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A bstract

SUPERSOLUTIONS AND STABILIZATION
OF THE SOLUTION OF A NONLINEAR

PARABOLIC SYSTEM

HAMID ELOUARDI, FRANQOIS DE THELIN

Let us consider a nonlinear parabolic system of the following type :

(S) ev
- div (¡VuI P

	

Vu) - ~ (x, u, v)
as - div(1Vv1P-	Vv) = sv (x, u, v)

with Dirichlet boundary conditions and initial data .
In this paper, we construct sub-supersolutions of (S), and by use of

them, we prove that, for t . -+ +oo, the solution of (S) converges to some
solution o.f the elliptic system associated with (S) .

0 . Introduction

This paper concerns the existence and asymptotic behaviour of bounded, non
negative solutions of the following system of nonlinear equations :

et - Ap u = f(x, u, v)

	

in Q.,R+

et - O9v = 9(x) u, v)

	

in S2x,R+
u(x,t) = V(X ) t) = 0

	

in DQ xR+
u(x, o) = wo(x), v(x, 0) = Oo(x)

	

in 52

where p > 2, q > 2, Op u = div (lVUI p-2 Vu) and 2
subset of RN.

For p = q = 2, Problem (5) has been investigated by many authors [5, 6, 12] .
(5) is an example of a nonlinear parabolic system arising from non-Newtonian

fluid mechanics . NAKAO [9] studies a similar system in which p = q > 2 and
the right hand side is f, -Af, A constant . The case of a single equation of the
type (5) is studied in [2, 3, 8, 11] . The purpose of this paper is to extend the
results of [3] to the system (5.) .

First, using sub-supersolutions, we show that (5) has a solution . Moreover,
supposing that there exist A > 0, ft > 0 and a function H(x, u, v) such that

is a bounded regular open
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f = AáH and g = pH, we prove that the solution of (5) converges to a solution
of the Dirichlet problem for the elliptic system.
We obtain regularizing effects such that :

Our method is closely related to the paper of LANGLAIS and PHILLIPS
[7], and also to the paper of ELHACHIMI and DE THELIN [3] who study the
stabilization of the solution of a single equation . Some examples are discussed
in part IV, and include :

Some numerical results related to the system (S) are given in[4] .
All Theoem are written in the case p > 2, q > 2 ; obvious modifications (for

Theorem 6) give the case p = 2 or q = 2 .

Throughout this paper, 52 stands for a regular bounded open subset of RN .
Left f and g be some functions from R N+2 to R such that :

(1.1) f,9EC1(2xRxR)

and for any x E 52, u E R+ , V E R+ : f(x, 0, v) > 0, g(x, u, 0) > 0

and

át (IVUIP-2 Vu) E L2(to,+oo ; LP*(52)) and

at (lovl9-2 w) E L2(to,-+-oo ; L9*(S2)) .

H(x, u, v)-= k(x) uv + A u^Y1+1 + pvyz+ 1

H(x, u, v) = -u'v" -i- A u^,+1 + JÁ vyz+ 1

1 . Preliminaries and sub-supersolutions

For any M > 0, N > 0, there exist kM,N > 0, k2M N > 0
such that
a)f(x, u, v) - f(x, w, v) <_ kílvt,zv (u - w), t/x E 52,
Vu,v,w :0<w<u<M,VE[0,N]

b) g(x, u, v) - g(x, u, w) < kM N(v - w), Vx E 9
`du,v,w :0<w<v<N,uE[O,M] .

Remark 1 :

	

the condition 1 .2 .

	

a) is satisfied if u �+ f(x, u, v) is a non
increasing function on R+ .
We shall also use the following notations :

for T > 0, QT = S2x]O,T[, ST = aQ x [0,T],

F(Vu) = Ipv,Ip-2 Vu, G(w) = I7VI9-2 Vv, with p > 2 and q > 2 .
Opu = div(F(Vu)), Dyv = div(G(Vv)).
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Let cp o , Oo be given such that :

go E Wó,P(52) n L-(52), cp o > 0
(1 .3)

{ Oo E Wó ,v(Q) n L-(Q), Oo > 0,

We say that (u, v) is a solution of (S) in QT (resp : (ú, v) is a supersolution
of (S) in QT) iff

Our method is based upon a comparison principale for the system (S) ; but
the usual notion of supersolution does not work ; so, following Hernandez [6],
we set :

Definition 1 . [(0, 0), (ú, v)] is said to be a sub-supersolution of (S) in QT if
it satisfies the following conditions :

Remark 2: if we suppose that v -> f(x, u, v) 1 and u �+ g(x, u, v) 1 any
supersolution of (S) gives a sub-supersolution of (S) .
Our first results are sufficient conditions for the existence of sub-supersolu-

tions of (S) .

