0. Introduction

Let us consider in a domain Ω of \mathbb{R}^n solutions of the differential inequality

$$|\Delta u(x)| \leq V(x)|u(x)|, \quad x \in \Omega,$$

where V is a non smooth, positive potential.

We are interested in global unique continuation properties. That means that u must be identically zero on Ω if it vanishes on an open subset of Ω.

There is an extensive literature on the matter, mainly to relax the local integrability condition required to the potential V. When L^p_{loc} classes are considered, $p \geq n/2$ is a necessary and sufficient condition for the strong unique continuation property [JK] (see [K] for references). In this paper we shall consider some spaces introduced by Morrey [M], which have been recently used by C. Fefferman and D.H. Phong [FP] in studying the eigenvalues of Schrödinger operators; these spaces contain $L^{p/2}_{loc}$.

We say that $V \in F_p^{\lambda}$, with $\lambda = 2p - n$ in classical notation [P], if

$$\|V\|_{F_p^{\lambda}} = \sup_{Q} |Q|^{2/n-p} \left(\int_{Q} |V|^p \right)^{1/p} < \infty$$

where the \sup is taken over all cubes in \mathbb{R}^n and $|Q| = \text{Volume of } Q$. Notice $F^p \subseteq F^q$ if $p \geq q$.

In this paper we prove that any solution of (1) has the global unique continuation property if $V \in F^p_{loc}$ and $p > (n-2)/2$.

Very recently T. Wolf has obtained the same result with a different approach.

We would like to thank C. Kenig for telling us about T. Wolf's result.

This improves the previously known results where $p > \frac{(n-1)}{2}$ (see [CS] and [ChR]).

The point to obtain this improvement is that in the above works the Carleman estimate is seen as a consequence of a uniform Sobolev inequality (see [KRS]).

$$\|u\|_{L^2(V)} \leq C\|V\|_{F^p} \|(\Delta + a_j \partial / \partial x_j + b)u\|_{L^2(V^{-1})},$$

(2)
where C is independent of the linear perturbation of the Laplacian. Nevertheless, we prove directly the Carleman estimate

$$\|e^{r^2} u\|_{L^2(V)} \leq C \|V\|_{F^p} \|e^{r^2} \Delta u\|_{L^2(V^{-1})},$$

where C is independent of r for r in (τ_0, ∞).

As we shall see while (2) is based on the restriction theorem for the Fourier Transform on the $(n-1)$-dimensional sphere, together with classical theory of weights, our proof follows from a detailed analysis of the multiplier associated to (3) which just involves the restriction theorem in dimension $n-2$. Therefore the assumption in p comes from the restriction operator in the sphere. We think that this is just a technical obstruction and the restriction theorem should be true for $p \geq 1$. Notice that we are close in the case $n = 4$. We also remark that F^1_{loc} contains the so called Kato-Stummel class which B. Simon has conjectured is enough to assure unique continuation (see [S]).

In the sequel we denote by $H^2_{loc}(\Omega)$ the classical Sobolev space, and

$$A u_Q f = (1/|Q|) \int_Q f.$$

We define the local Morrey class as the functions W such that

$$\|W\| = \sup_{y \in \Omega} \limsup_{r \to 0} \|\lambda B(y, r) W(y)\|_{F^p} < \infty.$$

The main theorem is:

Theorem 1. Let $u \in H^2_{loc}(\Omega), n \geq 3$, be a solution of (1), then there exists an $\varepsilon > 0$, only depending on p and n, such that if $V \in F^2_{loc}, \|V\|_{F^p} < \varepsilon, p > (n - 2)/2$, and u vanishes in an open subdomain of Ω, then u must be zero everywhere in Ω.

