
Publicacions Matemátiques, Vol 36 (1992), 19-38 .

Abstract

UNIQUENESS OF VERY SINGULAR
SELF-SIMILAR SOLUTION

OF A QUASILINEAR DEGENERATE
PARABOLIC EQUATION WITH ABSORPTION

J .I . DIAZ * AND J .E . SAA *

We show the uniqueness of the very singular self-similar solution
of the equation

7tt - Op76m -{- Y6 9 = 0 .

The result is carried out by studying the stationary associate equa-
tion and by introducing a suitable chango of unknown . That allows
to assume the zero-order perturbation term in the new equation
to be monotone increasing . A careful study of the behaviour of
solutions near the boundary of their support is also used in order
to prove the main result .

1 . Introduction

The main goal of this paper is to show the uniqueness of solutions of
the following quasilinear elliptic problem
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ju in-2u1 + h (x, u, u') = 9(x, u),

	

x > 0,

(2)

	

ú(0) = 0,

	

lim u(x) = 0x-oo

U(X) > 0

	

(51- 0)
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in which p > 1 and the functions h and g satisfy certain structural
conditions which will be made explicit later.
The main motivation for the consideration of such a problem comes

from the study of very singular solutions of the quasilinear degenerate
parabolic equation with absorption

(4)

	

Ut = ApUM -Uq

	

in

	

Q = RN x (0, oo),

where, as usual, Opu denotes the p-Laplacian operator

N >_ 1 and m and q are nonnegative real numbers . Equation (4) contains,
as special cases, the equations

and

Op v = div (1wIp-2 w),

	

1 <p< oo,

Ut = DUm _ Uq

(6)

	

ut = APU-uq

which have been intensively studied in the last years . For many different
purposes it is interesting to study singular solutions of (4) Le . nonneg-
ative functions u satisfying (4) in Q (in the sense of distributions) and
such that u(x, 0) = 0 if x E RN - {0} . In many cases, the singularity at
t = 0 of such a solution inust be as that of the fundamental solution Le .

u(x,0) = cb(x)

for some positive constant e, or, in other words,

lim

	

u(x, t) dx = e
t-0 fjxj<r

for any r > 0 . Nevertheless, when the absorption is strong enough with
respect to the diffusion, there exists another type of singular solution u
called as very singular solution which has been discovered previously in
the following cases :

a) equation (5) with m = 1 and 1 < q < 1 + (2/N) : Brezis, Peletier
and Terman [1]

b) equation (5) with m > 1 and m < q < m + (2/N) : Peletier and
Terman [7j

c) equation (6) with p > q and p - 1 < q < p - 1 + (p/N): Peletier
and Wang [S] .
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In all those cases this new singular solution satisfies

(8)

	

lim

	

u(x, t) dx = +oot--~o 1x1<r
for any r > 0 and so it is more singular than the fundamental solution .
As usual, the existente of a very singular solution is obtained in the caass
of self-similar solutions

(g)

	

W(x t) = t-1/(q-1 ) f Ox1lt1/Q)

where ,0 must be suitable chosen. For instante Q = 2(q- 1)/(q- m) and
/.i = p(q- 1)/(q+ 1 - p) in the cases of equations (5) and (6) respectively
(recall that q > p - 1) . More generally, we can consider self-similar
solutions W of the equation (4) in which case the natural choice of ,0 is

( 10 )

	

Q = p(q - 1)1(q - m(p - 1))

A function W given by (8) is then a very singular solution if f satisfies

(11)

~(r)'1 P-2 (r)')'+ (Nx
1)

	

P-2(fm)/+1xf'+

(q
1 1) f-

fq =

(12)

	

f > 0 in (0, oo)

( 13 )

	

f'(0) = 0,

	

lira 711/(q - m(p - 1))f(ri) = o

The uniqueness of f solution of (11) (12) (13) was only given for the
case m = 1 and p = 2, (see [1J) and was left open in [7] and [8J . The
main goal of our work is to give an uniqueness result true for any value
of m and p .

