SOME CHARACTERIZATIONS OF REGULAR MODULES

Goro Azumaya

Abstract

Let M be a left module over a ring R. M is called a Zelmanowitz-regular module if for each $x \in M$ there exists a homomorphism $f: M \to R$ such that $f(x)x = x$. Let Q be a left R-module and $h: Q \to M$ a homomorphism. We call h locally split if for each $x \in M$ there exists a homomorphism $g: M \to Q$ such that $h(g(x)) = x$. M is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent:

1. M is Zelmanowitz-regular.
2. Every homomorphism into M is locally split.
3. M is locally projective and every cyclic submodule of M is a direct summand of M.

As generalizations of the concept of Von Neumann's regular rings to the module case, there have been considered three types of modules by Fieldhouse [1], Ware [4] and Zelmanowitz [5], each called regular. The Fieldhouse-regular module was defined to be a module whose submodules are pure submodules and the Ware-regular module was defined as a projective module in which every cyclic submodule is a direct summand, while a left module M over a ring R is called a Zelmanowitz-regular module if for each $x \in M$ there exists a homomorphism $f: M \to R$ such that $f(x)x = x$. Now we introduce a notion of locally split homomorphisms to show that a module is Zelmanowitz-regular if and only if every homomorphism into the module is locally split, and by making use of this we prove that Zelmanowitz-regular modules are characterized as locally projective modules whose cyclic submodules are direct summands. For convenience (but at the risk of confusion), we call a module regular if every cyclic submodule of it is a direct summand. Thus, in this terminology, a module is Ware-regular or Zelmanowitz-regular if and only if it is projective regular or locally projective regular respectively. Moreover we shall see that every regular module is Fieldhouse-regular and that Ware-regular and Zelmanowitz-regular modules are also characterized as projective Fieldhouse-regular and locally projective Fieldhouse-regular modules respectively.

Let R be a ring with identity element. By a module we shall throughout mean a unital left R-module, unless otherwise specified. Let Q and M be modules, and let $h: Q \to M$ be a $(R-) \text{ homomorphism}$. h is called locally split if for any $x_0 \in h(Q)$ there exists a homomorphism $q: M \to Q$ such that $h(q(x_0)) = x_0$.

Proposition 1. Let \(h : Q \to M \) be a locally split homomorphism. Then, for any finite number of \(x_1, x_2, \ldots, x_n \in h(Q) \), there exists a homomorphism \(q : M \to Q \) such that \(h(q(x_i)) = x_i \) for \(i = 1, 2, \ldots, n \).

Proof: In order to prove by induction, suppose that \(n > 1 \) and our assertion is true for \(n - 1 \) (instead of \(n \)). Then there exists a \(q_1 : M \to Q \) such that \(h(q_1(x_n)) = x_n \). Since \(x_n = h(q_1(x_n)) \) is in \(h(Q) \), there is a \(q_2 : M \to Q \) such that \(h(q_2(x_n - h(q_1(x_n)))) = x_n - h(q_1(x_n)) \). Let \(q = q_1 + q_2 \circ h \circ q_1 : M \to Q \). Then \(h(q(x_n)) = h(q_1(x_n)) + h(q_2(x_n)) - h(q_2(h(q_1(x_n)))) = h(q_1(x_n)) + h(q_2(x_n)) = x_n \), and \(h(q(x_i)) = h(q_1(x_i)) + h(q_2(x_i)) - h(q_2(h(q_1(x_i)))) = x_i \) for \(i = 1, 2, \ldots, n - 1 \). Thus \(q \) is a desired homomorphism.

Let \(N \) be a submodule of a module \(M \). \(N \) is called locally split in \(M \) if the inclusion map \(N \to M \) is locally split, i.e., for any \(x_0 \in N \) there exists a homomorphism \(s : M \to N \) such that \(s(x_0) = x_0 \).

Proposition 2. Let \(h : Q \to M \) be a homomorphism. Denote by \(h' \) the epimorphism \(Q \to h(Q) \) regarded \(h \) as a map onto \(h(Q) \). Then \(h \) is locally split if and only if \(h' \) is locally split and \(h(Q) \) is locally split in \(M \).