The proof is related to a restriction theorem for the Fourier Transform, obtained in [CS] and [ChR], for which we are going to give an easy proof. Let us define, for this purpose, the Morrey classes; we say that V is in $F^{\alpha,p}$ if

$$\|V\|_{\alpha,p} = \sup_{r \neq 0} r^{\alpha} (Av_{B(x, r)} V)^{1/p} < \infty,$$

where the sup is taken on all the balls contained in Ω. This notation corresponds to $E^{-\alpha,p}$ in [P], $1 \leq \alpha \leq n/p$. Also $F^{2,p} = F^p$.

Theorem 2. Let $d\sigma$ be the uniform measure on the unit sphere S^{n-1} in \mathbb{R}^n, and $(d\sigma)^\wedge$ its Fourier transform, let $V \in F^{\alpha,p}, p > (n - 1)/(2(\alpha - 1))$, and consider the operator

$$T f(x) = (d\sigma)^\wedge * f(x).$$
Then there exists a constant C such that
\[\| Tf \|_{L^2(V)} \leq C \| V \|_{F^p} \| f \|_{L^2(V^{-1})} \]
for any f in C_0^∞.

It would be interesting to understand how this theorem is related to the one in [V] for mixed norm introduced by Rubio de Francia in the study of Bochner-Riesz operators [R].

1. The Carleman estimate

It is standard to obtain Theorem 1 as a consequence of the following Carleman estimate. This reduction can be seen in the case of L^2 weighted estimates in [CS] or [ChR].

Theorem (1.1). There exists a constant $C > 0$ such that for V in F^p, $p > (n - 2)/2$, the inequality
\[\| e^{\tau x^\mu} u \|_{L^2(V)} \leq C \| V \|_{F^p} \| e^{\tau x^\mu} \Delta u \|_{L^2(V^{-1})}, \]
holds for every u in C_0^∞ and τ in \mathbb{R}.

Proof. We can reduce to the case $\tau = 1$ in the following way:

Take $f(x) = e^{\tau x^\mu} u(x)$, then (1.1) reduces to
\[\| f \|_{L^2(V)} \leq C \| V \|_{F^p} \| P_1(D) f \|_{L^2(V^{-1})}, \]

where $P_1(D)$ has symbol $P_1(\xi) = |\xi|^2 - \tau^2 + i\tau \xi_n$.

The change of variable $f(x) = g(x)$ reduces (1.2) to
\[\| g \|_{L^2(V)} \leq C \| V \|_{F^p} \| P_1(D) g \|_{L^2(V^{-1})}, \]

where $V(x) = V(\frac{x}{\tau})$, since $\| V \|_{F^p} \leq \tau^2 \| V \|_{F^p}$.

Consider the inverse operator given by the Fourier multiplier
\[(T^* g)(\xi) = \frac{1}{P_1(\xi)} g(\xi). \]

Our theorem reduces to prove that $T : L^2(V^{-1}) \to L^2(V)$ for V in $F^p, p > (n - 2)/2$.

We are going to use a decomposition of T in the phase space. Consider first
\[P_1(\xi)^{-1} = (\varphi_1(\xi) + \varphi_2(\xi) + \varphi_3(\xi)) P_1(\xi)^{-1} = \sum_{i=1}^3 m_i(\xi), \]
where \(\varphi_i \) is in \(C_0^\infty \), \(i = 1, 2 \); \(\text{supp} \, \varphi_1 \subset \{ |\xi| < 1/2 \}, \varphi_1 \equiv 1 \) in \(\{ |\xi| < 1/4 \} \); \(\text{supp} \, \varphi_2 \subset \{ |\xi| > 2 \}, \varphi_2 \equiv 1 \) in \(\{ |\xi| > 3 \} \).

The Fourier multiplier corresponding to \(m_1 \) has a kernel rapidly decreasing and hence satisfies the inequality. For \(m_3 \) just observe that it behaves like \(|\xi|^{-2} \) and by known results, see [FeP], satisfies the inequality for \(V \) in \(F^p \) with \(p > 1 \).

