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UNIQUENESS OF VERY SINGULAR
SELF-SIMILAR SOLUTION
OF A QUASILINEAR DEGENERATE
PARABOLIC EQUATION WITH ABSORPTION

J.I. DI1AzZ* AND J.E. Saa*

Abstract

We show the uniqueness of the very singular seif-similar solution
of the equation

U — Apum +u¥=0.

The result is carried out by studying the stationary associate egua-
tion and by intreducing a suitable chanpe of unknown. That allows
to assume the zero-order perturbation term in the new eguation
to be monotone increasing. A careful study of the behaviour of
solutions near the boundary of their suppert is also used in order
to prove the main result.

1. Introduction

The main goal of this paper is to show the uniqueness of solutions of
the following quasilinear elliptic problem

@ — P2y - D et b ) —gla), 250,
(2) u'{0) = 0, Ili.rgou(x) =0
© uz) 20 (£0)

*Partially supported by the DGICYT project n® PB90/0620.



20 J.I. Diaz, J.E. Saa

in which p > 1 and the functions k and g satisfy certain structural
conditions which will be made explicit later.

The main motivation for the consideration of such a problem comes
from the study of very singular solutions of the quasilinear degenerate
parabolic equation with absorption

(4) w=Au"—u? in Q= RY x (0,00},
where, as usual, Ayu denotes the p-Laplacian operator
Ayy = div (|Vv|”_2\7v) . 1<p<oo,

N > 1 and m and g are nonnegative real numbers. Equation (4) contains,
as special cases, the equations

(5) uy = Au™ —uf
and
(6) wr = Apy — ul

which have been intensively studied in the last years. For many different
purposes it is interesting to study singular solutions of (4} i.e. nonneg-
ative functions u satisfying (4) in @ (in the sense of distributions) and
such that u(z,0) = 0 if z € RY — {0}. In many cascs, the singularity at
t == 0 of such a solution must be as that of the fundamental solution Le.

ulr, ) = cé(r)

for somc positive constant ¢, or, in other words,

(7} lim | ulz, t)dzr =¢

=0 Jiz|<r

for any r > 0. Nevertheless, when the absorption is strong enough with
respect to the diffusion, there exists another type of singular solution u
called as very singular solution which has been discovered previously in
the following cases:
a) equation (5) with m = 1 and 1 < ¢ < 1+ (2/N}: Brezis, Peletier
and Terman [1]
b) equation (5) with m > 1 and m < ¢ < m + (2/N): Peletier and
Terman (7]
¢) equation (6) withp > gandp~ 1< g <p— 1+ (p/N): Peletier
and Wang [8].
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In all those cases this new singular solution satisfies
(8} lim u{z, t) de = +o0
t—0 || < )

for any r > 0 and so it is more singular than the fundamental solution.
As usual, the existence of a very singular solution is obtained in the class
of self-similar solutions

©) Wiz, 1) =7/ (|| 11/%)

where § must be suitable chosen. For instance § = 2(g—1)/(qg— m) and
B = plg—1)/{g+1 - p) in the cases of equations (5} and {6) respectively
{recall that ¢ > p — 1). More generally, we can consider self-similar
solutions W of the equation {4} in which case the natural choice of 8 is

(10) B =plg~1)/(g—m(p-1))

A function W given by (8) is then a very singular solution if f satisfics

(11)

(kP )+ B2y ey + S g -
=8, in {0, c0)

(12) f 2 0in (0, 00)

139 FO=0,  lm /g mlp~ D)) = 0

The uniqueness of f solution of (11) {12) {13) was only given for the
case m = 1 and p = 2, (see [1]) and was left open in (7] and [8]. The
main goal of our work is to give an uniqueness result true for any value
of m and p.

Introducing v = f™, we remark that v satisfies an equation of the type
(1) with
1/m

1
zou)= " —
9" ‘ fe—1)

and
hz,u) = mixu_smm;”u’
mg
So g(x,u) is not monotone in u. Moreover the differential terms in equa-
tion (11) may have different homogeneity (m(p — 1) and 1 respectively)
which leads to some special difficulties (sohitions with compact. support
it m{p— 1) > 1, etc).
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2. The main results

We shall prove the uniqueness of solutions of the problem

(14 (@™ P 2wmy) + Ml(um)'l"_?(um)' + %W' +Guy=20
(15) u(r) >0  (#0)
(18) (™)'(0) =0, Ili{rc}ou(m) =0
wherem >0, p>1, N>1 8>0and

