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Abstract

NON-COMMUTATIVE SEPARABILITY
AND GROUP ACTIONS

RICARDO ALFARO*

Dedicated to the memory of Pere Menal

We give conditions for the skew group ring S * G to be strongly
separable and H-separable over the ring S. In particular we show
that the H-separability is equivalent to S being central Galois
extension. We also look into the H-separability of the ring S over
the fixed subring R under a faithful action of a group G. We show
that such a chain: S * G H-separable over S and S H-separable
over R cannot occur, and that the centralizer of R in S is an
Azumaya algebra in the presente of a central element of trace
one.

In [A] we introduced the concept of subring-Galois extensions as a
generalization of central Galois extensions and give a generalization of
the correspondence theorem given by DeMeyer in [D] and Szeto in [SM] .
Similar correspondence theorems were given by Sugano in [S] using H-
separability. Separability for non-commutative rings was introduced by
Hirata, and the notions of H-separability and "strong" separability were
introduced by Hirata in [HI] and MacMahon and Mewborn in [MM]
respectively . Strong separability is a weaker notion than H-separability,
but both are special cases of the general notion of separability of ring
extensions .

In the case of group actions we present here conditions for strong
and H-separability of skew group rings and in particular we show that
the skew group ring S * G is H-separable over S if and only if S is a
central Galois extension . Furthermore, in this case S*G is a Z(S)-Galois

*Partially supported by a grant from the Faculty Development Fund of the Uni-
versity of Michigan-Flint and a fellowship from the Centre de Recerca Matematica,
Barcelona, Spain.



360

	

R. ALFARO

extension (in the terminology of [A]), allowing us to express S = Z(S)R
and S*G = Z(S)I where I is the algebra of G-central functions . We then
study the separability of CS(R) over its fixed subring and give conditions
for S to be Cs(R)-Galois .

All rings here are associative and Nave a unity element 1 . Z(R) will
denote the center of a ring R, and CA(B) will denote the "centralizer
of B in A", Le . the elements of the ring A which commute with all the
elements of the subring B of A .

1 . Definitions and Notations

Let B be a subring of a ring A with 1 .
The extension B C A is called separable (or A is separable over B) if

any of the following equivalent conditions is satisfied :
1) The multiplication map p : A ®B A --> A splits as an (A - A)-

bimodule map .
2) There exists an element e E A®BA (called a separability element),

such that ne = ea

	

for all a E A and p¿(e) = 1 .

The ring A is said to be strongly separable over B if A®BA =K® L as
(A - A)-bimodules, where HoMA,A(K, A) = 0 and L (D II - An for some
(A - A)-bimodules K, L, H and some positive integer n . In case K = 0
we say that A is H-separable over B . Strongly separable extensions are
separable but the converse is false, see [MM] .
There is an equivalent definition for this kinds of separability in terms

of the natural (A - A)-bimodule map cp : A®BA - Hom(0~, Aj where
~o(a ® b)(x) = axb, C is the center of A and A is the centralizer of B
in A, CA (B) . The ring A is strongly separable over B if and only if A,
is finitely generated projective C-module and cp is an split epimorphism .
Similarly, A is H-separable over B if and only if 0, is finitely generated
projective C-module and cp is an isomorphism . For details see [HI] and
[MM] .
Now let's consider group actions . Let S be a ring with 1, let G be a

finite group acting faithfully as automorphisms of S and let R = SG be
the fixed ring under G. Writing g(r) = 9r, the skew group ring S * G is
the free left S-module with basis the elements of G and multiplication
given by the rule gs = 9sg for all s E S and g E G. Denote by -ff the
element E g E S * G. The action of G on S is said to be G-Galois if

9EG

S is finitely generated projective right R-module and the natural map
0 : S * G -+ EndRS given by O(rg)(x) = r (9x) is a ring isomorphism ;
or equivalently, there exist elements ai, bi (called a G-Galois basis) such
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that Y" al gbi = 1 if g = 1 and the sum is 0 if g =~ 1 (Le ., SirS = S*G).
i

The "trace map", tr : S --> R is given by tr(x) _

	

gx which is an
geG

(R - R)-bimodule homomorphism .
Let T be a G-stable subring of S (that is gt E T for all t E T, g E G),

we say that S is a T-Galois extension of R if the action of G on T is
G-Galois . For details and properties, see [A] . If X is a subset of S, let
I(X) = {g E G/ gx = x bx E X} be the "inertia group" of X, (I(X)
is always a subgroup of G) .