We may decompose \(m_2 \) as a finite sum of operators the worst of which is given by the multiplier

\[
\tilde{m}(\xi) = p_1(\xi)^{-1} \psi_1(|\xi'|^2 - 1) \psi_2(\xi_n),
\]

with \(\xi' = (\xi_1, ..., \xi_{n-1}) \), \(\text{supp} \, \psi_2 \subset [-1, 1] \), \(\text{supp} \, \psi_1 \subset [-1/4, 1/4], \psi_1 \in C_0^\infty \).

Now we may write

\[
\tilde{m}(\xi) = \sum_{j=1}^{\infty} \tilde{m}_j(\xi),
\]

for \(\tilde{m}_j(\xi) = a_j(\xi) \psi_1 \left(\frac{|\xi'|^2 - 1}{\delta^2} \right) \psi_2 \left(\frac{\xi_n}{\delta} \right) \), \(\delta = 2^{-j} \), with appropriate \(a_j \) with \(\delta^{-1} < |a_j| < 2\delta^{-1} \).

Hence we may reduce our inequality to the study of the operator \(K_{\delta} \) given by a Fourier multiplier which has \(L^\infty \) norm as \(\delta^{-1} \) and is supported in the “torus” \(|\xi'| - 1 < 2\delta, |\xi_n| < \delta \). It is enough to prove:

Lemma. For \(0 < \delta < 1/2 \) and \(T_{\delta} \) defined by

\[
(T_{\delta})^\wedge(\xi) = m(\xi)f^\wedge(\xi),
\]

where

\[
m(\xi) = \varphi \left(\frac{1 - |\xi'|}{\delta} \right) \varphi \left(\frac{\xi_n}{\delta} \right), \quad \varphi \subset [-1, 1], \varphi \in C_0^\infty,
\]

the following inequalities hold:

(i) \[
\left(\int |T_{\delta}f|^2 \{1/2 \right) \leq C\delta |\log \delta||V||_{F^{p_0}} \left(\int |f|^2 \{1/2 \right) \right)^{1/2}, \quad p_0 = (n - 2)/2.
\]

(ii) \[
\left(\int |T_{\delta}f|^2 \{1/2 \right) \leq C\delta^{1+\epsilon}||V||_{F^p} \left(\int |f|^2 \{1/2 \right) \right)^{1/2}, \quad \text{with } 0 < \epsilon < 1 - (n-2)/2p.
\]

Proof: Let us call \(K(x) = m^\wedge(x) \) and consider \(\{ \psi_j \} \) a smooth partition of unity

\[
1 = \sum_{j=0}^{\infty} \psi_j, \quad \text{supp} \, \psi_j \subset (2^{j-1}, 2^{j+1}) \quad j = 1, 2, \ldots
\]
Define $T_j f = K_j * f$, where $K_j(x) = \psi_j(|x'|)K(x)$ and $x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}$. We shall obtain a good estimate for K_j which will allow us to sum in j.

On one hand observe that a straightforward calculation gives $|m_j(\xi)| = |(K_j)^{\wedge}(\xi)| \leq C \min\{2^j \delta, 1\}$ and, as a consequence,

$$
(1.3) \quad \left(\int |T_j f|^2 \right)^{1/2} \leq C \min\{2^j \delta, 1\} \left(\int |f|^2 \right)^{1/2}.
$$

On the other hand for any natural number m there exists a constant C_m such that

$$
(1.4) \quad |K_j(x)| \leq C_m \delta^2 2^{-j(n-2)/2} (1 + \delta |x_n|)^{-m} (1 + \delta^2)^{-m}.
$$

Consider first the case $0 < j \leq 1 + \lfloor \log_2 \delta \rfloor$. For $k \in \mathbb{Z}$ we define

$$
K_{jk}(x) = K_j(x) \cdot \chi_{[k \delta^{-1}, (k+1) \delta]}(x_n).
$$

Then

$$
|K_{jk}(x)| \leq C_m \delta^2 2^{-j(n-2)/2} (1 + |k|)^{-m}.
$$

Finally we can make in \mathbb{R}^n a grid with parallelepipeds $\{Q_v\}$ such that the dimension of Q_v are $2^j \times \ldots \times 2^j \times \delta^{-1}$.

