INDUCTIVE LIMITS OF VECTOR-VALUED SEQUENCE SPACES

JOSÉ BONET, SUSANNE DIEROLF AND CARMEN FERNÁNDEZ

Abstract .

Let L be a normal Banach sequence space such that every element in L is the limit of its sections and let $E = \text{ ind } E_n$ be a separated inductive limit of locally convex spaces. Then ind $L(E_n)$ is a topological subspace of L(E).

The aim of this note is to prove the following result on the interchangeability of inductive limits and spaces of vector valued sequences: if L is a normal Banach sequence space with the property that every element of L is the limit of its sections and $E = \text{ ind } E_n$ is a separated locally convex inductive limit, then the inductive limit ind $L(E_n)$ is a topological subspace of L(E). The situation is completely different for the sequence space $L = 1^{\infty}$. In fact the first two authors showed in [2] that there are even strict inductive limits of Fréchet spaces $E = \text{ ind } E_n$ such that the canonical injection ind $1^{\infty}(E_n) \subset 1^{\infty}(E)$ is not open.

In what follows (L, || ||) denotes a normal Banach sequence space, i.e., a Banach space that satisfies

(α) $\varphi \in L \subset \omega$ algebraically and the inclusion $(L, \| \|) \subset \omega$ is continuous.

(β) $\forall a = (a_k)_{k \in \mathbb{N}} \in L \forall b = (b_k)_{k \in \mathbb{N}} \in \omega$ such that $|b_k| \leq |a_k| \forall k \in \mathbb{N}$, we have that $b \in L$ and $||b|| \leq ||a||$.

We will also assume the following property $(cf \{1\})$

 $(\varepsilon) \lim_{n \to \infty} \|((0)_{k < n}, (a_k)_{k \ge n})\| = 0, \forall a = (a_k)_{k \in \mathbb{N}} \in L.$

This property is sometimes called AK-property. Clearly $(L, || ||) = 1^{\infty}$ does not satisfy (ε) , whereas $(L, || ||) = 1^p, 1 \le p \mod c_0$ has property (ε) .

We observe that there is $(\mu_k)_{k \in \mathbb{N}} \in L$ with $\mu_k > 0 \ (k \in \mathbb{N})$ and $\|(\mu_k)_{k \in \mathbb{N}}\| = 1$

Given a locally convex space E, we denote by cs(E) the family of all continuous seminorms on E. Given E the vector valued sequence space L(E) is defined by

$$L(E) = \{x = (x_k)_{k \in \mathbb{N}} \in E^{\mathbb{N}}; (r(x_k)_{k \in \mathbb{N}}) \in L \text{ for all } r \in cs(E)\}$$

endowed with the locally convex topology defined by the seminorms

$$x \longrightarrow \|(r(x_k)_{k \in \mathbb{N}})\|$$

as r varies in cs(E). Clearly if (L, || ||) satisfies property (ε) , then the countable direct sum $\bigoplus \{E : n \in \mathbb{N}\} = E^{(\mathbb{N})}$ is dense in L(E).

Given a separated locally convex inductive limit $E = \text{ind } E_n$ we are interested in the following question: is ind $L(E_n)$ a topological subspace of L(E)?. If $(L, || ||) = 1^{1}$, a positive answer follows from a classical result of Grothendieck on projective tensor products (see e.g. [4]). If $(L, || ||) = c_0$ the positive answer is a particular case of a result of Mujica [5,1,7]. We prove now that the answer is positive for arbitrary (L, || ||) satisfying (ε) .

1. Proposition. Let E be a locally convex space, F a closed subspace of E and $q: E \longrightarrow E/F$ the canonical surjection. The mapping $Q: L(E) \longrightarrow L(E/F)$ defined by $Q((x_k)_{k \in \mathbb{N}}) := (q(x_k))_{k \in \mathbb{N}}$ is open onto its image. If E is a Fréchet space then Q is also surjective.