Introducing v = f
m

, we remark that v satisfies an equation of the type
(1) with

and

g(x~ u) = -uq/7n +

	

1

	

uI/m
(q - 1)

1

	

_ mm>>h(x, u) _ -Oxu

	

u'm

= 0, in (0,oo)

So g(x, u) is not monotone in u . Moreover the differential terms in equa-
tion (11) may Nave different homogeneity (m(p - 1) and 1 respectively)
which leads te some special difficulties (solutions with compact.support
if m(p - 1) > 1, etc) .
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2. The main results

We shall prove the uniqueness of solutions of the problem

( 14) \I(Um)/IP-2(um)')'+
(Nx

1)I(um)~Ip_2(Um)'+ ~xu'+G(u) =0,

(15)

	

u(x) > 0

	

(y- 0)

(16)

	

(u'')'(0) = 0,

	

lim u(x) = 0

wherem>0,p>1,N>1 �Q>0and

G(u) =

	

1

	

u- u9 .
q-1

For some values of m and p problem (14) (15) (16) does not have any
classical solution and it must be solved in a generalized way . This is
the case when m(p - 1) > 1 because the solutions have as support a
compact interval [0, xo] and u' may be discontinuous at x = xo (see part
(v) of Lemma 1) . To define the notion of weak solution we.multiply the
equation (14) by a smooth test function ~(x) with compact support in
[0, oo) but not necessarily vanishing at x = 0 . By multiplying by xN-1
and integrating by parts we obtain

(17)

	

-

	

~xN 1I(um)'IP-2(Um)'~' d.T - 1 1. XNu~'dx+
o

	

p o
+ ~~

x
N-1

(G(U)
-

Nul

	

dx =
0

o

	

Q
On the other hand, by standard regularity results, it is clear that u E

C°([0, oo)) and that in fact u E C2 on the set where the equation is not
degenerate Le . {x E (0, oo) : u(x) > 0 and (um )'(x) 7~ 0} . We shall
show that the closure of this set coincides with the support of u . We can
assume that um E Cl ([0,oo)), because taking a sequence ~�, such that
lim ~�, (x) = 1 if x E [xo - E, xo] and lim ~�, (x) = 0 otherwise we have that

N ~o

N_l l( m) ' Ip_2(Um) ' ] ao + x 41.
xo-E

sp-E

f

	

\
xN-1 (G(u) -

N
Nu l dx .

So °-

	

/E

and so I (um)']p-2(um)'(xo) = 0 (the continuity at x = 0 is similarly
justified) .

In consequence, by a solution of (14), (15), (16) we shall mean a func-
tion u E C°([0, oo)) such that u,' E Cl ([0, oo)), u >_ 0 ( :~- 0) and
satisfies (16) and (17) for any smootll function ~ with compact support
in [0, oo) .
Now we are in a condition to state our uniqueness results :
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Theorem 1 . Assume that N > 1, m > 0, q > 0, p > 1,

(18 )

	

m(p- 1) > 1

(19)

	

(p- 1)m G q G (p - 1)m +
Ñ

Then there is at most one solution of problem (14), (15), (16) . Moreover,
this solution has compact support.

Theorem 2 . The conclusion of Theorem 1 holds if we replace the
assumption (18) of Theorem 1 by

In this case, the solution is positive in [0, oo) .

Before giving the proofs we shall make some renrarks on the assunrp-
tions of both results . First of all we notice that the reasonable assurnp-
tion on the parameters m and p is m(p - 1) _> 1, because otherwise
the parabolic equation (4) corresponds to a fast diffusion and solutions
vanish after a finite time . On the other hand, it is natural to expect a
different behaviour of solutions of (14), (15), (16) according to whether
m(p - 1) is greater or equal to one. Indeed, the first case corresponds
to slow diffusion, and the solutions of (4) have corrlpact support for any
value of t, although when m(p - 1) = 1 the solutions of (4) are strictly
positive in RN x (0, oo) . Finally the assumption (19) include the assurrip-
tions made in [1], [7] and [8] for the existence of very singular solutions .
In that references it is also shown how boundary condition (16) implies
the one given in (13) .

3 . Proofs and auxiliary results

The following Lemma collects several properties of solutions of (14),
(15), (16) .

Lemma 1. Assume m(p - 1) > 1 and condition (19) . Let, u be any
solution of (14), (15), (16) . Then u E Co and um E C' . Moreover

(21)

	

lim I(um)/(X)IP- (u
-
y(x) - - 1 C(u(0)),xlo x

	

N
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u(x) < M for any x > 0 with M
if xo E [0, oo) is such that u(xo) = 0 then u(x) = 0 for any x > xo,
u(x) is monotone non-incresin,g in [0, oo) and u'(x) < 0 for any
x > 0 such thatt u(x) > 0,

exists a xo E (0, oo) such that supp u = [0, xo] then(v) if there

lim I (um) , (x)IP-

	

_
XIX0 U(X)

Remark. Condition (22) is equivalent to the differential equation of
the interface of the solution of the parabolic equation (4) which comes
from the Darcy law (see e.g . [7] for the case p = 2) .