Call $f_v = f \cdot \chi_{Q_v}$. Then

$$
\int |K_{jk} * f|^2 w = \int |K_{jk} * \sum_v f_v|^2 w
\leq C \sum_v \int |K_{jk} * f_v|^2 w
\leq C \left(\sup_v \int_{Q_{v^*}} w \right) \sum_v \|K_{jk} * f_v\|_2 \|f_v\|_2 \|f_v\|_\infty (Q_{v^*}),
$$

where Q_{v^*} is a parallelepiped with the same center as Q_v and side ten times bigger than the sides of Q_v. By (1.4) and Young's inequality

$$
\leq C_m \delta^2 2^{-j(n-2)} (1 + |k|)^{-2m} \left(\sup_v \int_{Q_{v^*}} w \right) \sum_v \left(\int |f_v| \right)^2
\leq C_m \delta^2 2^{-j(n-2)} (1 + |k|)^{-2m} \left(\sup_v \int_{Q_{v^*}} w \right)^2 \int |f|^2 w^{-1}.
$$

Now observe that if $w = V^{p_0}$ and $V \in F_{p_0}^m$, then

$$
\sup_v \int_{Q_{v^*}} w \leq C (2^j \delta)^{-1} 2^{2j} \|V\|_{F_{p_0}^m}.
$$
Thus,
\[
\left(\int |K_j \ast f|^2 V^{p_0} \right)^{1/2} \leq C \delta 2^{-j(n-4)/2} \|V\|_{F_{p_0}}^{p_0} \left(\int |f|^2 V^{-p_0} \right)^{1/2}.
\]

Interpolation with (1.3) gives
\[
\left(\int |K_j \ast f|^2 V \right)^{1/2} \leq C \|V\|_{F_{p_0}} \left(\int |f|^2 V^{-1} \right)^{1/2}, \text{ if } 0 \leq j \leq 1 + [\log 1/\delta].
\]

In the case \(j \geq 1 + [\log 1/\delta] \), let us define \(K_{jk} \) as \(K_j(x) \chi_{[k2^j,(k+1)2^j]}(x_n) \), with \(k \in \mathbb{Z} \). Now for \(j \) fixed we consider in \(\mathbb{R}^n \) a grid of cubes of side \(2^j \). Repeating the above process we obtain
\[
\left(\int |K_j \ast f|^2 V^{p_0} \right)^{1/2} \leq C \delta^{2(1-m)} 2^{-j((n-2)/2+2m-2)} \|V\|_{F_{p_0}}^{p_0} \left(\int |f|^2 V^{-p_0} \right)^{1/2}.
\]

Again interpolation with (1.3) gives for \(j \geq 1 + [\log 1/\delta] \)
\[
\left(\int |K_j \ast f|^2 V \right)^{1/2} \leq C 2^{-j} \|V\|_{F_{p_0}} \left(\int |f|^2 V^{-1} \right)^{1/2}.
\]

Adding up in \(j \) we prove (i).

In order to prove (ii) we proceed as follows:

Define \(K_j(x) = \psi_j(\delta|x|)K(x) \), with \(\psi_j \) as above \(j = 0, 1, \ldots \) and the support of \(K_j \subset B(0, 2^{1+1}/\delta^{-1}) \). Then fix \(j \) and construct a grid of cubes \(\{Q_v\} \) of side \(2^j 1 \). Then it is enough to prove the estimate for \(f_v = f \chi_{Q_v} \).