Proof: Since $E^{(N)}$ is a dense subspace of L(E) and $Q(E^{(N)}) = (E/F)^{(N)}$, according to [4, 32, 5(3)] it is enough to show that $Q: E^{(N)} \longrightarrow (E/F)^{(N)}$ is open. To do this we fix $r \in cs(E)$ and we show

$$Q(\lbrace x \in L(E); x \in E^{(\mathbf{N})} || (r(x_k))_{k \in \mathbf{N}} || \le 1 \rbrace) \supset \lbrace \widetilde{x} \in L(E/F); \ \widetilde{x} \in (E/F)^{(\mathbf{N})} || (\widetilde{r}(\widetilde{x}_k))_{k \in \mathbf{N}} || \le 2^{-1} \rbrace$$

where $\tilde{r}(z+F) := \inf \{r(z+y); y \in F\} (z \in E)$ is the quotient seminorm. We fix $(\mu_k)_{k \in \mathbb{N}} \in L$, $\mu_k > 0(k \in \mathbb{N})$, $\|(\mu_k)_{k \in \mathbb{N}})\| = 1$. Given $\tilde{x} \in (E/F)^{(\mathbb{N})}$ with $\|(\tilde{r}(\tilde{x}_k))_{k \in \mathbb{N}}\| \le 2^{-1}$ we find $1 \in \mathbb{N}$ such that $\tilde{x}_k = 0$ for $1 \le k$. For each k < 1 we select $y \in F$ such that $r(x_k + y_k) < \tilde{r}(x_k + F) + 2^{-1}\mu_k$. Then $x = ((x_k + y_k)_{k < 1}, (0)_{1 \le k}))$ belongs to $E^{(\mathbb{N})} \subset L(E), Q(x) = \tilde{x}$ and $\|((r(x_k + y_k))_{k < 1}, (0)_{1 \le k}))\| \le 1$.

If E is also a Fréchet space, then Q(L(E)) is a Fréchet space dense in L(E/F). Consequently Q is surjective.

2. Proposition. Let $(E_n)_{n \in \mathbb{N}}$ be a sequence of locally convex spaces. Then the map $\psi : L(\bigoplus\{E_n : n \in \mathbb{N}\}) \longrightarrow \bigoplus\{L(E_n) : n \in \mathbb{N}\}$ defined by

$$\psi(((x_n^k)_{n\in\mathbb{N}})_{k\in\mathbb{N}}):=((x_n^k)_{k\in\mathbb{N}})_{n\in\mathbb{N}}$$

is a topological isomorphism.

Proof: Given $x = ((x_n^k)_{n \in \mathbb{N}})_{k \in \mathbb{N}}$ in $L(\bigoplus \{E_n : n \in \mathbb{N}\})$, to show that $\psi(x) \in \bigoplus \{L(E_n) : n \in \mathbb{N}\}$ it is enough to see that there is $m \in \mathbb{N}$ such that $x_n^k = 0$ for all $n \ge m$, $k \in \mathbb{N}$. If we assume the contrary we can find two strictly increasing