Proof of Lemma 1 : The regularity of u has already been proved in a
previous remark, so we pass to consider the rest of the statement .

Proof of (i) : We multiply equation (14) by a smoth sequences of text
functions ~n(x) such that lim~n (x) = 1 if x E [0, e] and lim~n (x) = 0
otherwise, for some e > 0 . Integrating we have

I(un°YWI`(1M),(E)+ fa
N 1

	'ex I(7l~n)'(X)IP-2(u')(x)dx=

Dividing by a and making e -> 0 we obtain

JoE
xu'(x) dx - f

E

G(u(x)) dx

in

¡I(7lna)i
(E )IE

2(Um )
/(E) +

NE

	

1 1(um), (E)IP-2(Um)'(E)] _

and therefore (i) .
Proof of (ii) : Assume by contrary that

u(yo) = sup{u(x) : x > 0} > M.

(I(7, ) I'' -2 (una )
,
)
'
(?/o) = -G(u(yo)) > 0 .

_ -1
ló

G(u(e)),

Then u'(yo) = 0 and (I(um)'IP-2(u,m)')1 (yo) <_ 0 (as um also has his
maximum in ?Jo) . If yo > 0, from the differential equation we deduce
that

If yo = 0, using (i) we find the same contradiction . Therefore u < M on
[0, oo) .
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Proof of (iii) : Again we, shall argue by contradiction .

	

Assurne that
(iii) is not true . Then it is easy to show that there exists e > 0 such
that u(x) > 0 and u'(x) > 0 on (xo, xo + E) (otherwise we can found a
sequence {x,,} of local minima of u such that x. - x0, which yields a
contradiction with (14)) .

Multiplying equation (14) by xN-1 and integrating over (x0,x) with
x E (x0, x0 + E), we get

x

	

-1 (U-y(x)IP-1 +
fx

SN 9/, ' (s) ds+

(we recall that u is regular in (xo, x) and (u-)'(xo) = 0) .

	

Taking a
sequence of smooth test functions ~ � (s) in (14) such that lirn~,(s) = 1
if s E (xo, x) (where .co < .x, < .x0 + E) and lim~,(s) = 0 otherwise, we

1(rr-y(x)IP-I +

	

u(X) +
(~

1 1

	

N)

Jxx
s N-1

u(s) ds =
0

(notice that (u-)'(x0) = 0 and (u-)'(x) > 0) . Using that 1/(q - 1) >
N/,Q we have

or equivalently,

x SN-1

	

x
+

	

u(s) ds -

	

s N-1 u9 (s) ds = 0
fx,, q - 1

	

f. o

I x sN-1uq(s) ds
o

xN ~

	

1
v, (x) <

Jxo
.sN-1u`' (s) ds <

Ñ
(xN - .ró )u`'(:c),

< N
1
U'-'(x) (1

-

	

0x

	

N)

Making now x -+ xo we arrive to the inequality

which is a contradiction .

Proof of (iv) : Suppose that for some xo > 0

	

u'(x0) > 0, then by (i)
there exists a x1 E (0, x0) such that u'(x1)=0 and (1(um)'IP-2(u-)')'(x1)
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>_ 0 . Wc also know by (ifi) that u(xl) > 0 . Arguing in the same way as
in the proof of (i) we can show that

lim NI (u-)'(x) Ip-
2(u-), (x) _ _

	

1

	

(u(x1) - u9(x1)) < 0
xlxl

	

x - x1

	

q _ 1

(since 0 < u(x1) < M) . Then we arrive to a contradiction with the
fact that (hm)'I P-2 (um)' l

'
(xl) > 0 . Thus u'(x) <_ 0 for all x >_ 0 . In

fact the same argument shows that u'(x) < 0 for every x > 0 where
0 < u(x) < M. Thus it only remains to exclude the case

u(x) = M

	

ifx E [0, al
u(x)<M if x E (a,, +oo)

for sorrae a > 0 . We- assert tlaat there exists e > 0 sueh that for any
x E (a, a + e) we have

u(x)<0

x SN_1

	

x

+

	

u(s) ds -

	

sN-1 ug(s) ds=0,
fa ~- 1

	

a

(the proof of these properties follow the same ideas used in the part (iii)) .
By integrating by parts we obtain

xN

	