Proof: Let \(x_0 \) be any element of \(h(Q) \). Suppose that \(h \) is locally split. Then there exists a homomorphism \(q : M \to Q \) such that \(h(q(x_0)) = x_0 \). This implies that the homomorphism \(s = h \circ q : M \to h(Q) \) satisfies \(s(x_0) = x_0 \), and thus \(h(Q) \) is locally split in \(M \). On the other hand, if we denote by \(q' : h(Q) \to Q \) the restriction of \(q \) to \(h(Q) \) then we have \(h'(q'(x_0)) = h(q(x_0)) = x_0 \), which shows that \(h' \) is locally split. Suppose conversely that \(h(Q) \) is locally split in \(M \) and \(h' \) is also locally split. This means that there exist homomorphisms \(s : M \to h(Q) \) and \(q' : h(Q) \to Q \) such that \(s(x_0) = x_0 \) and \(h'(q'(x_0)) = x_0 \). Let \(q = q' \circ s : M \to Q \). Then we have \(h(q(x_0)) = h'(q'(s(x_0))) = h'(q'(x_0)) = x_0 \). Thus \(h \) is locally split.

Proposition 3. Let \(M \) be a module. Then every locally split submodule of \(M \) is pure in \(M \), while every locally split epimorphism from \(M \) is pure, i.e., the kernel of the epimorphism is pure in \(M \).

Proof: Let \(N \) be a locally split submodule of \(M \). Let \(x_1, x_2, \ldots, x_n \in M \) satisfy the system of linear equations \(r_1 x_1 + r_2 x_2 + \cdots + r_m x_m = v_i \) (\(i = 1, 2, \ldots, m \)), where each \(r_{ij} \in R \) and \(v_i \in N \). Then, by applying Proposition 1 to \(v_1, v_2, \ldots, v_m \) and the inclusion map \(N \to M \) (instead of \(x_1, x_2, \ldots, x_n \) and \(h : Q \to M \)), we can find a homomorphism \(s : M \to N \) such that \(s(v_i) = v_i \) for \(i = 1, 2, \ldots, m \). We have then \(r_{11} s(x_1) + r_{12} s(x_2) + \cdots + r_{1n} s(x_n) = s(v_1) = v_1 \) (\(i = 1, 2, \ldots, m \)). Since each \(s(x_i) \) is in \(N \), this shows that \(N \) is pure in \(M \) by Cohn's theorem.

Let next \(h : M \to M' \) be an epimorphism and \(N \) the kernel of \(h \). Let \(x_1, x_2, \ldots, x_n \in M \) satisfy the system of linear equations \(r_1 x_1 + r_2 x_2 + \cdots + r_m x_m = v_i \) (\(i = 1, 2, \ldots, m \))
\[r_{in}x_n = v_i \quad (i = 1, 2, \ldots, m), \]
where \(r_{ij} \in R \) and \(v_i \in N \). Then we have
\[r_{11}h(x_1) + r_{12}h(x_2) + \cdots + r_{1n}h(x_n) = h(v_1) = 0 \quad (i = 1, 2, \ldots, m). \]
Suppose that \(h \) is locally split. Then since each \(h(x_j) \) is in \(h(M) = M' \), by applying Proposition 1 to
\(h(x_1), h(x_2), \ldots, h(x_n) \) and \(h : M \to M' \) (instead of \(x_1, x_2, \ldots, x_n \) and \(h : Q \to M' \)), we find a homomorphism \(q : M' \to M' \) such that \(h(q(h(x_j))) = h(x_j) \), i.e., \(x_j - q(h(x_j)) \in N \) for \(j = 1, 2, \ldots, n \). From the above equalities it follows now
\[r_{11}(x_1 - q(h(x_1))) + r_{12}(x_2 - q(h(x_2))) + \cdots + r_{1n}(x_n - q(h(x_n))) = v_i \quad (i = 1, 2, \ldots, m). \]
This implies that \(N \) is pure in \(M \) again by Cohn's theorem. \(\blacksquare \)

Remark. The notion of locally split submodules was introduced by Ramamurthi and Rangaswamy [2] by the name of strongly pure submodules, and they actually obtained the first half of the preceding proposition.