2. Separability and skew group rings

In [MS, theorems 2.2 and 2.3] it is shown that if S is a simple ring, G
a finite outer group of automorphisms of S and F = I(Z(S)), then S* G
is H-separable over S * F and S * G is H-separable over S if and only
if F is trivial . But in this case S * G is simple and hence the action of
G on S is G-Galois . We'll give a general result relating G-Galois actions
with strong and H-separability.

Let D = CS*C(S) and C = Z(S * G) . The action of G on S induces a
faithful action of G on S *G via conjugation, ga = gag-1 for a E S * G;
and G also acts on D . Let M be the inértia group of D, thus G/M acts
faithfully on D by ha = 9a for any g E h.

Lemma 2.1 . DG = DGIM = C.

Proof. The first equality is obvious since M is the inertia group of
D. Now let a E DG , then ag = ga

	

dg E G and by definition of D,
sa = as

	

b's E S; hence a E C. Conversely, if a E C, ag = ga

	

dg E G
and hence a E DG , (is clear that C C D) .

Theorem 2 .2 . Let M be the inertia group of D = CS*G(S) and let
C be the center of S * G. Assumme there is a central element w in S
with trm(w) = 1 . If D is G/M-Galois over C, then S * G is strongly
separable over S.

Proof. Let cp : S * G®sS * G -~ Hom(Dc, S * Gc) be the natural
(S * G - S * G)-bimodule map, and let {ai, bi} be a G/M-Galois basis
for D over C; then define the maps fi by fi(x) = tr,/,,(bix), thus fi E
Hom(DC,CC) and {ai, fi} form a dual projective basis for D over C.

First

	

we show that

	

{fi}

	

is

	

a basis

	

for Hom(DC, S * Gc)

	

as
(S * G - S * G)-bimodule.

	

For, let a E D,

	

f E Hom(Dc , S * Gc),
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then f(a) = f

	

aifi(a)

	

_

	

f(ai)fi(a) _

	

fi(a)f(ai) ; thus
i

	

i

	

i
f = E f(aá)fi = E fif(ai) . Now we prove that cp is an epimorphism .
Note that W(g ® g')(a) = gctig-1 , thus cp(g (9 g-1 ) acts as g E G/M
on D and cp(g (9 g-1) = ~o(h® h-1) whenever g = h in G/M(*) . Choose
{h1, . . . , hp} a transversal of M in G, then

fj(x) = tr. IM (bjx) _ 1: h¡(bjx) = L.
hibjhix

h¡	h¡

_

	

hi bj<P(hi (9 hi 1)(x) =E;P(hibj ® hi 1 )(x) .

Therefore fj E Im(;P) and hence cP is epic . Notice that the expression
of fj above is independent of the choice of the transversal of M in G
by (*) . It is only left to show that cp splits as (S * G - S * G)-bimodule
homomorphism . Let M be given by the set {m1, . . . , mq} and let lk =

2,3

himjwbk ® (himj)-1 E S * G®,SS * G. Then

'P(1k) = m'wh¡m'bk ;P(himj ® (himj)-1)

	

and by (*)

mjwhi bkW(hi(9hi 1 )
i

h¡-, w I ~o (hibk ® h%1~
= fk .

Hence we may define the map 0 : Hom(DC, S * Gc) - S * G®,S * G by
linearity with 0(fk) = lk . To show that 0 is an (S * G - S * G)-bimodule
map, we need to show alk = lka for all a E S * G. Let r E S, since
bk E D and w is central in S we have :

and if g E G, we have :

glk =

rlk = 57r(himj )wbk ® (himj)-1
?,j

Y~(himj)( h im, )-l rwbk ® (himj)-1
?j

217

himjwbk ® (him')-lr(h¡mj)-1

himjwbk ® (himj)-'r = lkr,

ghimjwbk ® (himj) -1 = >~(ghi)mjwbk ® ((ghi)mj)-1g,
1,7

	

áj
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but {ghi} is another transversal of M in G, hence by (*) glk = lkg and
therefore 0 is an (S * G - S * G)-bimodule map. We then have

~0
Cj

:f(ak)fk l

	

= ~o (~
k

	

k

	

f(ak)fk

f(ak)W(lk)

	

f(ak)fk = f.

and so 0 splits cp .
k

Now we want to show an equivalent condition for the skew group ring
S * G to be H-separable over S . We start by giving some notation and
some neccesary conditions assuming all the notation as in theorem 2.2 .

