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Abstract

MONOID RINGS THAT ARE FIRS

ANDREU PITARCH

It is well-known that the monoid ring of the free product of a free group
and a free monoid over a skew field is a fir . We give a proof of this fact
that is more direct than the proof in the literature .

History . In essence, the result is due to P. M. Cohn [3],[4] who showed that
over a division ring the monoid ring of a free monoid is a fir, and that the
monoid ring described in the abstract is a semifir, from which it follows fairly
easily that it is a fir since it is hereditary. There are four other proofs in the
literature : one due to J . Lewin [7] using Schreier rewriting techniques ; one due
to G . M . Bergman [1] using free products ; one due to P. M. Cohn and W.
Dicks [6] using localization in firs ; and one due to R. W . Wong [8] using only
the normal form in a free group.

Definitions and notation. Let X, Y be two disjoint sets . Let M be the
free product of the free monoid on X and the free group on Y. Let G be the
free group on X U Y. We viewM C_ G.

Each c E G has a unique normal form c = c 1 c2 . . . cn, such that n >_ 0,
ci E X U X-1 U Y U Y-1 and cici+1 qÉ 1 ; in this case we write l(c) = n. We
remark that if c E M then each ci E X U Y U Y-1 .

Let < be any well-order of X UX-1 U Y U Y-1 . We extend this to the length-
lexicographic well-order < of G, that is, if c = c1 c2 . . . cn , d = d1 d2 . . . dna
are elements of G in normal form then we write c < d to mean that either
l(c) < 1(d), or 1(c) = 1(d) and for some j such that 1 < j < n we have
c 1 = di , . . . , cj_1 = dj_1 and cj < dj .

- _

Let K be a skew field . We write K[M] for the monoid ring, and view it
as a subring of the group ring K[G]. An element x of K[G] has a unique
expression in the form x = E,EG x(c)c where x : G -+ K is a function which
takes the value 0 except for a finite number of elements of G. We shall treat
interchangeably the elements of K[G] and their corresponding functions. We
define Supp x = {c E G 1 x(c) qÉ 0} .
We have functions

l : K[G] --> {-oo} U N, such that l(x) = max {1(c) 1 c E Supp x},
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deg : K[G] -> {-oo} U G, such that deg (x) = max {c 1 c E Supp x},

where we understand max 0 = -oo .
It is easy to see that l(x) = l(deg(x)) for all x qÉ 0, and deg(K[M]) _

{-oo} U M. We call l(x) the length of x .
Let x E K[G] and a E G. If l(ac) = l(a) -f- l(c) for all c E Suppx, we shall

write a - x to mean ax ; otherwise a - x is undefined .
Let I be a left ideal of K[M] and x E I . We shall say that x is isolated in

I if, whenever x = E", rixi, ri E K[M], xi E I, then deg(xj) > deg (x) for

some j with 1 < j < n .
Let a E G. We set

a-G={bEGI b=a . c forsome cEG} .

We define the right transduction with respect to a to be the function

[]a :G --) {0}UG

such that [a - b]a = b for all a - b E a - G and [d]a = 0 for all d E G \ a . G . This

extends by linearity to K[G], Le . [E EG x(c)c]a = E,EG x(C)[C]a .

It is clear that [K[M]]a C_ K[M] for all a E G.
Observe that if a E G, b E G \ {1} such that ab = a

	

b and x E K[G] then

[ax] a .b = [XJb .

The result . First we state a lemma .

Lemma. Le¡ x, y be elements of K[G] with x 7É 0, and a be a nontrivial

element of G, so a = b - c for some c E X U Y U X-1 U Y-1 . Then

( 1 ) [yx]
a = [y]

ax
- c-' - E y(d)[x](`[d1°)_' +

	

1:

	

y(d)[dx]a .
dEa-G

	

dEG\a-G

(11) l([yx]
a - [y]ax + C-1 ' y(a)[x]`-') < l(x) .

(iii) l(c[yx]a - c[y] a x - c' y(b)[xIc) < l(x) .

Proof.. Since all !he expressions involved are K-linear in x and y, it suffices
to consider this case where x; y E G. There are three cases .

CASE 1 . yEa-G
Here y = a - y' where y' = [y] a and (i) reduces to

[yx]a
= [y] ax - c-1 . [x](c-y,)-'

which can be rewritten as

(i')

	

[cy'x]C = yrx - C-1 . [x](`y,)-i
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CASE TA. x E y'-1 - c-1 -C. Then cy'x E G \ c - G and both sides of (¡')reduces
to 0 .