1 I(um) , (x)Ip 1 - x
N

~

_

a
N

M+ M

	

~
(X)xN

=

C

	

1

	

-
N)

	

x
SN-1u(s) ds -

J x
sN-1u9 (s) ds .

i a

	

a

As u is decreasing on (a, a + e) sorne elementary manipulatign allows to
obtain

.c N

	

aN M + M
Q

_

	

(x) x N

<

	

1

	

_ N

	

xN_

	

- aNM - xN - aN uq (X ) ,
C q -1 Q/ N

M _
U(X) xN <

x N - aN ( M

	

_U,
(x)

Q N q-1
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Dividing by xN (M-u(x)) and letting x - a we arrive to the contradic-

Thus, we have excluded the possibility u = M on any interval [0, a], and
the proof of (iv) is now complete .
Proof of (v) : Choose E > 0 such that E < xo, u(x) > 0 and u'(x) < 0

in x E (xo - E, xo) . Then, as in part (iii), we obtain

N
- x"

	

I (U) (x) IP 2
(U) (x) -Q

u(x)+

1 N

	

°
+

	

-

	

~° s N-1 u(s) ds -

	

px
s N-1 u9 (s) ds = 0

(q - 1

	

fl )

	

xJx

with x E (xo - E, xo) . Since (um)'(x) < 0 and q11 > Á we get

¡(u- )'IP

	

1 (x)

	

x

	

f. °
sN-

1ug(s) ds

u(x)
< +

xN-111,(x)

I (CL7n ) , I P-1 (x) > x -

	

1

	

- 'N\ jT° sN-1u(s) ds
u (x)

	

q- 1

	

,0

	

xN-1u(x)
Letting x T xo in these two inequalities, we obtain at the limit

lim I (u-)'I P-1 (x) _
XIX° U(X)

Proof of Theorem 1 : The first step is to introduce a chango of un-
known in such a way that the absorption term of the now equation be
monotonically non-increasing . Let v(x) defined by

(23)

	

11 = (p - 1)/(m(p - 1) - 1)

it is easy to see that v satisfies (on the support of v) the equation
(24)

(Iv~IP-2v/)
+ N - 1 IVIIP-2vt + M I v? + Pxv' +

	

1

	

- vi.(q-1)
=

0
x

	

v

	

,~av

	

(q - 1)a

	

a
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(25)

	

v > 0

	

(51- 0)

	

in

	

[0, oo)

(26)

	

v' (0) = 0,

	

lim v(x) = 0

where

Now let vr and vz be two solutions of (24), (25) and (26) . Let xo E [0, oo)
be such that

(27)

	

0 < (vr - vz)(xo) = sup (vr - vz) - h
fo,00)

By comparing the value of

for i = 1, 2, it is not difficult to see that xo > 0 .
Indeed, if xo = 0 we deduce, in the same way that in part (iii) of Lcrnma
1, that vl(x) < v2 (x) in (0,6) and therefore

From this inequality and the property of vi

(see part (i) of Lemma 1) we obtain v, (0) < vz(0) and so the maxirnum
of VI - vz can not be attaint at .xo = 0 .

Assurric now that xo > 0 and V2(X0) > 0 . Obviously we also have that
vr (xo) > 0 because h > 0. Then there exists a constant L > 1 such that

(28)

	

rnax{vi(0) - vz(0), vr(zo) - vz(zo)} <
vr (xo) - V2(X0)

L

where zo > xo is such that supe vz = [0, zo] . We also chose k > 0 such
that

lim
IV

x
~ (x)IP-2 V í (x)

a = (mp)ln-') .

lirn wÍ(x)IP-wi(x) < liIrr wz(x )I P-2V2,
xlo

	

x

	

- xj0

	

x

lirn ¡VI (x)Ip-zvz(x) _- -1

	

1

	

- v(q-r)bt(0)
o

	

x

	

Na

	

q- 1

	

i

~h ~
(29)

	

max

	

L,
h
2

	

< k < vr(xo) - V2 (X0) = hG

	

.
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Now, we shall first pay attention to the case p > 2 . We multiply the
equations of vi(¡ = 1, 2) by xN-1 ~ with ~ given by

~=epw -1, w=(vi-v2-k)+ .