Theorem 4. Let \(M \) be a left \(R \)-module. Then the following conditions are equivalent:

1. \(M \) is a Zelmanowitz-regular module.
2. Every homomorphism into \(M \) (from any module) is locally split.
3. Every homomorphism \(R \to M \) is locally split.

Proof: (1) \(\Rightarrow \) (2): Let \(Q \) be a module and \(h : Q \to M \) a homomorphism. Let \(x_0 \) be any element of \(h(Q) \). Choose a \(z_0 \in Q \) such that \(h(z_0) = x_0 \). Since \(M \) is Zelmanowitz-regular, there exists a homomorphism \(f : M \to R \) such that \(f(x_0)z_0 = x_0 \). Define a homomorphism \(q : M \to Q \) by \(q(x) = f(x)z_0 \) for \(x \in M \). Then we have \(h(q(x_0)) = f(x_0)h(z_0) = f(x_0)x_0 = x_0 \), which shows that \(h \) is locally split.

(2) \(\Rightarrow \) (3) is trivial.

(3) \(\Rightarrow \) (1): Let \(x_0 \) be any element of \(M \). Let \(g : R \to M \) be the homomorphism defined by \(g(r) = rx_0 \) for \(r \in R \). Then \(g \) is locally split, so that there exists a homomorphism \(f : M \to R \) such that \(x_0 = g(f(x_0)) = f(x_0)x_0 \). This shows that \(M \) is Zelmanowitz-regular. \(\blacksquare \)

Now we call a module \(M \) a regular module if every submodule of \(M \) is locally split in \(M \).

Proposition 5. Let \(M \) be a module. Then the following conditions are equivalent:

1. \(M \) is a regular module.
2. Every finitely generated submodule of \(M \) is a direct summand of \(M \).
3. Every cyclic submodule of \(M \) is a direct summand of \(M \).

Proof: (1) \(\Rightarrow \) (2): Let \(N = Rx_1 + Rx_2 + \cdots + Rx_n \) be a finitely generated submodule of \(M \). Since \(M \) is regular, \(N \) is locally split and therefore, by applying Proposition 1 to the inclusion map \(N \to M \) (instead of \(h : Q \to M \)), we can find a homomorphism \(s : M \to N \) such that \(s(x_i) = x_i \) for \(i = 1, 2, \ldots, n \).
G. Azumaya

1, 2, ..., n, or equivalently, \(s(x) = x \) for all \(x \in N \). This implies that \(N \) is a direct summand of \(M \).

(2) \(\Rightarrow \) (3) is trivial.

(3) \(\Rightarrow \) (1): Let \(N \) be a submodule of \(M \). Let \(x_0 \) be any element of \(N \). Then the cyclic submodule \(Rx_0 \) is a direct summand of \(M \), which means that there is a homomorphism \(s : M \to Rx_0(\subseteq N) \) such that \(s(x_0) = x_0 \). Thus \(N \) is locally split in \(M \).

It is to be pointed out that every submodule of a regular module is regular too, and every regular module is Fieldhouse-regular, i.e., every submodule is a pure submodule.

A module \(M \) is called locally projective if every epimorphism onto \(M \) (from any module) is locally split. It follows from Proposition 3 that every locally projective module is flat, since a flat module is characterized as a module onto which every epimorphism is pure. The notion of locally projective modules was introduced by Zimmermann-Huisgen [6] and also by Raynaud and Gruson [3] under the name of flat strict Mittag-Leffler modules. Their definitions are apparently different from the above one. But the following proposition implies that all the definitions coincide (if compared with [6], Theorem 2.1 and [3], Proposition 2.3.4), and we will give a proof to the proposition for completeness:

Proposition 6. Let \(M \) be a left \(R \)-module. Then the following conditions are equivalent:

(1) \(M \) is locally projective.

(2) For any finitely generated submodule \(M_0 \) of \(M \), there exist a finitely generated free left \(R \)-module \(F \) and homomorphisms \(f : M \to F \) and \(g : F \to M \) such that \(g(f(x)) = x \) for all \(x \in M_0 \).