For every g E G define Og = {r E S/ r gs = sr

	

ds E S} . If 4'g =,L 0

	

g
is said to be w-inner, and if Og = 0 for every g z/~ 1 G is said to be
w-outer . It is not difficult to see that D = 1: Ogg .

gEG
For the proof of the main theorem we will need a result that appears

in [A], and we reproduce here for completeness .

Proposition 2.3 . ([A, prop . 3.3]) Assume S*G is H-separable over
S . Then G is w-outer and D = Z(S) .

Proof.- Since S * G - E ® (So g) as S-S-bimodules, C, (D) = S

gEG
by [S, proposition 1 .3] . Hence Z(D) = C,,G(D) n D C_ S and therefore
C C_ Z(D) C_ Z(S). Now let rg E Wg, so x = rgg E D, and hence
trGIM(x) =

	

1:

	

hrg gh-1 =

	

1:

	

hrghgh-1 E C C_ S. Thus h rg = 0
heGIM hEGIM

if hgh-1 0 1, this is if g z/~ 1 and so rg = 0 if g z,~= 1. Therefore Y'g = 0
if g :~É 1, and so G is w-outer . By the comment above D = ~ 1 1, so
D = Z(S) .

Theorem 2.4 . Let D, M, C, S, G and w as in theorem 2.2 . D is G-
Galois over C andM is trivial if and only if S * G is H-separable over
S.

Proof.. (=~) Assume the same notation as in the proof of theorem 2.2 ;
hibk ® h% 1 , and henceso now we have lk = htiwbk ® (h i)- I =

cp(1 (9 1) = 1: cp(1 (S 1) (ak)lk = Ea
k

	

k

hibk 1 hi ®h21 =1®1 .

hibk ® h2 I
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Thus 0 - cp = ids*co Ss*G and (p is an isomorphism.
(~-=) Assume m E M and n E D, then cp(m ® m-1)(a) = mam-1 =

a = cp(1 ® 1) (a), but cp is an isomorphism, hence M = 1. Now we
will show D is G-Galois over C. By proposition 2.3 D is commutative,
and by [S, proposition 1.3] D is a separable C-algebra . Assume that
there exists a non zero idempotent e E D and a pair h 0 g E G such
that 9 xe = hxe for all x E D. If we let e' = 9 e, we have e' 7~ 0
and xe' = 9-lhxe' = e' s-lhx. But G is w-outer, hence g-1 h = 1,
thus g = h, a contradiction. Therefore D is G-Galois over C by [DI,
proposition III. 1.2] .

If S is a simple ring and G is outer, then Z(S) is a field, and hence
G/M is G/M-Galois over Z(S) where M= I(Z(S)) . Therefore applying
the previous theorems we obtain an improvement of [MS, Theorem 2 .3
and Theorem 2.2,ii)]

Corollary 2.5 . Let S be a simple ring and G be outer.
i) If 3w E Z(S) such that trm(w) = 1, then S * G is strongly

separable over S .
ii) S * G is H-separable over S if and only if M = 1 .

We can see now a relationship between H-separability and T-Galois
extensions in the following corollaries :

Corollary 2.6 . S * G is H-separable over S if and only if S is a
central Galois extension of R .

Proof. (~) 9 ai, bi E Z(S) such that

	

E ai 7rGbi = 1, but Z(S) C_
Cs*G(S) = D and D is G-invariant, hence D is G-Galois over DG = C
and by theorem 2.4 S * G is H-separable over S.
(=) Obvious from the theorem 2.4 and proposition 2.3 .
The case of commutative rings is now determined :

Corollary 2.7 . Let S be a commutative ring. S * G is H-separable
over S if and only if S is G-Galois over R.

