FIBRING THE COMPLEMENT OF THE FENN-ROLFSEN LINK

ROGER FENN

Abstract

In this note it is shown that the complement of the singular linked spheres in four dimensions defined by Fenn and Rolfsen can be fibred by tori.

Also a symmetry between the two components is revealed which shows that the image provides an example of a Spanier–Whitehead duality. This provides an immediate proof that the α-invariant is non-zero.

1. Introduction

Define a link map of two spheres to be a map

$$f : S^p_1 \cup S^q_1 \rightarrow \mathbb{R}^m \ (\text{or } S^m)$$

of disjoint spheres of dimension p and q into a Euclidean space or sphere of the same dimension m, such that the images of the two components are disjoint.

So $f(S^p_1) \cap f(S^q_1) = \emptyset$.

Let $f_1 = f|S^p_1$ and $f_2 = f|S^q_1$. By an abuse of notation the suffixes 1 and 2 will often be dropped when no confusion can arise.

In this paper only low dimensions will be considered: in particular the classical case $p = q = 1$, $m = 3$ and the next interesting case $p = q = 2$, $m = 4$.

For higher dimensions see [K] or [F, H].

Two link maps are said to be link-homotopic if they are homotopic through link maps.

Given a link map f as above there is a map

$$\varphi : S^p \times S^q \rightarrow S^{m-1}$$

defined by

$$\varphi(x, y) = \frac{f(x) - f(y)}{||f(x) - f(y)||}$$

This work was written while the author was at the Centre de Recerca Matemàtica, Barcelona. He thanks this institution for its hospitality and support.
The homotopy class of φ written $\alpha(f)$, may be regarded as lying in $\pi_{p+q}(S^{m-1})$ if $p, q \leq m - 2$ and is a link homotopy invariant.

In the classical case $\alpha(f)$ is an integer and corresponds to the linking number. Moreover $\alpha(f)$ in this dimension classifies links up to homotopy.

As examples consider the Hopf link and the whitehead link illustrated in figure 1.

![Figure 1](image)

The Hopf link has linking number ± 1 and so is not null homotopic (homotopic to a pair of points).

However the Whitehead link is nullhomotopic as can easily be seen. Actually it will be shown that the Whitehead link is nullhomotopic in a rather stronger sense which depends on its symmetry.

For the case of link maps $f : S^2 \cup S^2 \rightarrow \mathbb{R}^4$ the α-invariant lies in $\pi_4 S^3 \cong \mathbb{Z}_2$. It is known that α is not a complete invariant in this case, see [K].

2. Constructing linked 2–spheres from linked circles

A link map $f : S^2 \cup S^2 \rightarrow \mathbb{R}^3$ is said to be doubly null homotopic if each component is null homotopic in the complement of the other. For linked circles with unknotted components being doubly nullhomotopic is the same as having linking number zero although it is not often easy to see.

Figure 2 illustrates the fact that the Whitehead link is doubly null homotopic.
Let $f_{1t}, f_{2t}, 0 \leq t \leq 1$ denote the homotopies of a doubly null homotopic link. So $f = f_{10} \cup f_{20}$ whilst f_{11} and f_{21} are constant maps. Moreover $f_{1t} \cup f_{20}$ and $f_{10} \cup f_{2t}$ are link-homotopies which shrink one component while fixing the other.

Let $(x, t), x \in S^1$ and $-1 \leq t \leq 1$, denote cylindrical coordinate on the sphere S^2.

Define $\hat{f} : S^1_1 \cup S^1_2 \to \mathbb{R}^4$ by

$$\hat{f}(x_1, t) = \begin{cases} (1-t)(f_{1t}(x_1), t), & 0 \leq t \leq 1, x_1 \in S^1_1 \\ (1+t)(f_{10}(x_1), t), & -1 \leq t \leq 0, x_1 \in S^1_1 \end{cases}$$

$$\hat{f}(x_2, t) = \begin{cases} (1-t)(f_{20}(x_2), t), & 0 \leq t \leq 1, x_2 \in S^1_2 \\ (1+t)(f_{2-t}(x_2), t), & -1 \leq t \leq 0, x_2 \in S^1_2 \end{cases}$$

Diagramatically we can think of \hat{f} as in figure 3.

The correspondence $f \to \hat{f}$ is well defined up to link homotopy because of the asphericity of knots.

If f is the Whitehead link, \hat{f} is the Fenn-Rolfsen link. This case is illustrated in figure 4. Sections are drawn according to approximate choices of the coordinate t.

Figure 2. Symmetry of the Whitehead link

Figure 3. Constructing \hat{f}
In figure 4 critical occurrences happen at times t_0, t_1, t_2, t_3. They are described in the following list:

- t_0: minima of f_1 and f_2
- t_1: crossing point of f_1
- t_2: crossing point of f_2
- t_3: maxima of f_1 and f_2

Between t_1 and t_2 is an isotopy of the Whitehead link.

3. The double Hopf map

Let $h : S^3 \to S^2$ denote the Hopf map. If $x \in S^2$ then $h^{-1}x$ is an unknotted circle and for two distinct points $x, y \in S^2$ $h^{-1}x, h^{-1}y$ is a Hopf link. As x varies over S^2 the circles $h^{-1}x$ form the Hopf fibration of S^3.

