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MONOID RINGS THAT ARE FIRS

ANDREU PrrarcH

Abstract

It is well-known that the monoid ring of the free product of a free group
and a free monoid over a skew field is a fir. We give a proof of this fact
that is more direct than the proof in the literature.

History. In essence, the result is due to P. M. Cohn [3],{4] who showed that
over a division ring the monoid ring of a free monoid is a fir, and that the
monoid ring described in the abstract is a semifir, from which it follows fairly
easily that it is a fir since it is hereditary. There are four other proofs in the
literature: one due to J. Lewin [7] using Schreier rewriting techniques; one due
to G. M. Bergman (1] using free products; one due to P. M. Cohn and W.
Dicks {6} using localization in firs; and one due to R. W. Wong [8] using only
the normal form in a free group.

Definitions and notation. Let X,Y be two disjoint sets. Let M be the
free product of the free monoid on X and the free group on Y. Let G be the
free group on X UY. We view M C G.

Each ¢ € G has a unique normal form ¢ = e1¢z... ¢y, such that n > 0,
6 € XUXTUuY LY and eiciy; # 1; in this case we write ey =n. We
remark that if c € M theneach ¢; € XUY UYL,

Let < be any well-order of X UX 1Y UY L. We extend this to the length-
lexicographic well-order < of G, that is, if ¢ = e1¢0...Cn, € = didy...d,
are elements of G in normal form then we write ¢ < d to mean that either
i{c) < d}, or I{c) = I{d) and for some j such that 1 < j < n we have
C;Zdl,...,cj-_lr-d}'_l andc,-(d}-. ‘

Let K be a skew field. We write K[M] for the monoid ring, and view it
as a subring of the group ring K{G). An element z of K[G] has a unique
expression in the form z = 37 - z{c}c where 2:G — K is a function which
takes the value 0 except for a finite number of elements of G. We shall treat
interchangeably the elements of K[G)] and their corresponding functions. We
define Suppx = {c € G | z{c) $ 0}.

We have functions

LEK[G] — {—oo} UN, such that Iz} = max {{{c) | ¢ € Suppz},
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deg: K[G] — {—00} UG, such that deg{z) = max {c|c€ Suppz},

where we understand max @ = —co.
It is easy to see that I(z) = {deg(x)) for all z # 0, and deg (K[M]) =
{—00} UM. We call i(z) the length of .

Let z € K|G) and a € G. If {{ac) = I{a) + l¢) for all ¢ € Supp z, we shail
write a - z to mean az; otherwise ¢ - z is undefined.

Let I be a left ideal of K[M] and z € I. We shall say that z is isolated in
I if, whenever z = Y0, rizy, 7¢ € K[M], z: € [, then deg{z;) > deg(x) for
some j with 1 <7 <n.

Let a € G. We set

a- G={beG|b=a-c forsome c€G}
We define the right transduction with respect to a to be the function
[1:G — {0}UG

such that [a-b]° = bforalla-b€ a-G and jdl* =0foralld e G\a-G. This
extends by linearity to K[G], ie. {L.cq#{0)]® = Leeo z{c)e]®.

It is clear that [K[M]]* C K[M]foralla € G.

Observe that if @ € G, b€ G\ {1} such that ab = ¢ - b and z € K[G] then
laz]*® = [z]" |

The result. First we state a lemma.

Lemma. Let z,y be elements of K[G] with z # 0, and ¢ be a nonirtvial
element of G, s0o a = b ¢ for some c€ X U YUX-'UY™ Then

@ e =blPe—c- 3 w@leeM T+ BT w(d)ide)"

d€a-G deG\a-G
(i) lfyzl® - [y}*z + ¢ ya)z) ) < K=).

(i) Hefyz]? - dylz — e y(B)fe)") < Lz)-

Proof: Since all the expressions involved are K-linear in z and y, it suffices
to consider this case where z,y € G. There are three cases.

CASEl.y€a-G
Here y = a -y where ¢ = [y]® and (i) reduces to

[yel® = [y]*z — 7 [a]Y)7
which can be rewritten as

(@) B e C R A
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CASE1A.z € y'~?-¢'-G. Then ¢’z € G\ ¢ G and both sides of (i) reduces
to 0.

Since cy’z = [z]¢¥)7", (iii) holds in this case.

To see (ii) be consider the cases ' # L and y' = 1. If 4 # 1, then y # a and
so l{e™t - [z)ev) T « z). fy' =1theny=aand so [y|°r =z = c“’[z]chl,
(i1) holds in this case.

CASE 1B. z € G\y'™' . ¢! . G. Then cy'z € c- G and both sides of (i)
reduces to y'z.

Moreaver y # &, thus (iii) reduces to #{0) < I(z).