(3) For any \(x_0 \in M \), there exist a finite number of homomorphisms \(f_i : M \to R \) \((i = 1,2,\ldots,n) \) and elements \(y_i \in M \) \((i = 1,2,\ldots,n) \) such that

\[
\sum_{i=1}^{n} f_i(x_0) y_i = x_0.
\]

Proof: (1) \(\Rightarrow \) (2): Let \(Q \) be a free \(R \)-module having an epimorphism \(h : Q \to M \). Then \(h \) is locally split, so that, by applying Proposition 1 to the finite number of generators of \(M_0 \), we can find a homomorphism \(q : M \to Q \) such that \(h(q(x)) = x \) for all \(x \in M_0 \). Since the image \(q(M_0) \) of \(M_0 \) is a finitely generated submodule of \(Q \), there exists a finite subset \(\{u_1,u_2,\ldots,u_n\} \) of the free basis of \(Q \) such that \(q(M_0) \) is contained in the finitely generated free submodule \(F = Ru_1 + Ru_2 + \cdots + Ru_n \) of \(Q \). Since \(F \) is a direct summand of \(Q \), there exists a homomorphism \(p : Q \to F \) such that \(p(z) = z \) for all \(z \in F \). Let \(f = p \circ q : M \to F \), and let \(g : F \to M \) be the restriction of \(h \) to \(F \). Then they clearly satisfy \(g(f(x)) = x \) for all \(x \in M_0 \).

(2) \(\Rightarrow \) (3): Let \(x_0 \in M \). Since \(Rx_0 \) is finitely generated, there exist a finitely generated free \(R \)-module \(F \) and homomorphisms \(f : M \to F \), \(g : F \to M \) such that \(g(f(x_0)) = x_0 \). Let \(u_1,u_2,\ldots,u_n \) be a free basis of \(F \). Then we can, for
each i, define a homomorphism $f_i : M \rightarrow R$ by $f_i(x) = f_i(x)u_1 + f_2(x)u_2 + \cdots + f_n(x)u_n$ for $x \in M$. Let $y_i = g(u_i) \in M$ for $i = 1, 2, \ldots, n$. Then we have $x_0 = g(f(x_0)) = f_1(x_0)y_1 + f_2(x_0)y_2 + \cdots + f_n(x_0)y_n$.

(3) \Rightarrow (1): Let Q be any R-module having an epimorphism $h : Q \rightarrow M$. Let $x_0 \in M$, and let $f_i : M \rightarrow R$ and $y_i \in M$ ($i = 1, 2, \ldots, n$) be as in (3). Let $z_i \in Q$ be such that $h(z_i) = y_i$ for each i, and define a homomorphism $q : M \rightarrow Q$ by $q(x) = f_1(x)z_1^{-1} - f_2(x)z_2 + \cdots + f_n(x)z_n$ for $x \in M$. Then we have that $h(q(x_0)) = f_1(x_0)y_1 + f_2(x_0)y_2 + \cdots + f_n(x_0)y_n = x_0$. Thus h is locally split, so that M is locally projective.

Proposition 7. Let M be a locally projective module, and let N be a pure submodule of M. Then N is locally projective and is locally split in M.

Proof: Let x_0 be any element of N. By the preceding proposition, there exist homomorphisms $f_i : M \rightarrow R$ and elements $y_i \in M$ ($i = 1, 2, \ldots, n$) such that $f_1(x_0)y_1 + f_2(x_0)y_2 + \cdots + f_n(x_0)y_n = x_0$. Since N is pure in M, we can find elements v_1, v_2, \ldots, v_n in N such that $f_1(x_0)v_1 + f_2(x_0)v_2 + \cdots + f_n(x_0)v_n = x_0$ according to Cohn's criterion. Now we define a homomorphism $s : M \rightarrow N$ by $s(x) = f_1(x)v_1 + f_2(x)v_2 + \cdots + f_n(x)v_n$ for $x \in M$. Then we have that $s(x_0) = x_0$. Thus N is locally split in M. On the other hand, if we denote by g_i the restriction of f_i to N then clearly we have that $g_1(x_0)v_1 + g_2(x_0)v_2 + \cdots + g_n(x_0)v_n = x_0$, which shows that N is locally projective.