Integrating on (0, +oo) we llave

xN-1 (Ivi Ip-2vi - Iv2I p-2V2
, )

fíc5,é0 ]

fhxN-1 (Ivi Ip -
Iv2Ip - vi

(a-r)

	

v2
(a-1)

	

xN (_vi4 p- -
VI v2

	

pa

	

/aa + ,la vi v2

Using that ' = pw'epw (where w' = vi - v2 on w > 0 and w' = 0
otherwise), the inequality (see e.g . Díaz [2, p . 264])

(30 )

	

(1011
,-2

01 -
Ia2Ip-2

a2) (al - a2) >_ cial -a2Ip

	

bal , a2 E R+

and the fact that (v2 - vi)~ < 0 we deduce that

N-1
cfxN- 'Iw'Ipepwdx < pf

x

vl

	

(Ivilp- Iv2Ip)~ dx+

+ xN(Lnvi.-Lnv2)'~dx,
Qa, f

Moreover, applying the inequality (truca for any p > 1)
IaI

I' - Ia 2 I' 5 CIa l - 021

	

Val, a2 E R,

(where C denotes again a generie constant and so it will denotes in the
following), using that vi (x) > h/2 for any x such that w(x) > 0, and
integrating by parts in the lasa integral we deduce that

Cl

	

x N-1 Iw'Ipep'° dx < 2pCf

	

xN-1IW'I (ep,
- 1) dx+

[w'~°I

	

h 1 .'9,01

As the logarithm functiori is concave we llave

+-x N (Lnv1 - Lnv2)I 'I dx .
Na f[w,,,0]

C f

	

xN-1 ~w'Ipepwdx <
Cf

	

xN-i iw'Iepw dx+
[w ,~ ol [.,9É0]

+Pf

	

VI -
v2 xN

	

dx .
fla- . [�~~ o]

	

v2
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But [w' :~ 0] C_ [w =~ 0] and from the choice of w we deduce that these
exists these positive constants 61, 52, 63 such that if x E [0, oo) satisfies
that w(x) > 0 then x < di (because supp vi and supe v2 are bounded),
x > 52 and v2 (x) > 53 (as consequence of (28), (29) and the monotonicity
of vi), we deduce

or equivalently

Using Hólder inequality we have

and hence

So

c l
w

Iw'IPePw dx< IW'IeP
w
dx

Y01 W5401

C
.

	

fI (ew)'IP

	

I (e,~)~Ie(P-1)w .

P-1
P

C

	

e P

~,~~ bol

1'P+

	

\ rlP

	

l1/P
C

	

f

	

ePU,

	

C

	

I (ew) ' IP~

	

<(1+C) ~

	

ePw

( 1w,~p1.

	

(w, o1

	

íw"Y0

	

J1

(31 )

	

CIIe
,u

liwi .P(1w, 9601) :5 Il ew [ILP«w',101 .

Assume now that p < N . Applying Sobolev and Hólder inequalities we
obtain

CIIe`1ILP-(1w,V-O1) :5 IIC,uIILP(1w'51101) :5 IWIILP'(1w',101)1

where p* = pN/(N - p) . In particular

(32)

	

¡supp w'I > C > 0

supp w/ 1
1

In the case p > N conclusion (32) is obtained from the Sobolev inequality
by replacing p* by any number greater than p* . Since these inequalitíes
are independent of k they must hold as k tends to h . That is, the function
Vi - v2 attain its supremum on a set of positive measure, where at the
same tirne (VI - v2)' = 0, which is a contradiction with the inequality .
(32) .
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In the case 1 < p < 2 inequality (30) must be replaced by

(lal1,-2x1 - la2lr-2 a2 ) (al - a2) ! C

	

lal - x21
2

(1x11 + a2
j)2--p

(see e.g. Díaz [2, p . 264]) . This justifies a change in the test function
which now is taken as

(33)

	

~=w = (VI - v2 - k)+

Mutliplying the equations of vi by xN-1~ and integrating on (0, oc) we
have

(34)

Cf

	

xN-1

	

� 2

	

k~
xN-1

dx <

	

(Ivilr - Iv21r)wdx+f�~'~01

	

(¡Vil + Iv21)2-P

	

VI

But there exists b4 > 0 such that Ivi 1 + Iv2I > b, on [7u' ~ 0] (recall part
(iv) of Lemma 1) . Then it is easy to see that all the above argurnents
allow to obtain the inequality

cllwliWl-2([-'9¿01) :5 Ile'IIL2([,, ',101)

(instead of (31)) and so the conclusion follows .
Now we consider the last case: it is when the point .co is such that

v2(x0) = '0 . We shall need a qualitative information which gives an
additional information to part (v) of Lemma 1 .