To see (ii) consider the cases ' # 1l and y' = 1. If ' # 1, then y # q, and (ii)
reduces to {(0) < I{z}. If ¥ =1, then [zlc_l = 0 and (i1) reduces to I(0) < I(z).

CASE2 y=4b

Here [yz]® = [bz]* = [z]°, which gives (i} in this case, (i} reduces to I(z]°) <
I(x) and (iii) reduces to I{0) < I{(z}.

CASE3. yeG\e-Gandy#b

Here (i) reduces to the triviality [yz]® = [yz]°.

CASE 3A. [yz]® = 0. In this case (ii) and (iii) reduces to {0} < I(z).

CASE 3B. [yz|® # 0. Since y{a) = y(b) = 0 and [y]* = 0, (i) and (iii)
reduce to I([yz]*) < I{z) and I{c[yz]*) < }(z) respectively. So in this case it
suffices to show that {([yz]®) < I(z) — 1. Here yz = a-d where d = [yz]®. It
is easy to sce that there exist e,y,2' € G such that y = ¢ - e, z = ¢~! - 2’
and y' ‘2’ = a-d. Sincey € G\ e G it follows that ¥’ € G\ a-G. Hence
there exists f € G\ {1} suchthata =y’ . f, so ¢y - 2' =e-d=% - f-d and
z' = f-d. Thus l(z") — {{ ) = {{d) = I{[yz]*). Since I(z) = I(z') + i(e) we see
l(lyz}*) = l(z) — (e} — I(f). Thus it suffices to show that I(e} + I(f) > 2. We
know I{(f) > 1. Ife=1theny=y anda=y-f,but y ¢ ¢-G and y # b, thus
(2o m

Theorem (Lewin (7], Cohn [3]). K[M] is a fir.
Proof: Let I be a left ideal of K[M]. We set
I"'={zel|z isisolatedin I}

and introduce an equivalence relation ~ in I'* by defining z ~ y if deg(z) =
deg(y), for all z,y € I*.

Let B be a complete set of representatives of the ~-classes in I*. We shall
show that B is a left A[M]-basis of I.

To see that I is generated by B, let us suppose that it is not true, and choose
z € I'\ K{M]B of minimum possible degree.

If z is not isclated in I then exists an expression » = Soriz; with r; €
K[M], z; € I and deg(z) < deg(z). By the minimality of the degree of z,
zi € K[M]B; hence z € K[M]B, a contradiction.
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If 7 is isolated in I then exists z € B with deg(z) = deg(z), so there exists
a unique 7 € K such that deg(z — rz) < deg{z). Now z — rz € T and by
the minimality of the degree of z, z — rz € K{M]B; hence 2 € K[M]B, =
contradiction.

These contradictions show that I is generated by B, and it remains to show
that B is left K[M}-independent. Suppose then that it is dependent, so there
exist distinet z1,%2...%» in B and nonzero ¥1,¥2,..-Yn in K[M] such that

E?:1 yizi =0
Since the z; are distinct elements of B, we may assume that

deg(zn) > deg(za_z) > ... > deg(z1).

We shall use right transduction with respect to the element ¢ = deg (yn)-
Since z, i3 isolated in I, it follows that o # 1,s0a = b-cfor somec €
Xuyuy .

Consider the element

n

W= fwmd - ) miltei=— > itz = —ya(a)ea - > e,
i=1 i=1 i=1

=1

it is clear that W € I. Since z, is isolated in I, we see deg (W) 2 deg(z.). By
part {i) of the Lemma,

WS (- 3 w@ElT Y w(d)idal),
i=1 d€a-G deG\a-G
and by part {1i) of the Lemma,
KW+ e Y wla)ed ) < Uan)-
i=1

Since Supp(yi{a)e™t - [z:]°) C Suppz; for all i = 1,..,n, and deg(z;) <
deg (zq) for all i = 1,...,n — 1, thus deg(W) = deg(yn{a)e™ - f2a) ) =
deg(z,) € ¢! - G. In particular ¢~! € M, and there exists a unique r € K
such that deg (x,—rW) < deg(z,). Now from the equation 2, = (zp, —rW}+
(re")cW and the fact z, is isolated in [ we see that deg{cW) > deg{z.). By
part (1) of the Lemma, '

H =3 (- 3 w@E)M ve Y yd)ldml),

=1 d€a-G deGhe-G

and by part (iii} of the Lemma,

W = e+ ) yil)zd°) < Uzn).
=1
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Since Supp (yi(b)c - [2:]°) € Suppz; for all i = 1,...,n, and deg(z;} < deg(z,)
for all ¢ = 1,..,n — 1, thus deg(zn) = deg{yn{b)c - [za]°} € ¢ - G, which
contradicts the fact that ¢ - GNe™! .G = §.

Thus B is a basis for I, and [ is free as left K[M]-module.

By the symmetry of the hypotheses, every right ideal is free as right module,
so K{M)isafir. &
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