Glu) = — T uf,

For some values of m and p problem (14) {15) (18} does not have any
classical solution and it must be solved in a generalized way. This is
the case when m{p — 1) > 1 because the solutions have as support a
compact interval [0, o) and u’ may be discontinuous at x = zo (see part
(v} of Lemma 1). To define the notion of weak solution we multiply the
equation {14) by a smooth test function £{x) with compact support in
[0, 00} but not necessarily vanishing at x = 0. By multlplymg by x™ !
and integrating by parts we abtain

(17) —/000IN_1|(u"‘)'|p_2(um)’§’dﬂ:—%L Vg’ do+

+/0°0IN—1 (G(u) _ %u) £dr=0

On the other hand, by standard regularity results, it is clear that u €
C°([0,00)) and that in fact u € C? on the set where the equation is not
degenerate ie. {2z € (0,00} : u{z) > 0 and (™)' (=) # 0}. We shall
show that the closure of this set coincides with the support of v. We can
assume that ©v™ € C'([0, 0o)), because teking a sequence &, such that
limé&,(z} =1if x € [z0 —€&,z0] and lim &, (£} = 0 otherwise we have that

N
PTG

To—e ‘8 Ig—E

Y B Y _ﬁ)
= /runsx (G(u) ﬁu di.

and so |[{u™) P~2(™) (zo) = 0 {the continuity at z = 0 is similarly
justified).

In consequence, by a solution of {14), (15), (16) we shall mean a funec-
tion u € C%([0,00)) such that ™ € CY{[D,00)), v > 0 (5 0) and
satisfies (16) and (17) for any smooth function £ with compact support
in [0, co).

Io

Now we are in a condition to state our uniqueness results:
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Theorem 1. Assume that N > 1, m>0,¢>08,p> 1,

(18} mi{p-1}>1
and
(19) (p-Dm<qg<p-1m+ £

Then there is at most one solution of problem (14}, (15), (16). Morevyer,
this solution has compact support.

Theorem 2. The conclusion of Theorem 1 holds if we replace the
assumption (18} of Theorem 1 by

{20} m{p—1) =1L
In this case, the solution s positive in [0, 00).

Before giving the proofs we shall make some remarks on the assump-
tions of both results. First of all we notice that the rcasonable assump-
tion on the parameters m and p is m{p — 1) > 1, because otherwise
the parabolic equation {4) corresponds to a fast diffusion and solutions
vanish after a finite time. On the other hand, it is natural to expect a
different behaviour of solutions of {14), (15), (18) according to whether
m(p — 1} is greater or equal to one. Indeed, the first case corresponds
to slow diffusion, and the solutions of (4) have compact support for any
value of ¢, although when m(p — 1) = 1 the solutions of (4) are strictly
positive in RY x {0, c0). Finally the assumption {18} include the assump-
tions made in (1], [7] and {8] for the existence of very singular solutions.
In that references it is also shown how boundary condition (16} implies
the one given in {13).

3. Proofs and auxiliary results

The foliowing Lemma collects several properties of solutions of (14),
(15}, (18).

Lemma 1. Assume m(p — 1) > 1 and condition (19). Let u be any
sotution of (14), (15), (16). Then u € C°® and w™ € C!. Moreover

(i)

o [ @2 (2)
z10 T

(21) - 3G,
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_ 1/tg—1)

(ii) u(z) < M for anyz > 0 with M = (q%l) ,

(iii) #f zo € [0, 00) is such that u(ze} = 0 thenu(z) = 0 for any x > o,

(iv) u{z) is monotone non-incresing in [0,00) and u'(x) < 0 for any
x > 0 such that u{z) > 0,

(v} if there exists a 2o € (0,00) such that supp v = [0, zo) then

e
(22) TI%IE: u{z) 3

Remark. Condition (22} is equivalent to the diffcrential equation of
the interface of the solution of the parabolic equation (4) which comes
from the Darcy law (sce e.g. [7] for the case p = 2.