It is well known (cf.[3]) that the problem :
OPu = ko + k l uy ,

	

x E S2

u,= 0

	

x E,99
has a supersolution if y E ] 0, p - 1[ .

(1 .4)
{

u( resp ú) E L°°(0,T ; W 1,P(S2) n L'(52))
v( resp v") E L°°(0 , T ; Wl 9(52) n L°°(St))

(1 .5)
au aú2 avv aba (resp_at

)
E L (QT), a L

t(
&)

E (QT) .

(1 .6) át - OPU - f(X, U, v) = 0
in QT

i - ~av - g(x, u, v) = 0
(resp . . . > 0 in QT)

(1 .7) u = v = 0 (resp : ú > 0, v > 0) in ST .

(1 .8)
u( ., 0) = go (resp : ú( ., 0) >- ~oo) in 52
v( ., 0) = Oo (resp : v( ., 0) > ?Po )

(1 .9) ú E W1,P(S2) n L-(Q), v E W1,9 (Q) n L-(S2)

(1.10) `dx E 52 : 0 < ~oo(x) < ú(x) < Ml , 0 < Oú(x) < v(x) < NI

(1.11)
Vx E 52, Vv E [0, v] : -f(x, 0, v) < 0 < -APÚ - f(x, ú, v)
`dx E 52, t/u E [0, ú] : -9(x, u, 0) :5 0 < -O9v - g(x, u, v)
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Theorem 1 . Assume that v -> f(x, u, v) and u -> g(x, u, v) are monotone
non-increasing functions, and that there exist

such that

Ao > 0, po ? 0, Al > 0, hi > 0 and -11 E]0,p- 1 [, A2 E ]0, q -1[

Then (S) has a sub-supersolution.

Proof. By [3] and (1 .12), the equations

have supersolutions u and v. In fact, the monotonicity assumptions on f and
g prove that [(0, 0), (u, v)] is a sub-supersolution of (S) .

Theorem 2 . Le¡ v -> f(x, u, v) be a non-decreasing function and u
g(x, u, v) be a non-increasing function .
Assume that there exitt constants

and for any N:

such that :

Then (S) has a sub-supersolution.

Proof. By [3] there exits v such that :

-O qv > /to + /L1 v7z

Let N < v and u be such that :

-Op io < Ao + Al u-r1

Then :

whence the result .

f(x, u, 0) < Ao ;- Al u`, f/x E 9, vu E R+

g(x, 0, v) < N1o + Fui vyz, dx E S2, dv E &ñ+

- áp u = f(x,u,0) and
- Aq v = g(x ; 0, v)

Feo ? 0, Fui

	

>0, 7z E ]0, q - 1 [

Ao > 0, A l > 0, -Yi E10,p
- 1[

f(x, u, N) < Ao + Al u7'

g(x, 0, v) C ho + tí, V12

- Apu > f(x,u,N) ? f(x,u,v)
- Oqv > g(x,0,v)
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Theorem 3. Assume that there exist k8 > 0, 1 = 0,1 such that :

f(x, u, v) = kov -)- cp(x, u)

9(x,u,v) = kl u + O(x,v)

and that there exist [t1 > 0, A1 > 0, (-12 > 0, A2 > 0,'rl E [1,p - 1[, and y2 E
[l, q - 1[

	

-

	

-
such that :

cp(x, u) < /cl + M2 uy 1 , O(x, v) < \ 1 +\2
vti2, V'x E 9, bu, v E R+

Then (S) has a sub-supersolution .

Proof. By Remark 2, it is sufficient to show the existente of a supersolution .
Let Mo = 110o11L-(n), No = 11SPolIL-(9) and R be such that 9 C B(0, R)
We seek ic and v of the following type :

(1 .7) and (1.8) are satisfied if:

aRP*+~=Mo
(1 .16) yRq++ó=No

We want

ú(x) = a rP* + 0, v(x) = y rq* + S, where r = Ix1,

a<0,0>0,y<0,6>0.

