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SUPERSOLUTIONS AND STABILIZATION
OF THE SOLUTION OF A NONLINEAR
PARABOLIC SYSTEM

HAMID ELOUARDI, FRANCOIS DE THELIN

Abstract

Let us consider a nonlinear parabolic system of the following type:

{5} g_‘: ~ div {|[Vul[P 72 Vu) = %[z‘,u,v}
8

& - AT 2 Vo) = 40w, u,0)

with Dirichlel boundary conditions and initial data.

In this paper, we construct sub-supersolutions of (S}, and by use of
them, we prove that, for i, — 4co, the solution of (S) converges to some
solution of the elliptic system associated with {S).

0. Introduction

This paper concerns the existence and asymptotic behaviour of bounded, non
negative solutions of the following system of nonlinear equations:

%—’-: - Ayu = flz,u,v) in 2.Ry
() %—Aqv:g(m,u,v) in QR
u(z,t) = v(z,¢) =0 in 800 R,

u(z,0) = pofz), v(z,0) = oz} in

where p > 2,9 > 2, Ay u = div (|Vu[?~2 Vu} and Q is a bounded regular open
subset of RV,

For p = ¢ = 2, Problem (§) has been investigated by many authors [5, 6, 12].

(S) is an example of a nonlinear parabolic system arising from non-Newtonian
fluid mechanics. NAKAQ [9] studies a similar system in which p = ¢ > 2 and
the right hand side is f,—Af, X constant. The case of a single equation of the
type (§) is studied in 2, 3, 8, 11]. The purpose of this paper is to extend the
results of [3] to the system (§).

First, using sub-supersolutions, we show that (S) has a solution. Morcover,
supposing that there exist A > 0, 4 > 0 and a function H(z,u,v) such that
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f =281 and ¢ = u&2, we prove that the solution of {§) converges to a solution
of the Dmchlet problem for the elliptic system.

We obtain regulanzing effects such that:
%(IWI""‘2 Vu) € L¥(t, +00; LP*(R)) and
8
2 (|V|** Vv) € L¥{t, +o0; LI*(Q)).

Our method is closely related to the paper of LANGLAIS and PHILLIPS
[7], and also to the paper of ELHACHIMI and DE THELIN {3] who study the
stabilization of the solution of a single equation. Some examples are discussed
in part IV, and include:

H(z,u,v)=k(z)uv + hun¥l 4 yor2¥l
Hz,u v} = —u™o™ + Ayt 4 gopret?

Some numerical results related to the system (S) are given in[4].

All Theorems are written in the case p > 2, ¢ > 2; obvious modifications (for
Theorem 6) give the case p = 2or g = 2.

1. Preliminaries and sub-supersolutions

Throughout this paper, {) stands for a regular bounded open subset of R¥.
Left f and g be some functions from RN¥+2 to R such that:

1) { fr9 € CHR X R xR)
and forany 2 € Q,u € Ry, v € Ry : f(z,0,v) 2 0,9(z,2,0) 20

and
For any M >0, N > 0, there exist by, v > 0, kﬁd,N >0
such that :
2 B (ot 0) = f(z,,0) < By y(u — ), V2 €9,

Yu,v,w: 0 < w<u < Mve(0,N)
bg(z, u,v) — glz,u,w) < k%l,N(v —w}, Vz e
Vu,v,w:0<w v <N, ue {0, M].
Remark 1: the condition 1.2. a) is satisfied if u — f{z,u,v) is a non
increasing function on Ry,
We shall also vuse the following notations:

for T > 0, Qr = x]0, T[, S = 8 x [0, T,
F(Vu) = [Vul[f? Vu,G(Vr) = V2|2 Vu,with p > 2and ¢ > 2.
Agu = div{F(Vu)}, Ay = div{G(Vu)).
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Let e, e be given such that:

{ o € Wo (@) N L(Q), o 2 0

(1.3) 1,0 -
e € W ()N L(Q), ¢ = 0,

We say that {u,v) is a solution of {§) in Q7 (resp: (#&,?) is a supersolution
of (S) in @Qr) iff