Proof of Lemma 1. The regularity of u has already been proved in a
previous remark, s6 we pass to consider the rest of the statcment. B

Proof of (i); We multiply equation {14) by a smoth scquences of text
functions £,(x) such that lim&,{(z) = 1 if z € (0,¢] and lim&,(z) = O
T T

otherwise, for some € > 0. Integrating we have
LAY —2¢. g EN_]' ey s w2 Frnd
IR USROS e G e G Oy
o
1 13 14
= —-—/ zu'(z) dx —/ Gu(z)) dz
8 Jo 0

Dividing by £ and making € — 0 we obtain

oo [P @Y (@) | N -
) £ €

‘[(u“’*)’(s)|”‘2E“"‘)’(E)] B
= — lsl.ﬁ)l G(u(a))?

and thercfore (i}. W

Proof of {ii); Assume by comrary that
u(yo) = sup{u(z) : ¢ > 0} > M.

Then /() = 0 and {|(a™P~2(w™)) (o) < 0 (as u™ also has his
maximum in yy). If yo > 0, from the differential cquation we deduce
‘that

(™Y P2 (™) () = —Glulue)) > 0.

If 3o = 0, using (i) we find the same contradiction. Therefore u < M on
{0,00). W
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Proof of (iii): Again we shall argue by contradiction. Assume that
(iii) is not true. Then it is easy to show thdt there exists € > 0 such
that u(x) > 0 and «/(z) > D on (x9,z0 + &) {otherwisc we can found a
sequence {Z,} of local minima of u such that z,, — zp, which yields a
contradiction with {14)).

Multiplying equation (14) by V! and integrating over (zg,z) with
x € (zo, o + €), we get

> N
N1 @™y ()t +/ %——u’(s)ds—k

[ T

E SN_I * N 1, ¢
+ u(s) ds — u¥(s)ds =0
xXg q— 1

o

{we recall that » is regular in (x¢,z) aund (™Y (ze) = 0). Taking a
sequence of smooth test functions &,(s) in (14) such that limé&,(s) = 1

if s € (o, z) (where xp < » < 2o + ¢} and lim&,(s) = 0 otherwise, we
Lz

have that
1 N Y
—_———— s T uls)ds =
(qﬁl 6)]::0 ()

= / Nyt (s) ds

{notice that (u™){wo) = 0 and (x™){z) > 0). Using that 1/{q - 1} >
N/3 we have

N-l|(urn T)|p l

.’L";V * _ 1 r .
?u(;r:) < [f-u sV (s) ds < Rr-(:t:"\ — 2yt (),
1 1 roy
l g—1 (=
3 = N (2) (1 ( x ) ) ’

Making now z - zg we arrive to the inequality

or equivalently,

<0

Tl =

which is a contradiction. W

Proof of {iv): Suppose that for some 2y > 0 ¥'(xg) > 0, then by (i)
there exists a ) € (0, 2p) such that u'(z} =0 and {|(x™)/|P~ 2(1!;:"“) ) (z31)
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> 0. We also know by (iii) that u{x,} > 0. Arguing in the same way as
in the proof of (1) we can show that

o M@ @P2w™) (2)
FAES xr—on

=~ ule) ~ () <0

(since 0 < u(x;} < M). Then we arrive to a contradiction with the
fact that (|(u’“)’|3"‘?(u”’“)")r (1) > 0. Thus w'(z) < 0forallz > 0. In
fact the same argument shows that w'{z) < 0 for every x > 0 where
0 < u(r) < M. Thus it only remains to exclude the casc

u(z) =M ifzel0,a
{ u(z) <M ifrele+x)

for some ¢ > 0. We assert that there oxists £ > 0 such that for any
T € (a,a + €) we have
uzy <0

and
A fT SN
— ¥ ™Y ()Pt +j —ﬁ,-u’(s) ds+

ISN—I T
+/ . lu(s)ds—/ sV 7 (s) ds =0,

{the proof of these properties follow the same ideas used in the part, (iif)).
By inteprating by parts we obtain

N _ N _
oy @ - S Mo MMy

B (qi—l B %) /z sV u(s) ds — / s lu(s) ds.

