AN ELEMENTARY PROOF OF A LIMA’S THEOREM FOR SURFACES

F. J. Turiel

Abstract

An elementary proof of the following theorem is given:

THEOREM. Let \(M \) be a compact connected surface without boundary. Consider a \(C^\infty \) action of \(\mathbb{R}^n \) on \(M \). Then, if the Euler–Poincaré characteristic of \(M \) is not zero there exists a fixed point.

The proof given here adapts for dimension two the ideas used by P. Molino and the author in [2] and [3]. Moreover we show that the theorem remains true if \(\mathbb{R}^n \) is replaced by a connected nilpotent Lie group \(G \).

In the slightly more general case, dealt with by E. L. Lima, of a surface with boundary, it is sufficient gluing together two copies of this surface in order to obtain a surface without boundary.

1. Actions of \(\mathbb{R}^n \)

Let \(V \) be the Lie algebra of \(\mathbb{R}^n \). The action of \(\mathbb{R}^n \) induces a Lie algebra homomorphism \(v \in V \to X_v \in \mathcal{X}(M) \) called infinitesimal action. We recall that the infinitesimal isotropy of a point \(p \) is the set \(I(p) = \{ v \in V | X_v(p) = 0 \} \). As \(V \) is abelian \(I(p) \) depends only on the orbit.

Denote by \(\Sigma_k \) the set of points \(p \) of \(M \) whose orbit is \(k \)-dimensional, i.e. \(\text{codim} I(p) = k \).

Suppose \(\Sigma_0 \) empty. We will gradually arrive to a contradiction.

1) Set \(C_2 = \{ v \in V | X_v(p) = 0 \text{ for some } p \in \Sigma_2 \} \). As there are at most countably many 2-orbits because they are open sets, \(C_2 \) is at most countable union of \((n-2) \)-planes of \(V \).

2) The map on the grassmanian of \((n-1) \)-planes \(k : p \in \Sigma_1 \to I(p) \in g_{n-1}(V) \) is differentiable, i.e. it can be locally extended to a differentiable map.

Indeed, consider \(p \in \Sigma_1 \) and \(u \in V \) such that \(X_u(p) \neq 0 \). We can find a coordinate system \((A, x) \), \(p \in A \), such that \(X_{x_1} = \frac{\partial}{\partial x_1} \) and that the image of \(A \) on \(\mathbb{R}^2 \) is a rectangle.
Let \(\{v_1, \ldots, v_{n-1}\} \) a basis of \(I(p) \). Set \(X_{v_j} = f_j \frac{\partial}{\partial x_1} + g_j \frac{\partial}{\partial x_2} \). We define the map

\[
\tilde{h}: A \longrightarrow g_{n-1}(V)
\]

\[
x \longrightarrow \mathbb{R}\{v_1 - f_1 u, \ldots, v_{n-1} - f_{n-1} u\}
\]

whose differentiability is clear.

Note that \(w \in \tilde{h}(x) \) if and only if \(X_w(x) \) is proportional to \(\frac{\partial}{\partial x_2} \). If \(x \in A \cap \Sigma_1 \) this means that \(X_w(x) = 0 \) because it is also proportional to \(\frac{\partial}{\partial x_1} \). Then \(\tilde{h} \) is a local extension of \(h \).

3) Let \(Fr(\Sigma_1) \) be the boundary on \(M \) of \(\Sigma_1 \). Then \(C_1 = \{v \in V / X_u(p) = 0 \) for some \(p \in Fr(\Sigma_1)\} = \bigcup_{p \in Fr(\Sigma_1)} I(p) \) is of the first category (i.e. it is contained in the union of a countable family of closed nowhere dense subsets of \(M \)).

Since \(Fr(\Sigma_1) \) can be covered by a finite family of coordinate systems \((A, x) \) as in 2), it will be sufficient to prove that \(\bigcup_{p \in A \cap Fr(\Sigma_1)} I(p) \) is of the first category. Let \(T \) be a slice of \(A \) obtained by doing \(x_1 \) constant. As the isotropy is constant on the orbits:

\[
\bigcup_{p \in A \cap Fr(\Sigma_1)} I(p) = \bigcup_{p \in T \cap Fr(\Sigma_1)} I(p)
\]

Consider the vector bundle \(\pi : E \rightarrow T \), subbundle of \(T \times V \), given by the condition \(\pi^{-1}(x) = \{x\} \times \tilde{h}(x) \). Set \(\varphi : (x, v) \in E \rightarrow v \in V \).

The set \(\pi^{-1}(T \cap Fr(\Sigma_1)) \) is of the first category in \(E \) because \(T \cap Fr(\Sigma_1) \) is of the first category in \(T \). As \(\varphi \) is differentiable and \(E \) and \(V \) are manifolds of the same dimension, it follows that

\[
\varphi(\pi^{-1}(T \cap Fr(\Sigma_1))) = \bigcup_{p \in T \cap Fr(\Sigma_1)} I(p)
\]

is of the first category in \(V \).

4) Take now \(v \in (V - C_1 \cup C_2) \). The set \(Z(X_v) \) of the zeros of \(X_v \) is contained in \(\Sigma_1 \). On the other hand the 1–foliations given by:

(a) \(X_v \) on \(M - Z(X_v) \)

(b) the action of \(\mathbb{R}^n \) on \(\Sigma_1 \)

agree on \((M - Z(X_v)) \cap \Sigma_1 \). Then \(M \) admits an 1–foliation and \(\mathcal{X}(M) = 0 \), contradiction.

2. Case of a connected nilpotent Lie group \(G \)

It will be sufficient to adapt the proof of the abelian case. Let \(V \) be the Lie algebra of \(G \). Since \(V \) is nilpotent every subalgebra of codimension one is an
ideal. Therefore the isotropy is constant over each 1-orbit and C_1 will still be of the first category.

Let B be a 2-orbit. Given $p \in B$ there always exists an ideal I of codimension one which contains $I(p)$. As B is an orbit and I an ideal then $I(q) \subset I$ for all $q \in B$. Consequently C_2 is contained in a finite or countable union of $(n-1)$-planes of V. In particular $C_1 \cup C_2 \neq V$. The rest is similar.

Example 1. See $P(2, \mathbb{R})$ as the plane \mathbb{R}^2 plus the infinite points. The vector fields on \mathbb{R}^2: $\frac{\partial}{\partial x_1}$, $\frac{\partial}{\partial x_2}$ and $x_1 \frac{\partial}{\partial x_2}$ can be extended, in a natural way, to $P(2, \mathbb{R})$ because they are affine. These vector fields generate an action of a 3-dimensional nilpotent group on $P(2, \mathbb{R})$, whose orbits are \mathbb{R}^2; the set of all points of infinity except the vertical one (i.e. the point associated to the vertical direction); and the infinite vertical point, which is the only fixed point.

Example 2. Take now $\frac{\partial}{\partial x_1}$, $\frac{\partial}{\partial x_2}$ and $-x_2 \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_1}$. One obtains an action of a 3-dimensional solvable group with no fixed point. Their orbits are \mathbb{R}^2 and the set of the infinite points.

See [1] for a 2-dimensional example with no fixed point.

References