(1.4) { u( resp @) € L°°(0,T; WHP{Q2) n Le°(1))
' v( resp ) € L°(0,T; WH(Q)n L>(Q))
Su 1 a0 8
{1.5} Fn (respg—t) € LH@r), é—;i (respa) € Q7).
a—’:—Apu-—f{z,u,v):O ]
(1.6) { %—Aw—g{x,a,v):ﬁ n Qr
(resp --- 20 in QT)
(1.7} y=v=0{resp: & > 0,35 >0)in Sr.
u{.,0) = o (resp : 4(,,0) > pq) |
8 1
(1.8) { v(.,0) = 15 (resp: (., 0) > o)

Our method is based upon a comparison principale for the system (S); but
the usual notion of superselution does not work; so, following Hernandez [6],
we set:

Definition 1. [{0,0), (¢,3)] is said to be a sub-supersolution of (§) in Qg if
it satisfies the following conditions:

(1.9) @ € WHP(Q)N L°(Q), 6 € WHQ) (1 L)

(1.10) Vo € Q:0 < golz) < a(z) < My, 0 < 4holz) < 3(e) < My

(1.11) { Vz € Q, Yo € [0,8]: —f(2,0,v) SO < -Ad — flz,8,v)

Ve e, Vue0,i]: —glz,u,0) <0< ~ALH — g(z,u,9)
Remark 2: if we suppose that v — f(z,u,v) | and v — g(z,u,v) | any
supersclution of (§) gives a sub-supersolution of {8}
Our first resuits are sufficient conditions for the existence of sub-supersolu-
- tions of {§). .
It is well known (cf.[3]} that the problem:
{ “Apju=ky+ ku, z€8}
=90 T €00

has a supersolution if v €]0,p — 1.
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Theorem 1. Assume that v — f{z,u,») and v — g(z,u,v) sre monotone
non-increasing functions, and that there exusi

AO 203 P:GZO} ’\I >0‘ 1 >0‘1nd71 6]01.'9—"1[! )‘ZG]O?q_l[

such that

(1.12) {

Hz,u,0) € dp+ M u™, Vo e 2, Vu € Ry
g(.’l‘:,O,U) < po o UEC-4- 3 S Q-, Yo € R+

Then (8) has a sub-supersolution.
Proof: By [3] and (1.12), the equations

— Apu = f{z,u,0) and
— Agv = g(z,0,2)

have supersolutions # and 0. In fact, the monotonicity assumptions on f and
¢ prove that [(0, 0), (&, 7)| is 2 sub-supersolution of (§}. W

. Theorem 2. Let v — f(z,u,v} be & non-decreasing funciion end u —
g(z,u,v) be ¢ non-tncreasing funciion.

Assume that there ezisi constanis

po = 0,41 >0, v2 €10,¢ - 1f

and for any N:
’ A0203A1>0:71€]01p_1[

such that:

(1.14) { Flz,u,N) < Ag + Agum

9(2,0,v) < pg + pa 07
Then (S) has a sub-supersolution.
Proof: By [3] there exits ¢ such that:
—Ag8 > o+ pa 87
Let ¥ < ¢ and u be snch.that:
—ALE € Ag+ g ah
Then:

- A‘}.‘-‘ﬁ' Z f(x,u,N) 2 f(I',':‘:E,?_J)
- Ay0 > g(2,0,0)

whence the result. B
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Theorem 3. Assume that there exist k; > 0, ] = 0,1 such that:

{ Fflz,u,v) = kov + @z, u)
g(x)u)v) = kl ©+ gb(:c,v)

and that there ezist 413 > 0,2 2 0,12 > 0, Ao > 0,y € (Lp— 1 end y2 €
i1,9 — 1 suck that:

(p(:c,a) S 1 +.u'?u.h) ¢(I$U) S )‘1 + )‘21’721 Yz g Q) Vu: v E R+
Then (8) has o sub-supersolution.

Proof: By Remark 2, it is sufficient to show the existence of a supersolution.
Let My = |lbollgeotn)s No = |lvollz=(ny 2and R be such that Q@ C B(G, R)
We seek @i and U of the following type:

i(z) = ar® + 8, o(z) = yr¥* + 6, where r = |z},
a<0,8>0v<0,6>0.