As u is decreasing on (a, a + ) some elementary manipulation allows to
obtain

¥ —a M —ulz)
- M N«
7 + 3 T <
1 NY N — gV N — oV
o | o _ g
(q—l .5) N M- N u?(z),

M—u(m)IN<:cN—aN(M )
- N
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Dividing by 2V (M — u(z)) and letting £ — a we arrive to the contradic-

tion
1 <0
3=

Thus, we have excluded the possibility « = M on any interval [0, a], and
the proof of (iv) is now complete. &

Proof of {v}): Choose € > 0 such that € < xo, u(z)} > 0 and u'(z) < 0
inx € (2o — €, zp). Then, as in part (iii), we obtain

iy
- V@™ (@) P W™ (x) - ?u(a:)—l—
+ (qul - %) /IB s lu(s) ds — /Io sV lyi(s)ds = 0

with x € {zo — £,zq). Since (u™)'(z) < 0 and ?al_l > 7‘} we get

P e) x| [ sV (s)ds
ulx) s 8 + aN-Tu(z)

and myt|p—1 o AN
(™ )P (:c)>_z__( 1 N) S5 s" tuls) ds

ul(x) 8 N -ly(x)
Letting x T xp in these two inequalities, we obtain at the limit

s O W

xTze u(x) B - "

Proof of Theorem 1: The first step is to introduce a change of un-
known in such a way that the absorption term of the new equation be
monotonically non-increasing. Let v(x) defined by

u(x) = v(z)*
If we take

(23) p=p-1/(mp-1)-1)
It is easy to see that v satisfies (on the support of v) the equation
(24) |
_ N-=-1 WP pov 1 - pile—l)
‘U" P 21)" + / p-—2vr + : _
(vl ) T [V H fav  (¢g—1a a
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(25) ) v >0 (£0} in [0,00)
(26) v'(0) =0, lim v(z) =0
where

a = ('mp,)(?’").

Now let v and v be two solutions of (24), (25) and (26). Let zg € {0, 00)
be such that

27) 0< (v —v2)(mo) = sup(n —m) =h

By comparing the value of

o @I
x|0 T

for 2 = 1,2, it is not difficult to sce that =g > 0.
Indeed, if 2y = 0 we deduce, in the same way that in part (iil) of Lemnma
1, that v{(x) < vy(z) in (0, 6} and thercfore
Py P2 i p=2.r
lim v ()P vy (z) < lim lva ()] Uz(x)l
z|0 T zl0 x

From this inequality and the property of v,

)P Pes) -1/ 1 (= 1)
1 L e T O I T
210 T Nal\g—1 % ©)

(sce part (1) of Lernma 1) we obtain v3{0) < v2(0) and so the maximum
of v1 — v2 can not be attaint at 2o = 0.

Assurnc now that xg > 0 and ve(zg) > 0. Obviously we also have that
vi(zg) > 0 because k> 0. Then there exists a constant L > 1 such that

v1 (o) — va{zo)

{(28) max{(0) — v3(0), vi{z0) — valz)} < 7

where 2g > zp is such that supp vy = [0, 20). We also chose k > 0 such
that

(29) max {%, g} < k < wnre) — volze) = h.
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Now, we shall first pay attention to the case p > 2. We multiply the
equations of 7 (¢ = 1,2) by £V )¢ with £ given by

£E=efv -1, w= {1 — vz — k)7

Integrating on {0, +00) we have
[ s (k2 - g € =
(&’ #0]

B AL o |p v#(‘?—l) ,U.U{q— 1} Q:N y! i
=prN1('l|_|2 9 +2m £+ u_(l___gg

v va na Bai\wmn v

Using that £ = pw'e (where w' = v} —vhonw > 0 and w' = 0
otherwise], the incquality (scc e.g. Diaz (2, p. 264])

(30) (|a1|p“2(x1 — [agf?’_zaz) (o) —ag) > ¢loy — anl? Yoy, az € Rt

and the fact that (va ~ 1;1)€ < 0 we deduce that

N1
z
¢ [N P do < u [ (i - ) gt
1
L N ;
+ = | 27 {Lnvy — Lnwy) '€ dz,

Beo.

Morcover, applying the inequality {true for any p > 1)
’(MP’ - J(th]p E Cf(_kl - Ozzl Voq, ¥ & H,

{(where C denotes again a gencric constant and so it will denotes in the

foliowing), using that w{z) > h/2 for any = such that wi{z) > 0, and
integrating by parts in the last integral we deduce that

2
c/ 2N )PeP™ di < e =2V N (e — 1) det
f10' 0] A ol

v+ i/ o™ {(Lnv, — Lnva}|€'| dz.
Ba Jiurzo)

As the logarithm function is concave we have
c/ V| [Pe dz < cf 2N e de+
[ #0] b’ #0)

v~ .
1L * / 22N dr
ﬁ(.‘-, S £0) Uz
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 But [w' # 0] € [w # 0] and from the choice of w we deduce that there
exists three positive constants 8;, 82, 3 such that if z € [0, co) satisfies
that w(z) > 0 then x < §; (because supp v; and supp vz are bounded),
z > 8; and wo(z) > &3 (as consequence of (28}, (29) and the monotonicity
of v1}, we deduce ’

