Publicacions Matematiques, Vol 34 {1990), 77-%1.

HOLDER AND I* ESTIMATES

FOR THE SOLUTIONS OF THE §-EQUATION
IN NON-SMOOTH STRICTLY
PSEUDOCONVEX DOMAINS

J.M. BURGUES

Absiract

Let D 2 bounded strictly pseudoconvex non-smooth domain in C". In
this paper we prove that the estimates in L? and Lipschitz classes for the
solutions of the 8-equation with LP-data in regular strictly pseudoconvex
domains (see(2]) are also valid for D). We also give estimates of the same
type for the 3 in the regular part of the boundary of these domains.

0. Introduction and statement of results

This paper is a continuation of [1] and deals with the estimates for the 5-
equation on strictly pseudoconvex non smooth domains. By this we mean a
domain D defined by the condition I} = {r < 0} where r is a strictly p.s.h.
function of class C? defined in a neighborhood of 6D, We recall that it is not
assumed that the gradient of r be different of 0 in b1}, and the boundary fails
to be a regular submanifold of C” just in a totally real set.

Henkin and Leiterer proved in [3] that the equation Su = f has a bounded
solution u for any (0, ¢)-form f, with bounded coefficients, and such that 8f =
0. In (1] it was proved that there exists an integral operator

Tf = /D K(C, =) A F(Q)

mapping Lif:ﬁ) to Li‘:f,ﬁ_l) such that 8T f = f if 8f = 0 and satisfiying the es-
timate ”Tf”Lp(D} = C"f”Lp(D) and also the Lip 1/2 estimate "Tf”Lip(lf?,D) <
c[|f|leo in the case ris of class C3.

Here and in the following the L? spaces are with respect to the Lebesgue
measure dm, and Lip {s, D) stands for the class of continuous functions on D
having modulus of continuity Q(6*). The LP- norms will be abreviated by || ||,.

Partially supported by the grant PB85-0374 of the CYCIT. Minmsteric de Educacién y Cien-
cia, Spain.
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The aim of this paper is to improve these estimates extending te the non-
smooth case the optimal estimates obtained by Krantz in [2] for the regular
case, for forms of arbitrary bedegree.

The paper is organized as follows. In section 1 we recall the construction of
the operator T' and the estimates for its kernel K that were obtained in [1]. In
section 2 we prove the following three theorems:

Theorem 1. .
The operator T satisfies the following LP-estimates:
(@) ITflle ellfllp, 1<p<2n+2 ;=373

(0) IT#lls < llflla, Vg < 2n + 2
(¢) For p=12n+2, |Tf| satisfies the estimate

[} exptelT () #H yam(¢) < o0
D
for some constant ¢ depending on n and || fijen+2.

Theorem 2.

(2) Fp>2n+2, T maps Lfa,l) continuously into Lip {3 — L'}I"-i—,D)

(b) If f€ L?fx,ﬁ)’ p>+2and 8> 1, Tf is continuous on D.

(¢} In case v is of class C*FY, 0 < v £ 1/2, then for p 2 f—’l%, T maps
L?a,ﬂ) into Lip (min{y, 1 — %},D), for ell a, 3.

Note in theorem 2 that if  is just £%, Holder estimates can only be obtained
for (0,1)-forms. For forms of bedegrec {a, 8), # > 1, one needs extra assump-
tions on r to obtain Holder estimates for a certain range of p's. In case r is of
class C2*1/2 then part {a) holds for forms of arbitrary bedegree.

In order to state our third result, which gives an improvement of the estimates
at the boundary, we need to recall a definition from [1] and [6]: Assuming only
that r is defined in an neighborhood of D, we put for {,z € D

p(C,2) = 1(0r(2),¢ — 2| + HOr(() ¢ — 2} + IIC — 2°

This is & pseudedistance in the sense that triangle inequality holds with some
constant C, and will be called the Koranyi pseudodistance.

We write Lip,(s, D) for the subspace of Lip (s, D} such that [flw}— f(z)| =
O{p(w, 2)*) for ¢,z € bD.