Since cy'x = [x](`Y')-1, (iii) holds in this case .
To see (ii) be consider the cases y' :~ 1 and y' = 1 . If y' :~ 1, then y :~ a and

so l(c-1 - [x](`Y9-1 ) < 1(x) . If y' = 1 then y = a and so [y]ax = x = c-1 [x]`-1 ,
(ii) holds in this case .
CASE 1B . x E G \ y'-1 - c-1 - G. Then cy'x E c - G and both sides of (i')

reduces to y'x .
Moreover y 7É b, thus (iii) reduces to 1(0) < 1(x) .
To see (ii) consider the cases y' 7É 1 and y' = 1 . If y' =~ 1, then y 7É a, and (ii)

reduces to 1(0) < l(x) . If y' = 1, then [x]`-1 = 0 and (ii) reduces to 1(0) < 1(x) .
CASE 2 . y = b
Here [yx] a = [bx]a = [x]`, which gives (i) in this case, (ii) reduces to 1([x]`) <

1(x) and (iii) reduces to 1(0) < 1(x) .
CASE3. yC-G\a . Gandy :~b
Here (i) reduces to the triviality [yx]a = [yx]a .
CASE 3A . [yx]a = 0 . In this case (ii) and (iii) reduces to 1(0) < 1(x) .
CASE 3B. [yxja	0. Since y(a) = y(b) = 0 and [y] a = 0, (ii) and (iii)

reduce to l([yx] a ) < 1(x) and l(c[yx] a ) < 1(x) respectively. So in this case it
sufices to show that l([yxja) < l(x) - 1 . Here yx = a - d where d = [yx]a . It
is easy to see that there exist e, y', x' E G such that y = y' - e, x = e-1 - x'
and y' - x' = a - d. Since y E G \ a - G it follows that y' E G \ a - G . Hence
there exists f E G \ {1} such that a = y' - f, so y' - x' = a - d = y' - f - d and
x' = f - d. Thus 1(x') - 1(f) = 1(d) = l([yx]a) . Since 1(x) = 1(x') -I- l(e) we see
l([yx]a) = l(x) - l(e) - 1(f) . Thus it sufices to show that l(e) + 1(f) > 2 . We
knowl(f)>1.Ife=1theny=y'anda=y-f,butyga-Gandy :~ b,thus
1(f)>2 . s
Theorem (Lewin [7], Cohn [3]) . K[M] is a fir .

Proof. Let I be a left ideal of K[M] . We set

I* = {x E 11 x

	

is isolated in

	

I}

and introduce an equivalence relation - in I* by defining x

	

y if deg(x) -
deg (y), for all x, y E I* .

Let B be a complete set of representatives of the --classes in I* . We shall
show that B is a left K[M]-basis of I .
To see that I is generated by B, let us suppose that it is not true, and choose

z E I \ K[M]B of minimum possible degree .
If z is not isolated in I then exists an expression z =

	

r;z ; with r i E
K[M], z ; E I and deg (z;) < deg (z) . By the minimality of the degree of z,
zi E K[M]B; hence z E K[M]B, a contradiction .
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If z is isolated in I then exists x E B with deg (z) = deg (x), so there exists

a unique r É K such that deg (z - rx) < deg (z) . Now z - rx E I and by

the minimality of the degree of z, z - rx E K[M]B; hence z E K[M]B, a

contradiction .
These contradictions show that I is generated by B, and it remains to show

that B is left K[M]-independent . Suppose then that it is dependent, so there
exist distinct x1, x2 . . . xn in B and nonzero y1, Y2 . . . . yn in K[M] such that

Ein=1 yixi = 0 .
Since the xi are distinct elements of B, we may assume that

n

and by part (ii) of the Lemma,

and by part (iii) of the Lemma,

deg (xn) > deg (xn-1) > . . . > deg (x1) .

We shall use right transduction with respect to the element a = deg (yn) .
Since xn is isolated in I, it follows that a :~ 1, so a = b - c for some c E

it is clear that W E I . Since xn is isolated in I, we see deg (W) >_ deg (xn ) . By

part (i) of the Lemma,

W = E(-c-1 - 1: yi(d)[x i] (c'[dla)-t +

	

E

	

yi(d)[dxila),
i=1 dEa.G

t

	

dEG\a-G

n
l(W + c-1

	

yi(a)[xi]c-1) < l(xn) .
i=1

Since Supp (yi(a)c-1 - [xi]c-1 ) C_ Supp xi for all i = 1, . . ., n, and deg (xi) <

deg (xn) for all i = 1, . . ., n - 1, thus deg (W) = deg (yn(a)c-1 - [xn]°-1) =

deg (xn) E c-1 - G . In particular c-1 E M, and there exists a unique r E K
such that deg (xn -fW) < deg (x n ) . Now from the equation x n = (xn - rW) +
(rc-1 )cW and the fact x n is isolated in I we see that deg(cW) > deg(xn ) . By
part (i) of the Lemma,

n
=Y:(- 1: yi(d)[xi] (`ldla)_1 +c .

	

yi(d)[dxi] a ),
i=1 dEa-G

	

dEG\a-G

n
l(cW - e

	

yi(b)[xi]`) < I(xn) .
i=1

X uYuY-1 .
Consider the element

n n

W = j:[yixi] a - 1:[yi]a xi =
n

- 5~[yi]axi

n-1
= -yn(a)xn - E[yi]axi)

i=1 i=1 i=1 i=1
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Since Supp (yi(b)c - [xi]c) C Supp xi for all i = 1, . . ., n, and deg (xi) < deg (xn)
for all i = 1, . . .,n - 1, thus deg (xn) = deg (yn(b)c . [xn]`) E c - G, which
contradicts the fact that c - G fl c-1 - G = 0 .
Thus B is a basis for I, and I is free as left K[M]-module .
By the symmetry of the hypotheses, every right ideal is free as right module,

so K[M] is a fir . E .
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