C/ |w'|Pe? dx < f [ |e?* dx
[ £0) (0]

or equivalently

e[ werrs [l
[wr # o [af #£6) )

Using Holder inequality we have

2t B
cl[ terr) < ( [ e
SV fu20)
and hence
1/p 1/p 1/p
c (/ e"“’) +C (f |(ew)'|P) <(14C) (f ew) ;
(w0’ 20} (0" 0] ' #0]

So
(31} Clle® lwrmpwrony < Il Logur20)-

Assume now that p < N. Applying Sobolev and Hélder inequalities we
ohtain

Clle™ - (o) = eI Lr(jwrs0]) < le™ Nl o ([mf;ea})| supp w'|” 7
where p* = pN/(N ~ p). In particular .
(32) - lsupp w'| > C > 0

In the case p > N conclusion {32) is obtained from the Scbolev inequality
by replacing p* by any number greater than p*. Since these inequalities
arc independent of k they must hold as & tends to h. That is, the function
vy — vy attain its supremum on a set of positive measure, where at the
same time (vy — v2Y = 0, which is a contradiction with the inequality
(32). '
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In the case 1 < p < 2 inequality (30) must be replaced by

lay — ag?

lo P~ 2en — |ea P20 ) {0y — ag) 2 C——————
( ) (loa| + a2 ])®77

(see e.g. Diaz [2, p. 264]). This justifies a change in the test function &
which now is taken as

(33} E=w= (v —vm-k*

Muthplymg the equations of v; by ¥ 1€ and integrating on (0, c0) we
have

B |,w.*l‘2 xN—i
c ¥ —dz <y (ln1l” = o3|y wdz+
fro %0} (Wil + Jua )7 3!

+ L /3:” (Lnwy — Lnw) € dx
fAa

But there exists 84 > 0 such that [v]] + |vh| > &1 on [w' # 0] (recall part
(iv) of Lemma 1). Then it is casy to see that all the above arguments
allow to obtain the inequality

(34 Cllwllws zgporsopy < e Lz on)

(instead of (31)) and so the conclusion follows.

Now we consider the last case: it is when the point 7y is such that
vz{Zo) = 0. We shall need a qualitative information which gives an
additional information to part (v) of Lemma 1.

Lemma 2. Assume m{p~ 1) > 1 and (19). Let u be any solution of
(14), (15}, (16). Then if supp u = [0, zo) we have

(35) ™Y (z )P < %u(m

for any 23 € (0,70}

Proof of Lernma 2: Integrating the cquation (14) on (0, 29) we have
L@ temyrramy) - [T ey
o

o 1 NY v N-1.a} _
+‘/0 ((q_—-_l_ﬁ)r U—-r u =0
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but, has (u™) (we) = 0 and u{zy) = 0 we conclude that

[ (G 5)e-w) -
0 -

From the monotonicity of u (see part {iv) of Lemma 1) and the sign of

F(s) = (T}T - %)s — 57 {(rermembser that (qil) > %) we obtain

{36) fxlzN'l((q—ll—%)u—uq)<0
0 -
and = 1N
] .'IE'N_I ((E-:—I—E)u——uq) > {.

Integrating the equation {(14) on (0, z1) we also have

/'Jﬂ (:L,N—1!(um)flp—'Z(um)!)! + ! i(.’J’:Nu)’—f-
0 o O

- 1 NN N N1 g L
+]0 ((q“l ﬁ)x w— L u? | =0

Thus (%")) follows from this identity, (36), and the monotonicity of u
(part (iv) of Lemma 1). W

Proof of Theorem 1 (Continuation): We was considering the case
vfzo) = 0. As m{zg) > 0 we know that vj(za) < O (part (iv) of
Lemma 1). So, necessarily supp vo = [0, 20]. We assume p > 2 (the case
1 < p < 2 holds with obvious modifications). Let yg > z¢ such that supp
v, = [0, 3] (the compactness of the support of any solution is assumed
here but it will be proved as a last step of the proof of this theorem).
Using part {v) of Lemma 1 we obfain

@
iR

Thus function v, — vz is not of class CH{{0, 0c)) and so at its maximum
rg we merely have the information

lim alvh(z)|"~! =
rTzo

lim v {z} > lim v(z).
zlzo tlzo
Our arpuments will be of a different type according the subcases
{a) lim v)(z} = lim vy(z)
xTzp 170

{b) Ihiri vy (%) > }11151 vh{z).
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Consider the subcase (1}, From part (v} of Lemma 1 we obtaiu

Lo

Jim alvy(z)P~" = — = alv] (zo) ™
:C‘T.'zg

On the other hand applying Lemma 2 we conclude that

alv (zo) P~ < 2
I}
which is a contradiction.