Consider the suspension of $h; \Sigma h : \Sigma S^3 \to \Sigma S^2$.

Identify ΣS^3 with S^4 and ΣS^2 with S^3. Under the identification of ΣS^2 with S^3 let the suspension points lie in $h^{-1}x_+$ and $h^{-1}x_-$. The composition of Σh with h gives a map $S^4 \to S^2$.

\[
S^4 \cong \Sigma S^3 \xrightarrow{\Sigma h} \Sigma S^2 \cong S^3 \xrightarrow{h} S^2
\]

Consider now the inverse images $g^{-1}x$ as x varies over S^2. If $x \neq x_\pm$ then $g^{-1}x_\pm = T_\pm$ in a torus. If $x_+ \neq x_-$, which can be assumed by slightly changing the identification of ΣS^2 with S^3 if necessary, $g^{-1}x_+ = T_+$ and $g^{-1}x_- = T_-$ are pinched tori. That is a torus with one meridian identified to a point.
It is interesting to note that if \(x_+ = x_- \), i.e. the suspension points both lie in the same fibre of \(S^3 \), then \(T_+ = T_- \) is a Montesinos twin, that is a pair of spheres meeting in two points. See [Mo] and the discussion in [Ma].

Theorem. With the notation above the pinched tori \(T_\pm \subset S^4 \) may be identified with the image of the Fenn–Rolfsen link.

Proof. Generic cross sections of the tori \(T_\pm \) look as follows: The torus \(T_+ \) is indirected by a heavier line than \(T_- \).

In figure 6 critical occurrences happen at times \(t_0, \ldots, t_7 \). They are described in the following list:

\[
\begin{align*}
t_0 & - \text{two } T_+ \text{ minima} \\
t_1 & - T_+ \text{ crossing (pinching of a meridian)} \\
t_2 & - T_- \text{ minimum} \\
t_3 & - T_- \text{ saddle} \\
t_4 & - T_+ \text{ saddle} \\
t_5 & - T_+ \text{ maximum} \\
t_6 & - T_- \text{ crossing (pinching of a meridian)} \\
t_7 & - \text{two } T_- \text{ maxima}
\end{align*}
\]
Figure 6 is shown to represent the same two pinched tori as figure 4 by cancelling a saddle with a minimum on T_+ and a saddle with a maximum on T_- as illustrated in figure 7 on the component T_+. This is achieved by pushing over a 3-ball (shown shaded).

![Figure 7](image1)

Figure 7. Cancelling a saddle with a minimum

This process applied to T_+ and T_- results in the cross sections of figure 8 which can be readily seen to be the same as figure 4.

![Figure 8](image2)

Figure 8

4. Spanier–Whitehead duality

The sphere S^2 has a *singular fibration* by circles in which $c_\pm = x_\pm$ are the two poles and $\{c_\lambda\}$ are the latitude circles, $-1 < \lambda < 1$.

Consider the following subspaces of S^4

\[
N_+ = g^{-1} \bigcup_{[0,1]} c_\lambda \\
N_- = g^{-1} \bigcup_{[-1,0]} c_\lambda
\]

\[
M = g^{-1} c_0
\]

The *halfway* manifold M is a torus bundle over the circle with bundle map $g|_M$ and holonomy given by the shear matrix \(\begin{pmatrix} 1 & 0 \\ \pm & 1 \end{pmatrix} \).

The manifolds N_\pm are regular neighbourhoods of T_\pm and $S^4 = N_+ \cup N_-$, $N_+ \cap N_- = \partial N_+ = \partial N_- = M$.

So T_\pm is a deformation retract of $S^4 - T_\mp$.
Details of the following can be found in [S, W].

Let A, B be spaces with base points a_0, b_0 respectively. Let $A \vee B \subseteq A \times B$ be the one point union.

$$A \vee B = A \times b_0 \cup B \times a_0$$

and let $A \wedge B$ be the smash product

$$A \wedge B = A \times B/A \vee B$$

An n-duality is a map $u : A \wedge B \rightarrow S^n$ which induces an isomorphism between stable homotopy and cohomotopy groups $\pi^n_k A \rightarrow \pi^{n-k}_k B$ under the correspondence

$$\{S^k \rightarrow A\} \rightarrow \{S^k \wedge B /A \wedge B \rightarrow S^n\}$$

For example if $A, B \subseteq S^{n+1}$ and $A \cap B = \emptyset$, A is a deformation retract of $S^{n+1} - B$ and conversely, then the map $u : A \wedge B \rightarrow S^n$ given by

$$u(a, b) = \frac{a - b}{||a - b||}$$

is an n-duality.

We call the pair A, B in this case an n-duality pair.

It is clear from the discussion above that T_+, T_- is a 3-duality pair. The map φ which defines the α-invariant for φ factors as follows:

$$\Psi = f_1 \times f_2 \rightarrow S^2 \times S^2 \xrightarrow{\varphi} S^3$$

The map Ψ is of degree 1 and u is a 3-duality so clearly the class of the composite $[\varphi] = \alpha$ cannot be zero.

References

Mathematics Division
Sussex University
Mathematics and Physics Building
Brighton BN1 9QH
ENGLAND

Rebut el 28 d' Abril de 1989