(1.7} and (1.8) are satisfied if:

aRP* +8=M
(1.16) { p=M
_ ¥ R¥Y 4+ 6§ = Ng
We want
1.17) { —div(|VaP Va) = Niop P! 2 koo + s + pa @7
(. 1 —div(|Vo0 2 Vo) = Njyg*|" 2 by + A + da 0

Set # = §. Then, if 8 is sufficiently large, using the fact that v; € [1,p — 1]
and 7y €€ [1,¢ — 1], we can obtain

NPTl (B-Me)’ kB 5 and

(1.18) RF p1+pz pytpe M2
. N(qo)q—l (5—No)°_! _ _ I ~ 0
e At Ag 672 XitAz otz =

So {1.17) is satisfied and we check a and v with (1.16) &

2. Existence results

QOur main result is the following one:
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Theorem 4. Let p > 2, ¢ > 2 and o € Wa P ()N L(0), 46 € Wyt ()N
Le(), we > 0, o = 0 be grven.

Suppose thal f and g verify (1.1) and (1.2) and thal (S) has a sub-super-
solution [{0, ), (uT)] in Q7.

Then {8} has a untque solution {u,v} in Qr salisfying:

0<<u<<u | o
in
t<ev<y T

Proof:: By Theorem 11.2[3], we can choose ug € L0, T; WH(Q2) N L={Q))
ve € L0, T; WH{Q) N L=°(81)) satisfiying 0 < up € & and 0 < vy £ ¥, such
that:
8ump Apuo = flz,u,0) iIn Qr

at

ugl(z,t) =0 in St
vo{z,0) = wolz) in §2
%ﬁ - AQUB = g(xao‘ UO) n QT
vz, t) =0 m St
vo(z,0) = Po(z) in {2

By the existence theorem of Meike ([9], p 1024} we comstruct two sequences
of functions, (u,) and (v,}, such that:

(2.1) [ att _ A wagy = f{2,Un41,00) 0 Qr

(2.2) { ursi(z,t) =0 in Sp

(2.3) | un+1(2,0) = @o(z) in
and

(24) [ 2o — Ay vayr = ¢{T, Un, Vap1) in QT

(2.5)  vapa{z, ) =0 im St

(2.6) | unyi{z,0) = ofo(2) in

We need several lemmas to complete the proof of Thecrem 4:

Lemma 1. For any n € N, the relations 0 < u, <&, 0 € v, < ¢ imply that
0Sttpqpy SHand 0 Swvgyy £7

Proof of lemma 1: By (1.10), {1.11} and the above assumptions, we have:
a _ _
(2.7 a(unﬂ — ) —{Apuns: — By8) £ flz, Untls vn) — f(2,8,vs)

Multiplying (2.7) by (¢n41 — )4, the monoticity of A, implies:
1d _ X _ _
o Iz f (an-!-l - u)?}— S A j {f{zy Unti, Un) - f(xr uavn))(un—{—l - u)+
2dt Jq 0
By the Lipschitz condition {1.2), the initial condition and Gronwall’s Lemma,
we obtain @ u,4; < &
The hypothesis f{z,0,v,) = 0, gives uy41 = 0; similatdy, we get 0 < v,y <
. M
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Lemma 2. There extsts C = C(My, Ny, T)such that:

(2.8) Huntilloo ey <€

2.9) “un+1||f,w(o_7‘;w;-r) <C
Sty

{2.10) Il +1 |22y £ C

The same estimates hold for vy with p replaced by g.

Proof of Lemma 2: By lemma 1, for any n € N,u, and v, are hounded;
whence {2.8). The properties of the functions f and g, then imply that
f{z, uny1,vn) is bounded.
We therefore obtain:
Ottt

1
Lf($1un+lyvn) ot < §/gz(f(a:,un+hvn))2+

1 @unH z 1 8un+l)2
+2/9( o ) 50"*2“ a ) ®

Multiplying (2.1) by %'— , we get:

2
/ /‘(Bunﬂ) dde_lf |Vun+1(-,T)|"deCOT+l/ |Vol? de
D Ja P Ja

It is the same for v,4,. B

Proof of theorem 4: By (2.8), (2.9), {2.10), there is a subsequence (u,,v,)

with the following properties:
u, converges to u in the weak * sense in L=(0, T; W, p(Q) N L*{)} and u,
converges weakly in LP(0,T; W, P(S)); u, is such that 24a converges to 3¢ in

kY
weak L?(Q7); the same holds also for v, with p replaced by g.

