseteq I^n U$ and therefore

$$\text{Tor}_1^A(I^s, A/I) \longrightarrow \text{Tor}_1^A(I^n, A/I)$$

is trivial.

We now prove part ii) of Proposition 2. By lemma 1 there exists a monomorphism

$$\varinjlim T^2(A_n|A, M) \longrightarrow \varinjlim \text{Ext}_A^1(I^n, M).$$

On the other hand, for each n we have an exact sequence

$$0 \rightarrow \text{Ext}_{A/I}^1(I^n/I^{n+1}, M) \rightarrow \text{Ext}_A^1(I^n, M) \rightarrow \text{Hom}_{A/I}(\text{Tor}_1^A(I^n, A/I), M)$$

which is deduced, for instance, from the change-rings spectral sequence

$$E_2^{p,q} = \text{Ext}_{A/I}^p(\text{Tor}_q^A(I^n, A/I), M) \Rightarrow \text{Ext}_A^{p+q}(I^n, M).$$

Since $\varinjlim \text{Ext}_{A/I}^1(I^n/I^{n+1}, M) = 0$ and $\varinjlim \text{Hom}_{A/I}(\text{Tor}_1^A(I^n, A/I), M) = 0$, by lemma 2, we obtain $\varinjlim \text{Ext}_A^1(I^n, M) = 0$. Therefore, $\varinjlim T^2(A_n|A, M) = 0$.

Theorem 1 is not true for arbitrary B . To exhibit a counter-example, we need the following result.

Lemma 3. *Let A be a ring and $I \subseteq T$ two ideals of A such that $T^2 = T$ and $IT \neq I$. Let $B = A/I$, $J = T/I$ and $C = B/J$. Then, the A -algebra B is formally smooth for the J -adic topology, but there exists a C -module M such that $T^1(B|A, M) \neq 0$.*

Proof: We have $J^2 = (T^2 + I)/I = (T + I)/I = T/I = J$. Hence, for each $C = A/T$ -module M

$$\varinjlim T^1(B_n|A, M) \simeq T^1(C|A, M) \simeq \text{Hom}_{A/T}(T/T^2, M) = 0,$$

where $B_n = B/J^n$. Therefore, B is formally smooth.

On the other hand $T^1(B|A, M) \simeq \text{Hom}_B(I/I^2, M) \simeq \text{Hom}_{A/T}(I/IT, M)$. Since $I/IT \neq 0$, we obtain $T^1(B|A, I/IT) \neq 0$.

Counter-example. $A = C(R, R)$ the ring of all real-valued continuous functions on R , I = principal ideal of A generated by the identity function, and T = maximal ideal of A containing I (see [5], Ch. 2, § 2; Ex. 15).

This counter-example solves negatively a question of A. Brezuleanu [6, Remark 1.3 (i)].

References

1. M. ANDRE, "Homologie des Algèbres Commutatives," Springer, 1974.
2. A. GROTHENDIECK, EGA 0_{IV}, *Publ. Math. IHÉS* 20, Paris, 1964.
3. S. LICHTENBAUM, M. SCHLESSINGER, The cotangent complex of a morphism, *Trans AMS* 128 (1967), 41–70.
4. H. MATSUMURA, "Commutative Algebra," Benjamin/Cummings, 1980.

5. A. BREZULEANU, Smoothness and regularity, *Compositio Math.* **24** (1972), 1-10.

Departamento de Algebra
Facultad de Matemáticas
15771 Santiago de Compostela
SPAIN

Rebut el 12 de Setembre de 1988