-div(IDilp-2 Vú) = Njap * IP-1 > kov + ju1 + M2 v, 71

-div(IOúlq-2 w) = Niyq*Iq-1 > kl ú + A1 + A2
v72

Set fl = S. Then, if /3 is sufficiently large, using the fact that yl E ["p - 1[
and y2 EE [1, q - 1[, we can obtain

N(P')v- ` (Q-Mo)' -1 _ 1 -

	

kof

	

> 0 and
Rp

	

W1+l12 Qa1

	

Wi+W2 Q71

N q * °- 1 (6-No) °-1

	

ki6

	

> 0
R9

	

al+x2 672

	

- 1 - A1+x2 672

So (1 .17) is satisfied and we check a and y with (1 .16)

2 . Existence results

Our main result is the following one :
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Theorem 4. Let p > 2, q > 2 and po E W¿ ,P(Q) n L°°(SZ), Oo E W¿ ,I(P) n
L°°(S2), cp o > 0, Oo > 0 be given.

Suppose that f and g verify (1.1) and (1 .2) and ¡ha¡ (S) has a sub-super-
solutáon [(0, 0), (u v)] in QT .

Then (S) has a unique solution (u, v) in QT satisfiying :

and

0<u<u
0<v<v

in QT

Proof. : By Theorem 11 .2[3], we can choose uo E L'(O,T;W1,P(S2) n Lw(S2))
vo E L°°(0, T; W1,q(S2) n L°°(Q)) satisfiying 0 <_ uo < it and 0 <_ vo < v, such
that : át - Opu, = f(x, u, 0)

	

in QT
uo (x,t) = 0

	

in ST
vo (x, O) = cpo(x)

	

in 52

at - ~ qvo = g(x, 0, vo)

	

in QT
vo(x,t) = 0

	

in ST
vo(x, 0) = 0o(x)

	

in 52

By the existence theorem of Meike ([91, p 1024) we construct two sequences
of functions, (un ) and (vn ), such that :

We need several lemmas to complete the proof of Theorem 4:

Lemma 1 . For any n E 101, the relations 0 <_ u n < it, 0 _< vn < v imply that
0 < un+l <- v and 0 < vn+1 <- v

Proof of lemma 1 : By (1 .10), (1.11) and the above assumptions, we have :

(2 .7)

	

(un+l -
u) - (Apun+l - Opu) < f(x, un+l, vn) - f(x, ú, vn)

at
Multiply1ng (2.7) by (un+l - u)+, the monoticity of Op implies :

2d f~(un+l -

	

)+

	

%,

	

(f(X, un+l, vn) - f(x, u, vn))(un+l -

	

)+

By .the Lipschitz condition (1 .2), the initial condition and Gronwall's Lemma,
we obtain : un+l < it .

The hypothesis f(X, 0, vn) >_ 0, gives un+l > 0 ; similarly, we get 0 <_ vn+1 <
v.

(2.1) aaát - AP un+l = f(x, un+l, vn) in QT
(2.2)

{
un+1(x,t) = 0 in ST

(2.3) un+1(x,0) =WO(x) in 9

(2 .4) aaát - Oq vn+1 = g(x, un, vn+1) in QT
(2 .5)

{
vn+1(x,t) = 0 in ST

(2 .6) un+1(x,O) = Y'0(x) in 9
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Lemma 2 . There exists C = C(Mi, Ni , T)such that :

(2.8)

	

Ilun+i lIL- (QT)

	

<_ C
(2.9)

	

Ilun+llIL-(o,T;wó`) <_ C

(2 .10) Il a

	

t1 IILZcQT) <_ Ca

The same estimates hold for vn+l with p replaced by q .

Proof of Lemma 2: By lemma 1, for any n E N, u n and vn are bounded ;
whence (2.8) . The properties of the functions f and g, then imply that
f(X, un+l, vn) is bounded .
We therefore obtain :

aun+1
f(x)un+1, vn)

	

at

	

C 1
2

	

(f(x, un+1, vn)) 2
fo

2 ,n ~
a
at

1

)

a

	

2 ,~ (
a

at
1

)

z

+-

	

< Co + 1

	

dx

Multiplying (2.1) by aaát

	

, we get :

T

	

2

2~

	

Caat
1

)
dxdt+p~~IVun+1(,T)lpdx<CoT+P~nI7~Polpdx

It is the same for vn+l .
Proof of theorem 4 : By (2.8), (2.9), (2.10), there is a subsequence (un, vn)

with the following properties :
Un converges to u in the weak * sense in L°°(0, T ; Wol'p(Q) fl Lw(Q)) and un

converges weakly in LP(0, T; W,1`(Q» ; un is such that aát converges to áa in
weak LZ(QT) ; the same holds also for vn with p replaced by q .
By standard monotonicity argument [8], Ap un+l, converges to Opu in weak