Fheorem 3.
(a) For2n+2 < p < oo, T maps LI(JO,I) inte Lip,(3 — “T'H
(b} For f € L,y then

IT£(2) = T(w)| < ell fllowplz, w)'/*[logp(z,w)|
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(c} If v is of class C**7, 0 < 4 < 1/2, then forp > %%ji!%’ T maps Lf"ﬂf’)
into Lip,(min(y, 1 — Mﬁ): D)

Since ¢;||¢ — z|* € p{{,2) € &2|[¢ — z||, the meaning of theorem 3 is that
the solutions of the J-equations will be, for the range of p indicated, twice as
regular in certain directions in 1. This, in the regular case, is a reformulation
of the estimates in the non-isotropic Lipschitz spaces I'y 24 introduced by Stein.

Finally, section 3 contains the estimates of the integrals in the proof of the
theorems.

Our technique differs from that in [2] in two aspects: first of all, of course,
the non-smoothness makes more involved the estimate of the singularity of the
kernels and, secondly, we use direct methods instead of interpolation results
in obtaining the Holder estimates. A main thechnical difficulty for that is
that the domain being non smooth we do not have at our disposal the criteria

Vu{z) = O(u(z)*~') for u to be in Lip (s, D).

1. The kernels solving &

In [1] kernels are obtained to sclve & in nonregular strictly pseudoconvex
domains, of Henkin-Ramirez type with weight factors. Let us briefly recall
their construction and main properties.

1.1. General construction.

For U a C! bounded domain in C", let 5,Q: U x I/ — C™ where s is a section
of Bochner-Martinelli type, say: :

[ls(¢, )l = OClI¢ = =[)
for {,z € U, and
[{s(C,2), ¢ = 2] 2 e f|C ~ 21
wheaever ( € U and z € L compact in U, and @ is of class C* and holomorphic
in z.

Let also G be a holomorphic function of one complex variable defined in a
neigborhood of U x U under the map (¢,z) — 1+ {@((,2),{ — z} and with
G(ly=1.

Finally define

5A (dQ)F A (d5)" k!
(""a C - z)n_k

where ¢u = ((271)"(n — 1)), 5= L1 g 5;4(¢; — ;) and @ = 37, Q;dl(¢; —

z;) K is a 2n — 1 form in d(,d(,dz and dZ together, and for 0 < a,f <n,let

Ko p the component of bedegree (o,f) in z and (n —o,n — 8—1)in (.
Then:

(1) K¢ 2)=ca i ("—;,—IEG(*)U +{@.¢—2))
k=0 ’
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Theorem 1.1. Whenever 8 > 1, if Ko g((,2)lcesr is 0 for z € U, the
aoperator

2) Tf = (~1)*F L FAKap

satisfies BTf = f if f €C(q,p(U).

1.2. The section and weights in the strictly pseudoconvex case.

If D is a strictly pseudoconvex (non regular domain) and r is a C? defining
function for D, let Us = {r(z} < 6} and V5 = {—6 < r(2) < §}. Then Henkin
and Heffer’s lemmas provides us with a family of functions ®;, j = 1,...,n, and
constants ¢g,€s, d depending only on the function r (but not on its gradient,
nor on the variable z), such that ®; €C*{V;, x Us,) and are holomorphic in z,
and the function ®((,2) = 3 1_; ®;{(,2)(¢; — 2;} satisfies:

(¢, )1 > o i i€ — 2]l > o
2RO(¢, 2) 2 7(¢) — r(2) + eofl{ — 2|° # I{ — 2)) < eo
dPy=s = dePjaz = Or(2)

ar
- 2(¢,2) = 5@(() + O(l)¢ — z[[) when [|{ — 2]] < eq, |r(2)] < &

We define: -
A(¢,2) = —r(2) + ®((,2)

and if x €C°(C"),0< x <1land x =1 on Vs,, define
2

0u(¢.0) = (0 HE2

and @ = (Q1,...,@n).

Write now, Ves = {{{,2) : [H{Q)| < &,|r{z}] < & }J¢ — 2| < €} and define
H(2) = 25(2, (), @°(C,2) = @(2,0), v;{(, 2) = (B, 2)+ A2, ()@5(¢, 2),
and v{(,2) = 327, vi(C, 2)(¢; — 25

Finally, f ¢ e L°(C*), 0< ¢ <1, ¢=1o0n V%Q'%Q, define

si{Cy2) = 8((, )¢, 2) + (1 — $(C, )G — 25)

8§ =(81,...85) and H = {5,{ — 2).
The following estimates are crucial for the estimates of the kernel's singular-
ity:

2ReA ~ ~r({) — r{2) + coll¢ — 2|)°
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|H| 2 e{(r(¢) = r(2))* + (=r(¢) — r(2)II¢ - 2|I?
+I¢ ~ 2[i* + ImaIms™},

for (¢, 2) € Viy,5, N (U x U). This implies that, in terms of the pseudodistance,
p

|4 7 =r({) — () + p(¢, 2)
[H] 2 e{(={¢) — r(2DI¢ = =)1* + (¢, 2)}

1.3. The resulting kernels and their estimates.

Teke in the formula (1) G{w) = w", and the section and weight introduced
before. Define also:

@({,2) = 3 ®;{¢,2)d(¢5 — z5)

j=u

w'(Gz) = ) 8i(2,0d(G - %)
j=1

A%(C,2) = A(z,0)
n(C,2) = r(¢)3uw” + A*Fw

After a combinatoric computation one obtains in that case:

n—1
(3) K(Cz)=vA) cau _r(O)n_an_lkAk(écw)k At
’ k=D

A
_ ~ n-—1 _ 1
+[r(€)8; A" ~ A*Oer) Aw Aw* A g eniln —k — 1) f))"—*ﬂ,n_mk

(Bew)* AqgnmEE—

1
Hrn—k gk+1

—H(OBANW AW A Y e ik( _jC) o (Bew) =t AqE?
k=1

Define now ¢({, 2z) = [ldr(2))] + ||¢ — 2|, and denocte ||dr{z)|| = A(z}

It is clear from (3) that K(¢,2) = 0 for ¢ € bU so Theorem 1.1 applies and
the kernel K has the estimate (see [1], lemmas 2.4 and 2.5):

@) (6,2l = O o) + 6 e - 21y
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In terms of the pseudodistance, we have (see[l}, lemma 6.2)

S G O) il S 000
2P f=r (I 2l ol 2T
L IC= 212 _as
FEE LR

As showed in [1), lemma 6.3 ,the kernel K((, 2) is integrable in each variable,
uniformely in the other. Using a standard regularization process, one can then
show that if f € Lj,., 4 2nd T'f = 0 in the weak sense then Tf is a form in

Ltloc(o,p_l) and 8Tf = f in the weak sense.
Notice that when 2 € bU, the estimate (5) implies

(8} |K({,2)l =0O(

(6) [K(G2)) = O(p(C, 2)3 7™ + Mz)’p((, 2) ™" F) =/ O(M2)
and also the worse but symmetric estimate:
1 NQ? + Ma)?

) =4 O(Ns)

O WA= A== T e =2

1.4. Estimates of the differences.

Our method in proving Holder estimates involves estimates of the differences
of the kernels |K{{, 2} — K{{,w)|. A suitable control can be obtained in terms
of the gradient of K with respect to the second variable whenever it makes
sense, that is when the coefficients of the form K{(,z) are C' in z. Formula
(8) shows that all terms but those mvolvmg 8,w* are C! in z , because Sw* =
58, €7 Ad((; — 25} and 3,93(¢,2) =0:%;{(2,¢) is only contmuous since it
1nvolves second derivatives on r.

Observe also that bad terms may appear only once (because 8,9*N0. %" =
0}, and in the components Kq ¢ they do not appear at all.

Sc we can write the kernel K as a sum

K((,2) = K1, 2) N Bw* + K2((, 2)
where K, Ky are C! in z and Ko 9 = (K2)a,0. The kernels Ky and K, satisty

the same estimates as K, that is {5) and {6).

The gradients in z of K and K, satisfy the estimates contained in lemma
6.6 of [1] and hence it follows that there exists ¢ such that if |z — wl| is small
enough and |[¢ — || > eljz — w||'/?, ¢ € D, then, for j =1,2

{8 [K(C,2) = (¢, wil = O(llz — w|[Mi(¢, 2})
where
(8) |
A (1€ = 21 z)? 1€ — =[|X=)°

M _def
B T il O] 1= e L S ELR Y
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thus, Ko o(€,2) — Koo, w) will satisfy (8) if {,2,w are as above, without any
further requirement on r. For the components K, g with 8 > 0 write

K(¢,2) — K(¢w) = {Ky((, 2) — K1(€,w)} A 8™ + Ka((, 2) — Ka(,w)
+ Ki{¢, 2} A {0,w" — O™}

It follows that if d?r satisfies a Lipschitz estimate of order «, and z, w, { are
as above, then

(9)  |Kap(C,2) — Ko p(G,w)l = O(||z — wl|Mi({, 2) + ||z — w|["N1(C, 2))

The estimates (8), (8'} and (9) will be used in the Euclidean Holder estimates.