Consider again the action of G on S * G by conjugation. It follows
that the centralizar of G in S * G is precisely equal to the fixed ring
(S * G)G = I, which in the language of C*-algebas is callad the algebra
of G-central functions, (see [OP]) . Hence we obtain :

Proposition 2 .8 . Let S * G be H-separable over S. Then S * G is a
Z(S)-Galois extension of I and therefore S * G = Z(S)I.
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3 . H-separability and fixed ring

Now we study some neccesary conditions for the ring S to be H-
separable over the fixed ring R . The centralizer of R in S will be denoted
by E and all the notation from Section 2 will be assumed .

Let X be a G-invariant subset of S . It can be easily seen that CS (X)
is a G-invariant subring of S and thus G acts on it . Flzrthermore we
have that (CS(X))G = CR(X) . Hence, if we take X = R we get the
following relation : EG = Z(R) C Z(E) . On the other hand it is obvious
that Z(S) C Z(E) .

Proposition 3.1 . Let S be H-separable over R . Then:
1) G is w-inner .
2) R = CS(E)
3) EG = Z(R) = Z(E)

Proof. 1) Recall that 4'9 = {r E S/ r gs = sr

	

ds E S} . Consider the
(S - S)-bimodule Sg . Then Eg = Cs,~g(R) and Ogg = Csg(S), therefore
we get Eg = E OZ(S) Ogg and hence 4'g =~ 0 .

2) It is clear that R C_ CS(E) . Now, let r E CS(E) and let g E G.
We can see g as an element of HOMR-R(S, S) which is isomorphic to
E%(S) E by [H2, proposition 4.7] . Thus there exists elements di, el E E
such that gx = J: i dixei for all x E S, and therefore gr direi =
r j:i diei =r; sor G R.

3) By the comments above, it is only neccesary to show the second
equality. But, by part 2) we have : Z(R) = R n Cs(R) = R n E _
Cs(E) n E = Z(E) . a
Remark. Note that in proposition 2 .3 we showed that if the skew

group ring S * G is H-separable over the base ring S, then the action
of G must be w-outer . Here we obtain the opposite condition, if the
ring S is H-separable over the fixed ring R, the action of G must be w-
inner . Therefore we cannot have a "chain" of H-separabble extensions
in faithful group actions .

Proposition 3.2 . Let S be H-separable over the fixed ring R and
assume there exists a central element in S of trace one . Then E is
separable over Z(S) and H-separable over EG (so E is an Azumaya
algebra) .

Proof.. The existente of a central element of trace 1 makes the trace
map tr : S -4 R split as a (R - R)-bimodule map. Hence R is a direct
summand of S as (R - R)-bimodules and by [S, proposition 1 .3] E is
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separable over Z(S) . Furthermore, since Z(S) C_ Z(E), the theorem of
Azumaya for separable extension over commutative rings implies that
E is separable over its centar Z(E) and Z(E) is separable over Z(S) .
Therefore, E is H-separable over Z(E), which by proposition 3 .1 is
equal to the fixed subring EG .
The action of G on S induces an action on E, but we need to consider

the inertia subgroup K = I(E) . In this way G/K acts faithfully on E.
We now describe conditions for E to be a Galois extension of EG.

Proposition 3.3 . g E K if and only if Og C Z(E) .

Proo£ Since Og C_ E the neccesary condition is obvious. Now let
a E Og C Z(E) ; then a(9x - x) = 0 for all x E E and therefore gx = x
forallxEE.

Theorem 3.4 . Let S be H-separable over R and assume there is a
central element of trace 1 . S is an E-Galois extension of R if and only
if C = EG and K is trivial.

Proof. (=) By definition of E-Galois extension, K is trivial and the
action of G on E is G-Galois, moreover by proposition 3.2 E is H-
separable over EG . Furthermore, by [S2], E _

	

Og is a direct sum and
9

Og = Cxg , thus proposition 3.3 implies that Z(E) = C, so proposition
3.1 gives us the result .
(~) Since K is trivial and the fixed elements in E coincide exactly

with the central elements we have that the sum

	

~9 is direct ; moreover
9

in this case E = CE (EG) and EG = Z(E) giving us CE(EG) equal to
the direct sum of the correspondent 09 . Thus by [S2, theorem 1 .2] the
action of G on E is G-Galois .
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