Lemma 2. Assume m(p - 1) > 1 and (19) . Let u be _any solution of
(14), (15), (16) . Then if supp u = [0, xo] we have

(35)

	

h,Y(xl)1 1-1 < ~u(xl)

+
2a

1 xN (Lnv1 - Lnv2)'~dx

for any x1 E (0, .x0) .

Proof of Lernma 2 : Intcgrating the egnatlon (14) on (0, x0 ) we, have
x°

	

.co

[(xN-11(um),Ip
2(u-y]'+

f. ~(xNu)'+

x° 1 N

+f

	

((9 - 1

	

,Q_
_) xN_

	

xN-IUql - 0
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but lías (u-)'(xo) = 0 and u(xo) = 0 we conclude that

From thc; nzorzotonicity of u (see part (iv) of Lernma 1) and the sign of
F(s) = ( q

	

r - ~)s - sq (rernember that (r~ 1 r) > Á) we obtairr

(36)

	

J ~1
xN-1 «

	

1

	

-
N

	

u - u9~ < 0
0

	

9 - 1

	

/~ )

and

J .I . DIAZ, J .E . SAA

oxN-1 «

	

1

	

- N) u-uq l =0.
o

	

9-1 Q~

~xN-1CC

	

1

	

-N l u_u`r~ >O.
q 1 Q

Integrating the equation (14) on (0, x1) we also llave
i,

	

a.~

( :r;N-1I ('U,'rr,)/Iri-2(Urrt)l)' +

	

0

	

~(xN7I,)'+

'

«
1N)xN-1u

	

N-1u7/
-0

0 4- 1

Thus (35) follows from this identity, (36), and the monotonicity of u
(part (iv) of Lemma 1) .
Proof of Theorern 1 (Continuation) : We was c:onsidering the case

V2(X0) = 0 . As v1(:ro) > 0 we know that v](xo) < 0 (part (iv) of
Lernrna 1) . So, ru;cessarily supe v2 = [O, :co] . We assurne p > 2 (thc; case
1 G p G 2 holds with obvious modifications) . Let yo > xo such that supp
v1 = [0 ; ?1o] (thc; conrpactness of the support af any solution is assumed
here but it will be proved as a last stc:p of thc Proof of this theorem) .
Using part (v) of Lemra 1 we obtain

lióalv2(x)Iv-1
=

Thus f7znction v1 - v2 is not of class C1 ((0, oo)) and so at its rnaximum
xo we rnc;rc-;ly have tlle information

lim v Í (x) >_ lim v2(x) .
xjxo X?meo

Our arguments will be of a different type according the subcases

(a) lio vi (x) = lio v2, (X)

(b)
1?TO

111( .7;) > liráñ 712 (x).



Consider tlle subcase (a) . From part (v) of Lernrna 1 we obtain

On the other hand applying Lemma 2 we conclude that

which is a contradiction .
Now consider the subcase (b) . Our main idea, is to argue irl a similar

way to the case 712( .X,0) > 0 . First of all we need to exterld the equation of
712 on (xo,+oo) : It is clear that 712 is a weak solutiori, in (0, xo)U(xo,+oo),
of the equatiorl

where

for any x E (0, .X,0) . Thus

lim
xrx0
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lim alv2(x)IP-1 = ~ = alvi(xo)IP-1XITO

N- 1

	

1

	

v(Iv2I X' -2712

	

+

	

x

	

¡VI

	

+

	

l

	

2

	

= B(:c)
(q -

	

)a

	

a,

-~x I 1X
' (X)l" - l ¿xv2 (x)

B(X)

	

712 ( .r,)

	

3av2 (Xi

(q - 1)a

J .,,
sN-1 712 (s) ds

7,N-17)2+1(7,) -

alvi(xo)I P-1 <

if :r,, E (0, .x,0)

if .e E (xo, +oo) .