Now consider the subcase (b). Our main idea is to arguc in a similar
way to the case vo{zg) > 0. First of all we need to extend the cquation of
vg on (Zo, +00): It is clear that vy is a weak solution, in (0, zg)tU{ze, +00),
of the equation B

N-1 1 oty
13—2 ! p—2 .r _ Yoy _ )
(lvglm=2uh) + lug [F vy + =T . B(x)
where
3]l £
_ﬂ|1;2{1)l B pavnfx) it 1 € (0,10)
B(z) = vp{z)  Bava(x)
’ 1

e Da it z € (zg,+o0).

Let us prove that B € L0, +o0). It is clear that we only nced to show
that Ii}m Bz} is finite. To do that we use one of the inequalities of the
rTzp

proof of part (v} of Lemma 1 and we conclude

gt T o S (MY [ ds
ol ol ) i

fa a

for any & € (03, xg). Thus
GOl GO () ( 1 _ E) J2"s" i (s) ds
w(z)  Bavy(z) a g-1 7 N -yt
on the interval (0, zg). By the I'Hopital rule
[0 sVl (s) ds

lim == =
rtzo .G'N_]?)?-i—l( )

g—-1 8

. A 1C)) _
wiro (N — VN =205 () + oV =1 + vl () v} ()
_I _ 1

lim = lim
= oz (N — Do) + ol + Lwh{x) =1z (u+ Dvh(x)
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Using part {v) of Lemma 1 we have in conseguence

1/ {p—1)
. ’ Ty . 1 1 N
lim vy{e) = — | 2> . ImB(z) < | —— =]
Jim vala) (ﬁa) bm B < S D (q—l ;3)

On the other hand, if z € {0, o), by Lemma 2 we have

_ uvp{z) Lo [P £
B(z) = av: & [a|vg(x)| - ﬂ] >0

and so lim B{z} > 0.

z{zo
From de notion of weak solution we have that

- Xa + oo
A C LR B (eI

Ia

ol (gi;;; v} <x)|9-%-3(z>) £(ica)+

/+m N-1 1 U{;‘(q_l) ¢ f+m N-ig
-+ x - = oA S
0 @-De @ A (e

for any function £ € Wy'P(0, +00). Now we chose k > 0 such that

21{0) = v (0} < k < vi{zo) — volzo) = vi{ze) = A
We take again

E=e™ -1, w= (v — - k)q.
Then

I G S T
[£°#9]

+eo _pplam ) eteet)
=xé"“(““r |“£(f:)l”_l>§(3:g)+ f AN T ey
izq Jo 4] a .

o !y T ] + o0
+/ peN ! (—'”" LS )§+/ N1 Bz}
) 1]

vy Bow

But (as £(0) = 0)

eto) = [ Ceas< [Ciewnass [

[¢'#0]
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On the other hand, using Lemma 2 we have

! P ; ’ o
v v Y _ z
[ I LYty <0
V3 Bavi vy Ba

Then arguing as in the step va{zg) > 0 and using that B € L*=(0, +0c0)
we obtain that there exists C, Cg, €3 positive constants {not depending
on k) such that

C;/ |w-’|3‘?epw dx S C?f e + 03/ |(ew)l'e(p_ Vw
fruf #£0] fu0) [ 0] -

Noting that

w'(z) = { vi{z) — vp(z) if x € (supp w) N (0, zo)
: vi{z) : if z € (supp w) N {z0, 10},

that v}{z} < 0 on {z¢, 0} and that
i}rﬁ,(”i {z} — vh{z)} > G,
we can chose &, closed enough t,o h, in order to have
supp w' = supp w.

Then, applying the Young inequality ab < ca? + C.67P~V for ¢ small
encugh {¢ < Cy} we get

©-af jeyr<@rac) [ e
fo* #9) _ fw’ 6]
Now we are in the same situation than (31). Thus inequality {32} holds
and we obtain the contradiction by making k converging to A.