By standard monotonicity argument (8], A, un41, converges to Ayu in weak
LP0, T, WP (), Ay vpyq converges to &, v in weak L9°(0, T; W—1Ha*(Q)).
u, converges almost everywhere to u and v,, converges almost everywhere to v.

By Lebesgue’s theorem:

Fl,unt1,vn ) converges to f(-, u,v)

g{*, Un, Vpu1) converges to g{-,u,v)

whence (u,v) is a solution of {§} in @r.
Applying lemma 1, we have 0 <y < 4,0 <v <z. N

Remark 3: Uniqueness follows from the Lipschitz condition on f and g.
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3. Asymptotic behaviour

Hereafter, we assume that there exist positive constants A > G and g > 0
and a function H from R¥*? to R such that

(1.1 - (1.2’){ f=%n o=us
f and g satisfy {1.1) and (1.2)

For a solution {u,v) of {8}, we define the w-limit set by:

w(e, ho) = {w = (wy,wa) : w3 € WEP(Q) N LO(R), wa € wH(Q) N L))

Ft, — +oo tuls,t,) — wy in WyP(Q)
v{-,ta) — wy in W)}

Let £ be the set of non negative solutions w = (w;, w4 ) of the elliptic problem:

aH .
~Apwr = A5 {z,w,wz} inf

85 .
—Aqwg = ,(.EE(I, whwg) m §

w; = we =0
Qur main result i1s the following:

Theorem 5. Let p> 2, g > 2 and wg € Wy P(2) N LK), e € W4 (2} N
LDO(Q).’ Yo 2 0} #"D 2 0.

Suppose that H satisfies (1.1°), (1.2°) and that (5) has o sub-supersolution.
Then wiwe, Yo} # ¢ and wipe, o) C E.

To prove this Theorem, we need the following lemmas:

Lemma 3. Under the assumptions of Theorem 5, there ezisis a consiani
C = C(My, Ny) such that for any T > 0:

(3.1) el Leo(@ry € € < 400, [[vllzee(gry S C < o0

(3.2) "u"f;m((},T;Wé'p(Q)) S C < +00, "U"LW(O,T;W;-!(Q)) S C < 400
Ju &8

(33) | E”_r,z(QT) < C < 4o, || %] L2gp) = C < +o0

Proof of lemma 3: By Theorem 4 we have (3.1}.
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Multiplying the first equation (1.8) by i ‘:’9‘: and the second equation by

we obtain:

i Bu\? 1 dv\*

+%]1Vu(-,i")|pdz+i/ Vo (-, T)|? dz
2

:LT(???(, )‘21:+%H( v) = )d::dt

P Jg HE Jg

18y
JIa: I

= fg CH (. u(T),o(T)) = H(, 0o, o)) de

1 1
+—/|V¢0|Pd$+-—f [Vapo|?
Ap Jo #g Jo

H is continuons and (1, v) 15 bounded; we then obtain:
() LG )
T =5 t- = + Vu Tpdx-i—— Vo, T dz
s I o) Yl () o e Vo, T
<C(My, M)
whence {3.2) and (3.3} &

Lemma 4. Let to €]0,1]. Under the assumptions of Theorem 5, there exists
C = C(tg) > 0 such that for any T > tg:

(3.5) IS5 Lo a4 cos20y) < =¢
{3.6) " at F(Vu)" L3t TiLP (D)} = C‘ "%G(VU)HUHMT;M‘(Q)) =C

Proof of Lemma 4: Let Ey(Vu) = |Vu|7 * Vu. Calculations, [cf.3], give:

(3.7) |2 E,(Vu)|? < B2 2 F(Vu)- gtVu
1/2
(3.8) 12 F(Vu)l < (35) 7 IVul™F | £ Ep(Vu)|