Let us prove that B E L'(O,+oo) . It is clear that we only need to show
that lim B(x) is finite . To do that we use one of the inequalities of thc:xjx 0
proof of part (v) of Lemma 1 and we conclude

1 ( 1

	

N)

	

sff-'v"
w2(X)I r'-1 - - > -

la

	

a,

	

q- 1

	

,Q

	

xN - l ,v (:c)

VI c

	

x71

	

x

	

-V2 x

	

1

	

N

	

xO sN- 1VI`
(s dsI

	

(X )I~ _

	

2( ) <

	

( )	_ _

	

Jx

	

2

	

)
712(x)

	

,3av2(x)

	

a

	

C4 - 1

	

p

	

xN-1712+1(x)

on the interval (0, .X,0) . By tll<; 1'Hópital rule

lim -x
N-1712

(x)
XTx0 (N - 1)XN-2712+1 (x) + xN-1(i¿+ 1)712 (X)v2(x)
_

	

-x _ -1
lIXO (N - 1)712(x) +x(p,+ 1)712(x)

	

1?0 (m+ 1)712(x)
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Using part (v) of Lemma 1 we have in consequence

_

	

x0
)

	

_1/(P-1)

	

1

	

1

	

N
lizo

V2 (.r.)

	

- C&

	

1'm B(x)
x x

	

a(lí+ 1 ) ( g - 1

On the other hand, if .x E (0, xo), by Lemma 2 we have

and so lim B(x) > 0.

Then

But (as (0 ) = 0)

B(x)

	

av2(x)
1alv'(x)J1-1 -

Mx
> 0

xjxp

Fronl de notion of weak solution we have that

.xp

	

+0
_
~

	

xN-1
\lV1 ip_2V2) £~

-

	

xN_1 \lV1IP_2V2) ~1+
. 0

2

	

2
Ixp

+xl -1 Chrrl lV2(x)l P-1V2( .T,
))

S(X0)+
xjxp

+ xN-1
( 1

fo

	

(9 - 1)a 2 a_

	

x"'-1B(x)

for any function ~ E WO'P(O,+oo) . Now we chose k > 0 such that

v 1 (0) = v2 (0) < k < vi (xo) - v2(xo) = vi (xo) = h .

We take agairl

~ = cpuj _ 1

	

W = (Vi _ V2 - k)+ .

xN-1 (¡V1
l
P_ 2

v1 - lv2 ip-2v2)

	

' _
J~riE01

+,

Il(9-1 ) W(9-1 )
= xo -1 (lirrl lv2(x)lr'

-1 )

	

(xo)+f

	

xN-1

(
-y1

	

+
v2

	

) ~+xTxp

	

Q,

	

CL

+

	

+~ hXN-1
C

lv l~
v1

	

+
xv

Qavl)
~ + fwxN-1B(x)~

0

~(xo) =

	

~'(s) ds <
.0

l~ (s)l ds < ~£
X01

l~'l



On the other hand, using Lemma 2 we have

Noting that
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vill

	

+ áávl
=

vi (- I
v11P-1 + pa) < 0 .

Then arguing as in the step v2 (xo) > 0 and using that B E L°° (0, +00)
we obtain that there exists C1, C2, C3 positive constants (not depending
on k) such that

C1 L

	

I w'IPePw dx < C2 L

	

ePw + C3 f

	

I
(e')'Ie(P-1)w

[w'~ol

	

[w~o1 [w'7Éol

w1(x) _

	

vi (x) - v2 (x)

	

if x E (supp w) f1 (o,xo)
vi (x)

	

if x E (supp w) fl (xo, yo),

that vi (x) < 0 on (xo,yo) and that

lim (vi (x) - v2 (x)) > 0,
xjxp

we can chose k, closed enough tó h, in order to have

supe vi = suipp u) .

Then, applying the Young inequality ab <_ eaP + CEbP/(P-1 ) for e small
enough (e < CI) we get

(Cl - e)
J

	

I (ew) ' I P ~ (C2 + C3CE)
11.19É0]

Iew1 P .
[ .' 9,01

Now we are in the same situation than (31) . Thus inequality (32) holds
and we obtain the contradiction by making k converging to h .