sequences $(k(j))_{j\in\mathbb{N}}$ and $(n(j))_{j\in\mathbb{N}}$ such that $x_{n(j)}^{k(j)} \neq 0$ for all $j \in \mathbb{N}$ (recall that each $(x_n^k)_{n\in\mathbb{N}}$ belongs to $\oplus \{E_n : n \in \mathbb{N}\}$). We select $(\lambda_k)_{k\in\mathbb{N}} \in \omega \setminus L$ with $\lambda_{k(j)} > 0$ for all $j \in \mathbb{N}$ and $\lambda_k = 0$ if $k \notin \{k(j); j \in \mathbb{N}\}$. For all $j \in \mathbb{N}$ we find $r_j \in cs(E_{n(j)})$ with $r_j(x_{n(j)}^{k(j)})$ greater than $\lambda_{k(j)}$. It is clear that $r((z_n)_{n\in\mathbb{N}}) = \sum_{j=1}^{\infty} r_j(z_{n(j)})$ defines a continous seminorm on $\oplus \{E_n : n \in \mathbb{N}\}$. Therefore for $x^k := (x_n^k)_{n\in\mathbb{N}} (k \in \mathbb{N})$, we have $(r(x^k)) \in L$. But $r(x^{k(j)}) \ge r_j(x_{n(j)}^{k(j)}) > \lambda_{k(j)}$, for all $j \in \mathbb{N}$ and $0 = \lambda_k \le r(x^k)$ if $k \notin \{k(j); j \in \mathbb{N}\}$. Consequently $(\lambda_k)_{k\in\mathbb{N}} \in L$, a contradiction. Therefore ψ is well defined. Clearly ψ is linear and injective. To show that ψ is surjective, we take $x = ((x_n^k)_{k\in\mathbb{N}})_{n\in\mathbb{N}}$ in $\oplus \{L(E_n) : n \in \mathbb{N}\}$. Clearly $(x_n^k)_{n\in\mathbb{N}} \in \oplus \{E_n; n \in \mathbb{N}\}$ for all $k \in \mathbb{N}$, since $x_n^k = 0$ for all $n \ge m$ and $k \in \mathbb{N}$. Given $r \in cs(\oplus \{E_n; n \in \mathbb{N}\}$ we can find $r_n \in cs(E_n)$ $n \in \mathbb{N}$, with $r(z) \le \max(r_n(z_n); n \in \mathbb{N})$ for all $z = (z_n) \in \oplus \{E_n; n \in \mathbb{N}\}$. Therefore for all $k \in \mathbb{N}$.

$$r((x_n^k)_{n \in \mathbb{N}}) \le \max (r_n(x_n^k); 1 \le n \le m) \le \sum_{n=1}^m r_n(x_n^k)$$

Since $(r_n(x_n^k)_{k \in \mathbb{N}}) \in L$ for $1 \leq n \leq m$, we conclude $y = ((x_n^k)_{n \in \mathbb{N}})_{k \in \mathbb{N}} \in L(\oplus \{E_n; n \in \mathbb{N}\})$ and $\psi(y) = x$.

Now the continuity of ψ^{-1} : $\bigoplus \{L(E_n); n \in \mathbb{N}\} \longrightarrow L(\bigoplus \{E_n; n \in \mathbb{N}\})$ follows from the fact that its restriction to each $L(E_n)$ is clearly continuous. Finally we show that ψ is continuous. To do this we consider $r_n \in cs(E_n)$ $(n \in \mathbb{N})$ and we observe that

$$\sup_{n\in\mathbb{N}} \|(r_n(x_n^k))_{k\in\mathbb{N}})\| \le \|(\sup_{n\in\mathbb{N}} (r_n(x_n^k))_{k\in\mathbb{N}})\|$$

holds for every $((x_n^k)_{n \in \mathbb{N}})_{k \in \mathbb{N}} \in L(\oplus \{E_n; n \in \mathbb{N}\})$.

3. Theorem. Let $(L, \|.\|)$ be a normal Banach sequence space with property (ε) . Let $E = \text{ ind } E_n$ be a separated locally convex inductive limit. Then [ind $L(E_n)$] is a topological subspace of $L(\text{ ind } E_n)$.