Lp*(0, T ; W-1,p*(SZ), Oq vn+l converges to Oq v in weak L9*(O, T ; W-1,q*(SZ) .
Un converges almost everywhere to u and vn converges almost everywhere to v .
By Lebesgue's theorem :

f( . ' un+l, vn) converges to f(-, u, v)

9(', un, vn+1) converges to g( ., u, v)

whence (u, v) is a solution of (S) in QT .
Applying lemma 1, we have 0 < u < ú, 0 < v < ú .
Remark 3: Uniqueness follows from the Lipschitz condition on f and g .
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w(90, 00) = {w

Our main result is the following :

(3.1)
(3.2)
(3.3)

3 . Asymptotic behaviour

Hereafter, we assume that there exist positive constante A > 0 and h > 0
and a function H from RN+2 to R such that

f

	

A á'

	

g= lt__

	

áx

f and g satisfy (1 .1) and (1.2)

For a solution (u, v) of (5), we define the w-limit set by :

_ (w1, W2) : w1 E W¿ ,P(Q) fl L-(Q), w2 E w01,9(Q) (1 L-(Q)I

3 t� -> +oo :u( ., tj --> w1 in Wó'P(9)
v(',t~) -r w2 in W01 `(Q)}

Let £ be the set of non negative solutions w = (w1, w2) of the elliptic problem :

_ .~ e

	

(X, w1,w2)

-Dywz = h áH (x, w1 , w2)
w1=w2=0

Theorem 5. Let p > 2, q > 2 and cpo E W0 ,p(S2) fl L-(SZ), zoo E W0 ,9(9) fl
L°°(Q), W0 ? 0, 00 > 0 .

Suppose that H satisfaes (1.1'), (1 .2') and that (SD) has a sub-supersolution .

Then w(Wo, iPo) :~ 0 and w(Wo , Oo) C £ .

Lemma 3 . Under the assumptions of Theorem 5, there exists a constant
C = C(MI,NI ) such that for any T > 0:

Proof oflemma 3: By,Theorem 4 we have (3 .1) .

in 52

in SZ

To prove this Theorem, we need the following lemmas :

IIuIIL~(QT) <- C < +00, IIVIIL-(QT) <- C < +Oo

II UIIL-(o,T;Wó"p(9)) c C < +oo, ¡¡ V il L-(o,T;w"(sz)) c C < +oo

II ~t IIL2(QT)

	

c< +OC), II aLt IIL l(QT) :5 C < +oo



Multiplying the first equation (1.6) by áá and the second equation by ~ ¿9v ,

we obtain :
z

(3.4)

	

i

	

dx dt + 1

	

(~i)z dx dt
QT (

	

)

	

m QT

H is continuous and (u, v) is bounded ; we then obtain :

1\

	

QT

(a
at) 2

+ m

	

QT (~at,V)2

+

	

JsiAp
~Vu( .,T)1P

whence (3 .2) and (3.3) .

Lemma 4 . Let to E]0,1[ . Uuder the assumptions of Theorem 5, there exists
C = C(to) > 0 such that for any T > to :

(3.5)

(3.6)

<C(Ml ,N l )
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+
Ap

	

lDu(,T)1 P dx+ pq
jVv( - , T)I 9 dx

_

	

~H
(,u,v) ~t + aH(,u,v)

8t)
dxdt

QT

+ 1f ~OtPoIP dx+1

	

1VO01 9 dx
Ap st

	

lz9 st

_

	

(H(', u(T), v(T)) - H(',,po, 0o)) dx

+ 1

	

jVW.IP dx+1

	

1D,Poi 9
Ap st

	

lzq st

dx +
h4
1 jVv( . , T)I 9 dx

1 1 at IIL-(to,+.;LZ(n)) :5 C, ~~ át IIL-(to,+.;L2(sz))

	

C

II ót F(Vu) IIL2 (to,T~L°'(~)) C C, II et G(w)IILZ(to,T ;L 9'(n))

Proof of Lemma 4: Let EP(Vu) =
IVul '22

Vu . Calculations, [cL3], give :

(3.7)

	

1 -L EP(ou)1
2
<

P+
4 &t

2
-LF(Vu)- átVV

(3.8)

	

1áF(Du)j <
~P\

i/z
IVUI P22

I

	

EP(DU)It

	

4p )l/2

Similary for E9 (Ov) = ¡w¡
9 2 2
w.