For the non-isotropic Holder estimates it will be convenient to estimate the
difference K, (¢, 2) — Ko g{¢,w) just in terms of p. In a similar way as before,
but using now lemma. 6.9 of [1] instead of lemma 6.6, we see that if r is just C*
and p((, z) > cp(z,w) (,z,w € bU then:

(10) K .0(C, 2) = Koo(G,w)| = O(p(z, w)*My)
where
(10%) M, =4f o€ 2) " + ,\(2)29((, z)—l—n

and if r €C?* 7 thenfor A > 0
(1) |Ka (¢, 2) — Ko g(C,w)| = Ofp(z,w)* 2 My + plz,w)"* Np)
where

(11" Nz = p(C,2) 27" + M2)?p(C, 2) 2

2. Proof of theorems

2.1. Proof of theorem 1:
As in {2], the proof of Theorem 1 is based on the following lemmas;

Lemma. et K : R™ x R" — C have the property thet K(z,.) is of weak

type s a3 & function of y, uniformly in x, and K(.,y) s of weak type s aa g
funetion of z, uniformly n y. Then the linear transformation

&)~ TH@) = [ K, nfwyy
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defined for f - R™ = C, satisfies |Tfljpe < Ay||flize whenever s > 1, 1 <p <
g < 0o and % = % + % — 1. Moreover, |[Tf||pe=< < Ac||fller for alle > 0.

Lemma. Suppose K,s,f as above and f € L* where % + % = 1, suppose
aiso that m = n, § CC R", and suppK CQ x (. Then

exr |2if(2)[ it 2 o0
Jyesmeg g sy Yimte) < 34 <

and ¢, M do not depend on [, but on s and m{§2)

Acording to the lemma, we have to prove that K{(, z} is of 2242 _weak type

on I’ in each variable uniformely in the other.

2n+1

For this we use the estimate (7) and, since it is symmetric, it will be enough
to prove the following result:

Lemma 2.1. m{z:|K{{,2)| >t} = O(F%), unifermly in { € D

This will be done in section 3. B
2.2. Proof of Theorem 2:
Letp>2n+2and fc Lro,z)' First we prove that TF € Lip(% - l;!i, D)

Let z,w € D, § = ||z — w]l. We define p = §*/2 and estimate Tf{z) — T f(w),
using (8), by

(12) / O 2@+ [ AN w)dm(e)
B., (230D

45 / (OB (S, 2)dm(C)
DABeq (2}

7

In case r €C?*7 and f ¢ Lfﬂ gy B > 1, we will have, acording to (9}, one
more term:

5 f (FOINUC, 2)dm(()
D\ B, (%)

iz

Using Holder estimates we are lead to the following lemmas which will be
proved in section 3:

Lemma 2.2.1. For1<s < 202 e havpe
2n+1

{ Ni(C, 2y dm(O) P = O(n%—zn—_l)
By (z0D

Corollary. For1 <s< g“i?
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{ / Ni(C,2)*dm(Q)}* = 0(1)
DA\ B, (z}

Lemma 2.2.2. For1<s<2—1'7

{/ M(¢,2) dm{O}* = O( ™5 ~2n-3)
DA\B,(z)

Using lemma 2 2.1 the first integral in (12} is 0(65_¢) The second one

is also 0(65_ » ) because B.,(z) C Bm(w) Finally by lemma 2.2.2, the last
term in (12} is O(8n™ 5 —2n=3) = 0(6?* ? )

This proves the first part of the theorem. Under the conditions in {b) we have
one more term which is O(1) according to the corollary of lemma 2.2.1. Then
fp> f’“g'? we obtain a Lipschitz condition whith exponent mm(-y, = — "'“)
which gives part (b) of the theorem. Finally, for part {c) we simply write,

(Ti(e) = TH WAL [, (K2 + 1 )17
([ G ) = (Gl dm( )}

where % +i=1
The first term can be made arbitrarily small by choosing € small and the

second too by choosing w close enough to z beacause the kernels are continuous
off the diagonal. W

2.3. Proof of the Theorem 3:

First, let Ag(2} = {{: p((, 2z} < 6}, be the Hérmander ball related to g, For
p>2n+2and fe L}(Jﬁ_l) we split now the integrals giving T f{z) — T f(w) for
z,w € 4D in the form:

(13) | / V(O Na(C, 2)dm(C) + ] F(OINa(C, w)dm(()
Acslz) Acgiz)

v f FOIMAC, 2)dmi(C)
: DVA5(2)

Here 4 = p{z,w) and we have used (10)
In case r €C**7 and f ¢ L‘E’o 8y B > 1, we will have by {11) another term:

(14) 51/° fD ey WG, 2)dm(0)

Using Holder’s inequality as before we are lead now to the following lemmas:
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Lemma 2.3.1, For 1 <s<« .2—“1—1,

(] NG am(Q)r = 05" Hm3)
Aglz)

Corollary. For1<s < 242

{ Na(¢,2) dm(()}* = O(1)

Dy Ag(z)

Lemma 2.3.2. The iniegral

{ My((, 2y dm{{)}/°

Dh\Ag(2)

is O(6*E "1y for 1 < s < 2242 4nd O(|logh]) for s =1

Now, as in the proof of theorem 2, using lemma 2.3.1, we see that the first
term in (13} is 0{63_"—5_), and the second one has the same order cstimate,
because Acs(2) C Aqxs(w) (since p(z,w) = §). Finally, the lemma (2.3.2) gives
us the same estimate for the third one, whenever p < co. This proves part (a)
of the theorem.

When p = 400, s = 1, and using the same lemmas we have for (13) the
estimate 6% + &1 |In6]. This gives (b).

Finally for general forms {part (c)), the corollary of lemma 2.2.1 and the
same considerations as in the corresponding part in theorem 1 complete the

proof of {c}. M

3. Proof of the estimates

3.1. The case of the euclidean balls.

First, let us notice that for z € D far away from the boundary, or in the
set of singular points (A(z) = 0), the only terms appearing in the integrals are
those of type [|€ — 2z||7**** and ||{ — ]| 7"

Otherwise, when A > 0, in order to integrate in or outside euclidean balls we
choose the coordinates:

I
8r(z)
t=SeGy ¢

t31 sy t?n
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euclidean orthonormal coordinates in T, the complex tangent space to {r =
r(z)} at the point z.

The jacobian matrix associated to the change z{{ — z} — H{{ — 2) is 1, and
let us denote t' = {3, ..., t2a), and £ = ({,%2,1')

In terms of these coordinates, p({,z) =~ A{z)[|fa] + |t2]] + |Itli® -

Proof of lemma 2.1:

We use (7); the estimate is clear for the term ||{ — 2||'~2". Note that since

ME) = Mz} + Ol — 2]|) we can delete A(() in the estimate. Now, we have

A? A,
A= i > s} )] < ()=,
(o= ey > o C W< o)
2 A2
At 11 -
(Alta +ital)” < Srames)
and then
' Ag 1 . 2 /\2
m(A) < m{jlt'] < (*3—)’““ (At +ita])® < ;ﬂ"tTﬂm}

dtydty = O(s +F1) W

dm{t’)]
/{e<||: (A2 ) TR} {o<|t+it|* < ey )

Proof of lemma 2.2.1:
In view of formula (5) we have to estimate, for 1 < s < J‘— the following
integrals:

dm{()
(15) /DnB,,(z) ”C _ Z"(‘Zn—l)s

("M — =,
o) /Dn}}“(z](“r(z)mc —z|? + 92],;) dm(()
I - z||A%
(17) /Dnﬂ m(p(c )w) dr({)

The first one is immediately seen to be Oy ~@7~ -1y The second, using
the coordinates above, 1s estimated by

n— ”tlrJ tl t‘zn
I ( )I( 1)3/\23/ o Fet
a,(a} [lr(z}’l,"?"t“ f A(ltll ; |t2[) "i”2]2 *
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and taking polar coordinates:

t; = Rcos@

t; = Rsinfcos ¢

the integral above is bounded by:

_ . .
Ct[r(z)ﬁ“‘”’)\z(’_l)] Rz"‘“’d}i/ ARsin 6d9
4] a

/"' ARsinfsinpdyp
o [Jr(z)|Y/2R + ARcos# + MRsinfcosp + R?j2ne

7 R?n—3+st
< (n—l)s/i\?(s—l)/
s chte) o PP+ RRP™
i dR
{n—=1}s 12{s-1)
< LCr(z)) A /0 ([r(2)]}7? + R)?=s—2R0n-11G-1)

K dn
2{a—1)
A A Rizn+i)(s-1)

this is in turn bounded by O(n!=(Grth{s-1)y,
The third one 1s treated in a similar way. B
Proof of lemma 2.2.2:
Acording to the definitions {8’} and easy calculations, we have,