In order to complete the proof we must prove the compactness of the
support of any solution of problem (14), (15), (16) . For this surpose we
sháll define a supersollltion of (14), (15), (16) with compact support . Let
0 be the function

(37)

	

O(x) = ([C - x°]+),̀

	

dx E [0, 00),

where [v]+ = max{v, 0}, a E (1, p/(p - 1)) and C is a positive constant
to be determinate . After some elementary manipulations one can verify
that (-bn')'(0) = 0 and that

(I(~7n)/ip-2(0nt),)' + Nx 1 ROMA P-2(«n)' +

	

xo' +

	

1 1 O - Oq < )
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assumed C largo errough . Hence 0 is a, supersolution of problem (14),
(15), (16) .
Arguing in the same way as in the proof of the uniqueness we can

compare any solution of (14) with the supersolution 0. Indeed : let u be
a solution and apply the previous change of variables to the functions u
and 0. Then if we call

v = u l/i~ and V) = 01 /x` = [C _ XQ]+,

v is a solution of (24), (25), (26) and 0 verifies

,'-2

	

IÉ f + N

	

1 I, rl~-2zÚr+

V) x
N ,0r

	

1

	

li(9-1)

& V)

	

q-1

	

a

Now, proving that sup (v - 0) < 0 consists in repeating the same argu-
ments as in the uniqueness proof, where now v plays the role of vl and
0 the one of v2 . Hence 0 > u and since 0 lras a compact support, the
same happens with u, and thc; proof of Theorern 1 is complot .

Proof of Theorern 2 : As in the previous theorem, wc; introduce a
change of unknown in order to arrive to a nc:w equation with a monotone
perturbation term . More precisely, let v(x) defined by

u (x) = e'(')

	

x > 0

(wc; suppose here that u(x) > 0 as wc; shall prove in thc; last part of the
Theorern) . It is easy to see that v satisfies

(1v'jr-2v ,
)
i
+ IV , I

p-2V' + XVI +

	

1

	

- e
(v-llv = 0

Q q - 1

Now the uniqueness reduces to repeat the same arguments as before
(even in a easier way because the strict positivity of v and tire siniplicity
of the absorption and transport terms) . In order to complete the proof
of the Theorern 2 we just have to show that a solution u of the problem
(14), (15), (16) with m,(p - 1) = 1 verifies u(x) > 0 in x[E [0, 00) . Let
suppose that there exists some yo such that u(yo) = 0 . Then by Lernma
1 we; know that supp u = [0, xo] for sorne .xo > 0 a,nd

( 3s)

	

limo
I(u

	

ru(x

x
)

Ir/~

G 0 in (0, C) .
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Let us define the function f(x) = In (u'(x» with .x E [0, xo), then we
can write the previous lirnit as

lim j'(x)

	

XO)

Since lTm f(x) = -oo and f E Cl ([0, xo)) we arrive to a contradiction
with (38), and the proof is concluded .
Rernark . The idea of obtaining a contradiction via Sobolev inequal-

ities was already used in Uudinger [10] (see also [4, Theorem 10.7]) to
compare solutions of non-degenerate quasilinear elliptic problems . In
that work the test function is defined as in the proof of Theorem 2 . Fi-
nally we point out that our arguments can be also applied in order to
obtain comparison results for solutions of more general equations, as for
instante

-O ru - ~ ' Vul

	

+ B(x, u, ¡Vul) +f(x, u) = 0u
where u ~-- f (x, u) and u , B(x, u, 77) are non-decreasing and 17 ->
B(x, u, rt) is Lipschitz continuous . In particular, this allows to generalize
the uniqueness result of [3] .
Rernark . Sirnultaneously to the completion of our work (which irrl-

proves a previous version included in [9]) S . Kamin and L . Veron llave
communicated to us their work [6] in which they give a new proof of
the existente of the very singular solution of the equation (5) as lirnit
of fundamental solutions satisfying (7) when c -, +oo . They also llave
a proof of the uniqueness of the very singular solution (Le . a nonneg-
ative not only self similar function satisfying (5)) and solutions of the
parabolic equation (5) . In this way they are giving an indirect proof of
the uniqueness of f for p = 2 and m > 1 arbitrary. It seems that their
arguments, jointly with some ideas of Kamin-Vazquez [5], may allow to
give the uniqueness of the very singular solution in the class of solutions
of (6) or even (4) . In any case our arguments are of a different nature to
those used in [6] and [5] and can be applied to other elliptic problems
not necessarily related with the study of singular solutions of parabolic
equations .
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