Simnilary for E,(Vv) = |Vo|*T Vo
By formal derivation of the first equation of (1.6), we get

u . (8 NG A

&*H Bu /\32H 70

5ur Bt | " Buow Ot

= A
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Multiplying (3.9) by % 2 we get with (3.7) and (1.1}
(3.10)

10 N 4 8 2 Au\? A\’
il hatfed = = < huthd k il

20t Q(af) +p+2f9 o V) d“k"fﬂ(af) * lfn(at)_
Sumnilarly, we have:

(8.11) 2 2 2
18 o\ * 4 a ' du ‘ v
v ve = hdl < ket kil
sor |, (5) *ava [ |ameo| a= < [ (F) o4 [ (%)

By (3.3}, there exists t; €]0,%o] such that:

du 2 dv z
(3.12) (" h) + 50 t)
Gt ey IO L2(9)
Hu
= —(, z} + t) ) dt < C < +oo
fﬂ ( ot L3{(R) at( L*(@)

and integrating (3.10) + (3.11) on (;,T), we obtain with {3.3)%
(3.13)

1
( T) + = ( T)
Ly 2118t L4(@)
p+2/ / En (Vu} dedt + —— +2 . & V) d:-:dt
< K ] /(( “)2+(av>) drdt + & ( t)
i v rn - 1
Bt 5t 2 @)
L1
- ( ) < C < o0
T2 L2(@)

By (3.8) and Holder's inequality, we obtain with (3.13) and (3.2):

(3.14)
z
%

won|  +|2

R :
7]
+ ” = F(Vu)
L?(Q) ey 108
2

L3(to, T LP* {12})

0
+ ” EG(V%’)

<C
L2{tq,T, Lo (2})
(3.14) gives the estimates {3.5) and (3.6).

This formal proof of {3.14) can be made rigorous by means of the finite
dimensional problems associated with {S).

The details are in |4, p 35) and are omitted.
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Theorem 6. Let p > 2,9 > 2, po € Wy P(Q) 0 L2(Q), 9 € WU
Lo(Q), and g 2 0, ¢ > C.

Suppose that H satisfies {1.1°), (1.2’) and that {8} has & sub-supersolution
[(0,0),(q,3)]. Then, for any to €]0,1[; the solution {u,v) of (S) setisifies the

following regularizing estimates:

(3.15) ue L= (t, +oo; Bi;“f(f’"3""(sz))
(3.16) % € L¥(to, +o0; LH(Q)) N L*(to, +00; LA(Q))
(3.17) £ F(Vu) € L¥tq, +00; LPX(Q)),

where Bé:l’!(p—”am(ﬂ) is & BESOV space defined by the real interpolation me-
thod (cf.f1], [13]).

The same estimetes hold for v provided p and F are replaced by ¢ and G
respectively.

Proof of Theorem 6: By (3.3}, (3.5) and {3.6) we have (3.16) and (3.17),
whence §& € L®(to, +o0; LP*(Q)) and § € L®(ty, +00; LI*{(Q)).
By SIMON’S regularity results [13], we have:

8H Ou
IOl ooy < C |G Com) = 0|+

Le(51)

whence (3.15). The proof is the same for v. B

Proof of theorem 5:

a} w{wo, o) # ¢ because Béi”“_”?"(ﬂ) is Compactly inbedded in W' ({1}
for r = p and ¢[1). By Theorem §, letting

wy = nl_l.filmu(',tﬂ),iug = ﬂ.l.irfmv("t") and

w = (wy,wa) € wiwe, o), we get that w = (w,wy) € £. The proof is analogous
to EL. HACHIMI and DE THELIN [3] and is omitied W

4. Examples

Example 1. Let H(z,u,v}) = K{zjuv + Au™ ! + pv"?H! where K €
C(Q)} K(I) > 01 A> 0:- 8> 0? TE [l,p - 1[ and Y2 € []')q - 1[
Then we can apply Theorem 3, 4, 5, 6.

Example 2. Let H{z,u,v}) = ~u™v® + A"+t 4 yyv¥! wherem > 1, n >
1L,A>0,u>0,v €[1,p—1[and v, € [1,g —1{. Then we can apply theorems
1,4,85 6. '
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