In order to complete the proof we must prove the compactness of the
support of any solution of problem (14), (15}, {16}. For this surpose we
shall define a supersolution of {14}, (15), (16) with compact support. Let
¢ be the function

(37) By = (10~ 27 Ve e o,00),

where [v]* = max{v,0}, e € {1,p/(p— 1)) and C is a positive constant
to be determinate. After some elementary manipulations onc can verify
that (¢™Y(0} == 0 and that

N

(l(ém)rlp—ﬁ(ém)!)‘ + ’_ 1I(¢m);]p—2(¢m); + i.’f,‘q;)! + ‘LQb —¢7<0
T A g-—1
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assumed € large enough. Hence ¢ is a supersolution of problem (14},

(15), (16). :
Arpuing in the samc way as in the proof of the unigueness we can

compare any solution of (14} with the supersolution ¢. Indeed: let u be

a solution and apply the previous change of variables to the functions »
and ¢. Then if we call

v=u'#and ¢ = $** = [C — z°]*
v is a solution of (24}, (25}, (28) and ¢ vorifies

Ivl

p—2

” Wl '+
NT.{J"‘ 1 wa—1) )

+%E+Q“—_1_TSOHI 0,C).

(WV"%) Fp—

Now, proving that sup {# — ¥} € 0 consists in repeating the same argu-
ments as in the uniqueness proof, where now » plays the role of v, and
i the one of s, Heneo ¢ > w and since ¢ has o compact support, the
same happens with », and the proof of Theorem 1 is complet. B

Proof of Theorem 2: As in the previpus thecrem, we introduce a
change of unknown in order fo arrive to 2 new equation with 2 monotone
perturbation term. More precisely, let »{z) defined by

u(z) = ¥ >0

{(we suppose here that u(z) > 0 as we shall prove in the last part of the
Theorem). 1t is casy to see that v satisfies

1
(|U!|p—'2vf)’ i 11.' Ip 2 F_l_ 6 v+ q__} _ e("i_l)" =0

Now the uniqueness reduces to repeat the same arguments as before
(even in a easier way because the strict positivity of v and the simplicity
of the absorption and transport terms). In order to complete the proof
of the Theorem 2 we just have to show that a solution u of the problem
{14}, (15), (16} with m(p — 1) = 1 verifies u{z) > 0 in z[€ [0,00}. Let
suppose that there exists some yg such that u(yy) = 0. Then by Lernma
1 we know that supp u = [0, zg] for some ¢ > ¢ and

N (750 M €] AR
(38) .ylgfa u(z) g
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Let us define the function f(z) = In (#™(z)) with = € [0,29), then we
can write the previous limit as

R £ A
tim 7)1 = (%)

Since liTm flz) = —co and f € CY{[0, o)) we arrive to a contradiction
ziro
with (38), and the proof is concluded. W

Remark. The idea of obtaining a contradiction via Sobolev inequal-
ities was alrcady used in Trudinger [10] (see also [4, Theorem 10.7]) to
compare solutions of non-degenerate quasilinear elliptic problems. In
that work the test function is defined as in the proof of Theorem 2. Fi-
nally we point out that our arguments can be also applied in order to
obtain comparison results for solutions of more general equations, as for
instance

[Vul?

—Aju—~ A + B{z,4,|Vul) + f{z,u) =0

where u +— f(z,u) and u — B(z,u,n) are non-decreasing and n —
B(z,u,n)} is Lipschitz continuous. In particular, this allows to generaline
the unigueness result of [3].

Remark. Simultaneously to the completion of our work {which imn-
proves a previous version included in {9])) S. Kamin and L. Veron have
communicated to us their work [6] in which they give a new proof of
the existence of the very singular solution of the equation (5) as limit
of fundamental solutions satisfying (7) when ¢ — +00. They also have
a proof of the uniqueness of the very singular solution {(i.c. a nonneg-
ative not only self sirnilar function satisfying (5)}) and solutions of the
parabolic equation (5). In this way they are giving an indirect proof of
the uniquencss of f for p = 2 and m > 1 arbitrary. It seems that their
arguments, jointly with some ideas of Kamin-Vazquez {5], may allow to
give the uniqueness of the very singular sotution in the class of solutions
of (6} or even (4). In any case our arguments arc of a different nature to
those used in [6] and (8] and can be applicd to other elliptic problers
not necessarily related with the study of singnlar solutions of parabolic
equations. )
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