Remark. That N is locally projective in Proposition 7 was mentioned in [6, p. 236].

Theorem 8. Let M be a module. Then the following conditions are equivalent:

(1) M is a Zelmanowitz-regular module.

(2) M is a locally projective regular module.

(3) M is locally projective and Fieldhouse-regular (i.e., every submodule of M is pure in M).

Proof: (1) \Rightarrow (2): If M is Zelmanowitz-regular, it follows from Theorem 4 that every epimorphism onto M is locally split and every monomorphism into M is locally split, which mean that M is locally projective and regular respectively. (Another proof for the local projectivity of M can be obtained directly from Proposition 6, for that for any $x_0 \in M$ there exists an homomorphism $f : M \rightarrow R$ such that $f(x_0)x_0 = x_0$ implies that M satisfies the condition (3) in Proposition 6 with $n = 1, f_1 = f$ and $y_1 = x_0$. That a Zelmanowitz-regular module is regular, i.e., every cyclic submodule of the module is a direct summand, is also proved in [5, Theorem 1.6].

(2) \Rightarrow (3) is a consequence of the fact, due to Proposition 3, that every locally split submodule is a pure submodule.
$(3) \Rightarrow (1)$: Let Q be a module and $h : Q \rightarrow M$ a homomorphism. Since $h(Q)$ is a pure submodule of M by assumption, it follows from Proposition 7 that $h(Q)$ is locally projective and is locally split in M. Regarding h as a map onto $h(Q)$ we have an epimorphism $h' : M \rightarrow h(Q)$, but the local projectivity of $h(Q)$ implies that h' is locally split. Therefore, by Proposition 2, h is locally split. Thus, M is Zelmanowitz-regular according to Theorem 4.

Remark 1. Although we throughout assume that R has an identity element, the paper [5] deals with modules over rings without identity element.

Remark 2. It is pointed out in [6] that over a regular ring a module is locally projective if and only if it is Zelmanowitz-regular. But this can be regarded as a particular case of Theorem 8, because over a regular ring every module is flat and hence is Fieldhouse-regular.

In this connection, we would like to mention of some properties of regular modules and locally projective modules:

1. **If M is a regular R-module then its Jacobson radical $J(M)$ is zero, and if M is a faithful regular R-module then the Jacobson radical $J(R)$ of R is zero.**

The proof is actually given in [4], though regular modules in [4] mean projective regular modules in the present paper. Namely, if x_0 is in $J(M)$ then Rx_0 is a direct summand small submodule of M and therefore $x_0 = 0$, which implies $J(M) = 0$. Since $J(R)M \subseteq J(M)$, it follows $J(R) = 0$ if M is faithful and regular.

2. **If M is a locally projective R-module then $J(R)M \subseteq J(M)$.**

For, let x_0 be in $J(M)$; then by Proposition 6 there exist a finite number of homomorphisms $f_i : M \rightarrow R$ and elements y_i in M ($i = 1, 2, \ldots, n$) such that $f_1(x_0)y_1 + f_2(x_0)y_2 + \cdots + f_n(x_0)y_n = x_0$. Let L be a maximal left ideal of R. Then its inverse image by f_i is either equal to M or a maximal submodule of M and therefore contains $J(M)$, or equivalently, $f_i(J(M)) \subseteq L$. Since this is true for every maximal left ideal L, it follows $f_i(J(M)) \subseteq J(R)$ and in particular $f_i(x_0) \in J(R)$. This is true for each $i = 1, 2, \ldots, n$, so that we have $x_0 \in J(R)M$. Thus we know that $J(M) \subseteq J(R)M$.

3. **A module M is Fieldhouse-regular if (and only if) every finitely generated submodule of M is pure in M.**

This is because Cohn's criterion for purity is concerned only with finite number of elements.

Proposition 9. Let M be a Zelmanowitz-regular module, and let S be the endomorphism ring of M. Then, as an S-module, M is Zelmanowitz-regular too, and the Jacobson radical $J(S)$ of S is zero.