Proof: We consider the following diagram

$$\begin{array}{ccc} L(\oplus\{E_n; n \in \mathbb{N}\}) & \stackrel{Q_1}{\longrightarrow} & L(E) \\ & \psi \uparrow & & \uparrow \varphi \\ & & \oplus\{L(E_n); n \in \mathbb{N}\} & \stackrel{Q_2}{\longrightarrow} & \text{ind } L(E_n) \end{array}$$

where, for $q_1 : \oplus \{E_n; n \in \mathbb{N}\} \longrightarrow E$ the canonical quotient map $q_1((z_n)_{n \in \mathbb{N}}) =$ = $\sum_{n=1}^{\infty} z_n$ we define $Q_1((x_k)_{k \in \mathbb{N}}) = (q_1(x_k))_{k \in \mathbb{N}}$ for all $(x_k)_{k \in \mathbb{N}}$ in $L(\oplus \{E_n; n \in \mathbb{N}\})$. Q_2 is the canonical quotient map and φ is the canonical injection which is continuous. According to proposition 1, Q_1 is open onto its image. Certainly Q_2 is open and ψ^{-1} is a topological isomorphism, according to proposition 2. Since the diagram is commutative, it follows that φ is also open onto its image. Thus ind $L(E_n)$ is a topological subspace of L(E).

4. Corollary. Let (L, || ||) be a normal Banach sequence space with property (c). Let $E = ind E_n$ be a strict inductive limit of locally convex spaces with E_n closed in E_{n+1} for all $n \in \mathbb{N}$. Then $L(E) = ind L(E_n)$ holds algebraically and topologically.

Proof: Only the algebraic identity needs a proof. It is a clearly enough to show that for any $x = (x_k)_{k \in \mathbb{N}} \in L(E)$ there is $n \in \mathbb{N}$ with $x_k \in E_n$. If this is not satisfied we can find an increasing sequence $(k(n))_{n \in \mathbb{N}}$ in \mathbb{N} such that $x_{k(n)} \notin E_n$, for all n in \mathbb{N} . We select $(\gamma_k)_{k \in \mathbb{N}} \in \omega \setminus L$ with $\gamma_{k(n)} > 0 (n \in \mathbb{N})$ and $\gamma_k = 0$ if $k \notin \{k(n); n \in \mathbb{N}\}$. Now since E_n is closed, there is $u_n \in E'$ with $u_n(x_{k(n)}) = \gamma_{k(n)}$ and $u_n|E_n = 0$. The equicontinous sequence $(u_n)_{n \in \mathbb{N}}$ defines a continous seminorm as follows:

$$p(x) = \sup \{ |u_n(x)|; n \in \mathbb{N} \}$$

Thus $(p(x_k))_{k \in \mathbb{N}} \in L$, a contradiction, since $\gamma_k \leq p(x_k)$ for all $k \in \mathbb{N}$.

5. Remark: For an inductive limit $E = \text{ ind } E_n$ and a normal Banach sequence space (L, || ||), the algebraic coincidence $L(E) = \text{ ind } L(E_n)$ is a clearly equivalent to $\forall x \in L(E) \exists n \in \mathbb{N}$ with $x \in L(E_n)$. For instance if $(L, || ||) = c_0$, then $L(E) = \text{ ind } L(E_n)$ if and only if E is a sequentially retractive (cf [3]).

References

- 1. J. BONET, S. DIEROLF, On (LB)-spaces of Moscatelli type, DOGA Tr. J. Math. (to appear in 1989).
- 2. J. BONET, S. DIEROLF, Countable inductive limits and the bounded decomposition property, Proc. Roy Ir. Acad. (To appear).
- 3. K. FLORET, Folgenretraktive Sequenzen Lokalkonvexer Räume, J. reine angew Math 259 (1973), 65-85.
- 4. G. KÖTHE, "Topological vector spaces II," Springer, Berlin, Heidelberg, New York, 1979.
- 5. J. SCHMETS, "Spaces of vector valued continuous functions," Springer, Berlin, Heidelberg, New York, 1983.
 - J. Bonet: Dept. Matemática Aplicada Universidad Politécnica C. de Vera E-46071 Valencia SPAIN
 - S. Dierolf: FB IV Mathematik Postfach 3825 D-5500 Trier F.R. GERMANY
 - C. Fernández: Dept. Análisis Matemático Universidad de Valencia Dr. Moliner s/n E-46100 Burjassot SPAIN

Rebut el 17 de Març de 1989