Mi(c. ) = o3& 2) r(2)"1I§ — z]|13° e
(€, 2) (||C — z|FrHt + (r(2)'72||C = 2z)) + p]P7t2 + p(C,z)“”f’?)

and so we have to estimate the three integrals corresponding to the three terms
en the right. The first one is estimated by

Af 1
a .[ + dmi(
( ) D\BR(Z){ IK - 3"(2“"'1)’ "C — z"?ns} ( }
and this is _
1 1
(n(‘Zn-i-l)s—?n 7?2“(3_1))

when 1 < s and

1
O(= + |innl)
n
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when s = 1
Both arc of order

1
O Famene1)

for 1 <s5 < % For the second one we use the same coordinates as before

and bound it by

& = = AR sin @sinpd
nsy3s—2 2n—3+3 : iy
Clr(2)[™* ) fn R dR/B ,\Rsmﬁde% TR § R

/di dR
o R‘2+('2n+l)(a—1)(|r{z)!1f2+R)('2n+2)s—-2

& dR 3
RH(2a43)(s—1) —

S Clr(z)lns)\fis-?

< CA33—2 O(n—l—(‘Zn-l-:i)(s—I))

for1<s < %, where d; is the euclidean diameter of IJ. The third one is

estimated along the same line and it is left to the reader. M

3.2. The case of the Hormander balls,

First let us notice that, for z € bD, defining €(z,8) = inf{§'/?, WS?T}v we
have that As{z) = Bf(z’é)(z) X Bg;‘;z(z), where the ball B?:};z(z} Is2n— 2
dimensional and is taken on the complex hyperplane T?, and the ball Bf(z‘ 5 3(2)
is 2-dimensional and is taken on the orthogonal complement of T¢. So 4s(2} C
BZ%.(z), and also m{A4s(2)) < Ce(z, 8261

Proof of lemma 2.3.1:

By the formula {11} we have to estimate:

: al dm(¢)
9 dm{ty< C S VI
(1 } A.s(z)(,o(C,z)n_m + p((;z)n+1f2) (O < ‘[35132(2) ¢ — 2"{2:1-1)3
A2 dm(()
* ./Aa(;,) p({,z){“‘*%)-‘

because p((,z) > ||{ — z]] and the considerations above.

The first integral is as {15) in the proof of the lemma 2.2.1, and the second
one can be evaluated by

N mf Ap-rs(2)) o= 2,27k (27 k)
/\23 m( 22—k - ScAEs .
g(z—ka)ww é (2-k8)(nt3ds

1

oo
< 2(s=1) g2 +{n+1}s—1)
S AT :;Z-a PFF—(nF 1) 1]
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because €(z,6) < £, and the last series converges for 1 < 5 < J'—gz_!_%

S0 {19) is 0(6‘:‘_(”""1‘)(’_1}) and this proves the estimate. B
Proof of the lemma 2.3.2:

In view of (10), we have to estimate

1 C
(20) /D\A.,(;)(P(C,Z)“ * P(C,Z)““) 4m(¢)

- and proceeding as in lemma 2.3.1, since (¢, 2) > ||¢—=||® and Bosriegy C Aslz),
we bound the first one by

[ am(()
DAB 172(2) !K - z"‘Zns

when 1< s < 522 and 0{|In8]) when s = 1.

and also, for d' suficiently large, the second one by

/ A dm(()
D\As(z) PG, 2)intD)e

l kg \2enkgin—1
2 €(2,276)(2%¢6) 2(e—1)
< A% Z (2k§)n+1)s =A . Z (2;.5 1+(n 13(s—1)
k=1

— O(é—n(s—l))

Wen 1 < 5 < ﬁ, this is bounded by

=)
1

2{s—1} —(n+1)(s—1)§ :—

A J h 12&:(:’:-}—13(3—1)

and when s = 1, since 2% < p(D), the Hormander diameter of D),we have the
bound

dl’ dl’
_ 1 T dx
NE=Dp(D) Y oz <C f — = O(|ind])
k=1 k3

And the lema follows, B
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