Proof: We consider M a right S-module and hence a two-sided R-S-module; thus $st = t \circ s$ for all $s, t \in S$. Let x_0 be an element of M. Then there exists a homomorphism $f : M \rightarrow R$ such that $f(x_0)x_0 = x_0$. Let $y \in M$. Then the mapping $x \mapsto f(x)y$ for $x \in M$ is an endomorphism of M, which we denote by $\bar{y} \in S$. If $s \in S$, we have $f(x)(ys) = (f(x)y)s$ for all $x \in M$, i.e., $\bar{ys} = y\bar{s}$.
This implies that the mapping \(y \mapsto y \) for \(y \in M \) is a homomorphism \(M \rightarrow S \) as \(S \)-modules. If we denote this by \(g \) then we have \(f(x)y = xg(y) \) for all \(x, y \in M \). (In the notation in [5], \(g(y) = [f, y] \) for all \(y \in M \).) It follows in particular that \(x_0 = f(x_0)x_0 = x_0g(x_0) \). This shows that the \(S \)-module \(M \) is Zel'manowitiz-regular. Since \(M \) is a faithful \(S \)-module, we have \(J(S) = 0 \) according to the above mentioned property 1.

Now, clearly a locally projective module is projective if it is finitely generated, but this is true even if it is countably generated:

Proposition 10. Every countably generated locally projective module is projective.

Proof: If we observe the fact that every locally projective module is a Mittag-Leffler module, our proposition can be regarded as a particular case of [3], Corollaire 2.2.2. But we shall for completeness give a proof which is valid for our case. Let \(M \) be a locally projective \(R \)-module with countable generators \(x_1, x_2, x_3, \ldots \). Let \(M_1 = Rx_1 \). By Proposition 6 there exist a finitely generated free \(R \)-module \(F_1 \) and homomorphisms \(f_1 : M \rightarrow F_1, g_1 : F_1 \rightarrow M \) such that \(g_1(f_1(x)) = x \) for all \(x \in M_1 \). Let next \(M_2 = g_1(F_1) + Rx_2 \). Since \(M_2 \) is finitely generated, again by Proposition 6, there exist a finitely generated free \(R \)-module \(F_2 \) and homomorphisms \(f_2 : M \rightarrow F_2, g_2 : F_2 \rightarrow M \) such that \(g_2(f_2(x)) = x \) for all \(x \in M_2 \). In this way, for each \(n > 1 \), we can find a finitely generated free \(R \)-module \(F_n \) and homomorphisms \(f_n : M \rightarrow F_n, g_n : F_n \rightarrow M \) such that \(g_n(f_n(x)) = x \) for all \(x \in M \). \(= g_{n-1}(F_{n-1}) + Rx_n \). But this is clearly equivalent to that \(g_n(f_n(g_{n-1}(y))) = g_{n-1}(y) \) for all \(y \in F_{n-1} \) and \(g_n(f_n(x_n)) = x_n \). From this follows then that \(g_n \circ f_n \circ g_{n-1} = g_{n-1} \) whence \(g_{n-1}(F_{n-1}) \subseteq g_n(F_n) \) and \(x_n \in g_n(F_n) \). Thus we have an ascending chain \(g_1(F_1) \subseteq g_2(F_2) \subseteq g_3(F_3) \subseteq \ldots \) of submodules of \(M \) whose union is equal to \(M \). For simplicity, we put \(s_n = g_n \circ f_n : M \rightarrow g_n(F_n) \) for each \(n \). Then \(s \) is an endomorphism of \(M \) satisfying \(s_n \circ g_{n-1} = g_{n-1} \) and hence \(s_n \circ s_{n-1} = s_{n-1} \) for each \(n > 1 \). Moreover we point out that \(s_n \circ g_r = g_r \) and \(s_n \circ s_r = s_r \) whenever \(n > r \), because if \(r < n \) then \(g_r(F_r) \subseteq g_{n-1}(F_{n-1}) \) and so \(s_n(g_r(y)) = g_r(y) \) for all \(y \in F_r \).