By formal derivation of the first equation of (1 .6), we get

\
(3.9)

	

z

ate - div
(at

F(Du) I = A
~t

	

a

a2H

	

au

	

a2H

	

av
_ áu2

	

at + auav at

<C
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Multiplying (3.9) by á, we get with (3 .7) and (1 .1')
(3.10)

2átin(át)2+p+2191 átEP(Vu)Izdx<ko1 (at)2+k11

(at)2

Similarly, we have :
(3.11)
la 11 (aV) 2 +
2at 9+2at

By (3.3), there exists tl E 10, to [ such that :

(3.12)

(3.13)

2 I at('T)IILZ(n) + 2

	

at('T)
LZ(n)

z

9 I at
EQ(w)

z
dx <

	

o

	

z

1(at)

	

+ki

	

áv

la (at)

au 2 ~~,V 2

at ( .'tl) ~~L2(9) +

	

at ( .'t')IIL=(52)

rto

(II at ( ' t) 1I LZ(. > +

	

á( .'t)IILZ(SZ)/

	

dt < c < +oo

and integratin

o

g (3 .10) + (3 .11) on (t i , T), we obtain with (3.3) :

+p
4

	

~T

Á atEP(Vu)I2
dxdt+

q+2IT1 I ~tE9(w)I2
dxdt

o

	

0

< x í

IT
f ((át)

2

+ (át)2)~
dxdt+

2 II ~t ( .,tl) r,2 sa()
2

l
~~,gvát

+

	

( ., ti)

	

<C< +00
LZ(S2)

By (3.8) and Holder's inequality, we obtain with (3.13) and (3.2) :

(3.14)

at (.'T)IILZ(9) +

	

at
~~ 'v

('T) IILZ(S2) + II átF(Vu)II LZ(to,T;LP'(S2))
z

+ ~~ a G(Vv) I

	

<C
at L2(toj,L-(9))

(3.14) gives the estimates (3.5) and (3.6) .
This formal proof of (3 .14) can be made rigorous by means of the finite

dimensional problems associated with (S) .
The details are in [4, p 351 and are omitted .
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Theorem 6. Let p > 2, q > 2, cpo E Wó'P(52) n L°°(52), Oo EW.'°(S2) (1
L'(S2), and cp o > 0, 00 > 0 .

Suppose that H satisfies (1.1'), (1 .2') and that (S) has a sub-supersolution
[(0, 0), (ú, v)] . Then, for any to E ]0,1[ ; the solution (u, v) of (S) satisifies the
following regularizing estimates:

where Boó1/(P-1)2'P(S2) is a BESO Vspace defined by the real interpolation me-
thod (cf.[l1, [13J).
The lame estimates hold for v provided p and F are replaced by q and G

respectively .

Proof of Theorem 6: By (3 .3), (3.5) and (3.6) we have (3.16) and (3.17),
whence á' E Loo(to,+oo ; LP*(S2)) and át E L°°(to,+oo ; L9*(SZ)) .
By SIMON'S regularity results (13], we have :

~~u(', t)IIB~IID-1~ZD(~) < C
~
I ~H( .,u,v) -

au( . ' t)II	+C'LD* (P) .

whence (3.15) . The proof is the same for v .
Proof of theorem 5 :
a) w(pz

	

ó1/(r-1)2"(5) is Compact1y inbedded in W 1, r(Q)o, /o)

	

because Bo
for r = p and q[1] . By Theorem 6, letting

w1 =

	

lim

	

U(',¡,j, w2 =

	

lim

	

v(., tn) and._+o0 n-+oo

w = (w1, w2) E w(cpo , Oo ), we get that w = (w, w2) E E . The proof is analogous
to EL HACHIMI and DE THELIN [3] and is omitted

4. Examples

Example 1 . Let H(x, u, v) = K(x)uv + Au'r1+1 + pvy2+1, where K E
C(sz), K(x) > 0, A > 0, M > 0, yl E [1,p -1[ and y2 E [1,q -1[.
Then we can ápply Theorem 3, 4, 5, 6 .

Example 2. Let H(x, u, v) = -un`vn + ,\-r'+1 + p v'r2+ 1 , where m >_ 1, n >_
1, A > 0, /.c > 0, yl E [1,p -1[ and y2 E [1, q -1 [ . Then we can apply theorems
1, 4, 5, 6 .

(3.15) u E L°° (to,+oo; Boó
1/(P-1)2,P(9)/

(3.16) át E LZ (to, +oo; L2(p» n L°°(to , +oo; LZ(St))
(3.17) át F(VU) E L2

(to, +oo ; LP*(S2)),
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