Take \(V \in F_p \) and \((n-2)/2 = p_0 < p < \infty\), let us call \(w = V^{p/p_0} \), then
\[
\left(\int |T_j f_v|^2 w \right)^{1/2} \leq \left(\int_{Q_{v*}} |T_j f_v|^2 w \right)^{1/2} = \left(\int |T_j f_v|^2 w_v \right)^{1/2},
\]

where \(w_v = w \chi_{Q_v} \); then \(w_v \in F^{p_0} \) and
\[
\|w_v\|_{F^{p_0}} \leq C \|V\|_{F^{p/p_0}} (2^j \delta^{-1})^{2(1-p/p_0)} \text{ and then by (i)}
\]
\[
\left(\int |T_j f_v|^2 w \right)^{1/2} \leq C \delta \|\log \delta\| (2^j \delta^{-1})^{2(1-p/p_0)} \|V\|_{F^{p_0}}^{p_0} \left(\int |f_v|^2 w^{-1} \right)^{1/2}.
\]

But also
\[
\left(\int |T_j f_v|^2 \right)^{1/2} \leq C \left(\int |f_v|^2 \right)^{1/2}, \text{ and by interpolation } \left(\int |T_j f_v|^2 V \right)^{1/2}
\]
\[
\leq C \delta^{2-p/p_0} \|\log \delta\|^{p_0/2} (2^{-j(1-p/p_0)} \|V\|_{F^{p_0}} \left(\int |f_v|^2 V^{-1} \right)^{1/2},
\]

and (ii) is proved.

\[
\text{and (ii) is proved.} \]

\[
\text{and (ii) is proved.}
\]
2. The Restriction theorem

We give the proof of theorem 2. Let us remark again that this theorem is contained in [CS] and [ChR], but the simplicity of our proof justifies to write it here.

Proof of theorem 2: It is known that

\[K(x) = (d\sigma)^\wedge(x) = |x|^{-\left(\frac{n}{2} - 1\right)} J_{\frac{n}{2} - 1}(|x|), \]

where \(J_\lambda \) designs the Bessel function of order \(\lambda \). Then decompose

\[K(x) = \sum_{j=0}^{\infty} K_j(x) \]

with

\[K_j(x) = (d\sigma)^\wedge(x) \psi_j(|x|), \quad j = 1, 2, ..., \supp \psi_j \subset [2^{j-1}, 2^{j+1}]; \]

\[K_0(x) = (d\sigma)^\wedge(x) \psi(|x|), \quad \supp \psi \subset [-1, 1]. \]

The classical P. Tomas, estimate for the Fourier Transform of \(K_j(x) \) gives us the boundedness of \(T_j = K_j \ast \) from \(L^2 \) to \(L^2 \) with norm \(2^j \).

We can repeat the argument in the proof of theorem 1 and obtain, for \(w = V^p \),

\[T_j : L^2(w^{-1}) \rightarrow L^2(w) \text{ with norm bounded by } 2^{-j(n-1)/2} \left(\sup_{Q_j} \int_{Q_j} w \right) \]

where \(Q_j \) is a cube in the grid in \(\mathbb{R}^n \) of side \(2^j \). Since \(V \in F^{\alpha,p} \), we obtain

\[\|T_j\|_{L^2(w^{-1}) \rightarrow L^2(w)} \leq C \cdot 2^j (\alpha^{p-(n-1)/2}) \|V\|_{p,p}. \]

Interpolation gives

\[\|T_j\|_{L^2(V^{-1}) \rightarrow L^2(V)} \leq C (2^j)^{-\frac{n-1+\alpha(1-\alpha)}{2}} \|V\|_{p,p}, \]

the sum is convergent if \(p > \frac{n-1}{2(\alpha-1)}. \)

It is an open question if the above operator send \(L^2(V^{-1}) \) to \(L^2(V) \) for \(V \in F^{\alpha,p}, p < (n-1)/2 \). The answer to this question would be the corner stone to extend unique continuation properties to potential in \(F^p \) for \(p \leq (n-2)/2 \).

References

[ChR] CHIARENZA, F AND RUIZ, A., Uniform \(L^2 \)-weighted Sobolev inequalities, Proceeding AMS.

Alberto Ruiz: Departamento de Matemáticas
Universidad Autónoma de Madrid
28049 Madrid
SPAIN

Luis Vega: Department of Mathematics
University of Chicago
Chicago III
U.S.A.