Let \(F \) be the direct sum of all \(F_n \)'s. Then \(F \) is a countably generated free \(R \)-module. The homomorphisms \(g_n : F_n \rightarrow M \) for \(n = 1, 2, 3, \ldots \) together define a homomorphism \(g : F \rightarrow M \) in the natural manner. The image \(g(F) \) is the sum of all \(g_n(F_n) \)'s and hence is equal to \(M \), because even their union is \(M \). Thus \(g \) is an epimorphism. In order to prove that \(M \) is projective, it is therefore sufficient to show that \(g \) splits, i.e., there exists a homomorphism \(f : M \rightarrow F \) such that \(g \circ f = 1 \), the identity map of \(M \). Let now \(q_n : F_n \rightarrow F \) be the canonical embedding for \(n = 1, 2, 3, \ldots \). Then we have \(g \circ q_n = g_n \) for each \(n \). We shall construct a homomorphism \(h_n : F_n \rightarrow F \) for each \(n \) such that \(g \circ h_n = g_n \) and \(h_n \circ f_n \circ g_{n-1} = h_{n+1} \circ f_{n+1} \circ g_n \) if \(n > 1 \). For this purpose, let first \(h_1 = q_1 \). Then \(g \circ h_1 = g_1 \). Suppose \(n > 1 \) and there is given an \(h_n : F_n \rightarrow F \) such
that \(g \circ h_n = g_n \). We define \(h_{n+1} = (h_n \circ f_n + q_{n+2} \circ f_{n+2} \circ (1 - s_n)) \circ g_{n+1} \). Then we have

\[
\begin{align*}
 g \circ h_{n+1} &= (g \circ h_n \circ f_n + g \circ g_{n+2} \circ f_{n+2} \circ (1 - s_n)) \circ g_{n+1} \\
 &= (g_n \circ f_n + g_{n+2} \circ f_{n+2} \circ (1 - s_n)) \circ g_{n+1} \\
 &= (s_n + s_{n+2} \circ (1 - s_n)) \circ g_{n+1} = g_{n+1}.
\end{align*}
\]

On the other hand, we have

\[
\begin{align*}
 h_{n+1} \circ f_{n+1} \circ g_{n-1} &= (h_n \circ f_n + q_{n+2} \circ f_{n+2} \circ (1 - s_n)) \circ g_{n-1} \\
 &= h_n \circ f_n \circ g_{n-1} + q_{n-2} \circ f_{n-2} \circ g_{n-1} - g_{n-2} \circ f_{n-2} \circ s_n \circ g_{n-1} = h_n \circ f_n \circ g_{n-1}.
\end{align*}
\]

Thus by induction we get a desired sequence of homomorphisms \(h_n(n = 1, 2, 3, \ldots) \).

Let \(x \in M \). Then there exists an \(n > 1 \) such that \(x \in g_{n-1}(F_{n-1}) \) i.e., \(x = g_{n-1}(y) \) for some \(y \in F_{n-1} \). We have then that \(h_n(f_n(x)) = h_n(f_n(g_{n-1}(y))) = h_{n+1}(f_{n+1}(g_{n-1}(y))) = h_{n+1}(f_{n+1}(x)) \). Moreover, since \(x \in g_n(F_n) \) in this case, by replacing \(n \) by \(n+1 \) we should have that \(h_{n+1}(f_{n+1}(x)) = h_{n+2}(f_{n+2}(x)) \).

Continuing in this way, we confirm that \(h_n(f_n(x)) = h_m(f_m(x)) \) for every \(m > n \). This shows that \(h_n(f_n(x)) \) is independent of the choice of \(n \) so far as \(x \) is in \(g_{n-1}(F_{n-1}) \). Thus by defining \(f(x) = h_n(f_n(x)) \) for \(x \in M \) we have a homomorphism \(f : M \to F \), which satisfies \(g(f(x)) = g_n(f_n(x)) = x \) (since \(x \in g_{n-1}(F_{n-1}) \)). This completes our proof. \(
\square
\)

It is to be pointed out that the preceding proposition can be regarded as a generalization of [5, Corollary 1.7].

Acknowledgments. The author gratefully acknowledges the support from Institut d'Estudis Catalans of Barcelona.

References