

NON-COMMUTATIVE SEPARABILITY AND GROUP ACTIONS

RICARDO ALFARO*

Dedicated to the memory of Pere Menal

Abstract

We give conditions for the skew group ring $S * G$ to be strongly separable and H -separable over the ring S . In particular we show that the H -separability is equivalent to S being central Galois extension. We also look into the H -separability of the ring S over the fixed subring R under a faithful action of a group G . We show that such a chain: $S * G$ H -separable over S and S H -separable over R cannot occur, and that the centralizer of R in S is an Azumaya algebra in the presence of a central element of trace one.

In [A] we introduced the concept of subring–Galois extensions as a generalization of central Galois extensions and give a generalization of the correspondence theorem given by DeMeyer in [D] and Szeto in [SM]. Similar correspondence theorems were given by Sugano in [S] using H -separability. Separability for non-commutative rings was introduced by Hirata, and the notions of H -separability and “strong” separability were introduced by Hirata in [HI] and MacMahon and Mewborn in [MM] respectively. Strong separability is a weaker notion than H -separability, but both are special cases of the general notion of separability of ring extensions.

In the case of group actions we present here conditions for strong and H -separability of skew group rings and in particular we show that the skew group ring $S * G$ is H -separable over S if and only if S is a central Galois extension. Furthermore, in this case $S * G$ is a $Z(S)$ –Galois

*Partially supported by a grant from the Faculty Development Fund of the University of Michigan–Flint and a fellowship from the Centre de Recerca Matemàtica, Barcelona, Spain.

extension (in the terminology of [A]), allowing us to express $S = Z(S)R$ and $S*G = Z(S)I$ where I is the algebra of G -central functions. We then study the separability of $C_S(R)$ over its fixed subring and give conditions for S to be $C_S(R)$ -Galois.

All rings here are associative and have a unity element 1. $Z(R)$ will denote the center of a ring R , and $C_A(B)$ will denote the “centralizer of B in A ”, i.e. the elements of the ring A which commute with all the elements of the subring B of A .

1. Definitions and Notations

Let B be a subring of a ring A with 1.

The extension $B \subset A$ is called *separable* (or A is *separable* over B) if any of the following equivalent conditions is satisfied:

- 1) The multiplication map $\mu : A \otimes_B A \rightarrow A$ splits as an $(A - A)$ -bimodule map.
- 2) There exists an element $e \in A \otimes_B A$ (called a separability element), such that $\alpha e = e\alpha$ for all $\alpha \in A$ and $\mu(e) = 1$.

The ring A is said to be *strongly separable* over B if $A \otimes_B A \cong K \oplus L$ as $(A - A)$ -bimodules, where $\text{Hom}_{A,A}(K, A) = 0$ and $L \odot H \cong A^n$ for some $(A - A)$ -bimodules K, L, H and some positive integer n . In case $K = 0$ we say that A is *H-separable* over B . Strongly separable extensions are separable but the converse is false, see [MM].

There is an equivalent definition for this kinds of separability in terms of the natural $(A - A)$ -bimodule map $\varphi : A \otimes_B A \rightarrow \text{Hom}(\Delta_c, A_c)$ where $\varphi(a \otimes b)(x) = axb$, C is the center of A and Δ is the centralizer of B in A , $C_A(B)$. The ring A is *strongly separable* over B if and only if Δ_c is finitely generated projective C -module and φ is an split epimorphism. Similarly, A is *H-separable* over B if and only if Δ_c is finitely generated projective C -module and φ is an isomorphism. For details see [HT] and [MM].

Now let's consider group actions. Let S be a ring with 1, let G be a finite group acting faithfully as automorphisms of S and let $R = S^G$ be the fixed ring under G . Writing $g(r) = {}^gr$, the skew group ring $S*G$ is the free left S -module with basis the elements of G and multiplication given by the rule $gs = {}^gsg$ for all $s \in S$ and $g \in G$. Denote by π the element $\sum_{g \in G} g \in S*G$. The action of G on S is said to be G -Galois if

S is finitely generated projective right R -module and the natural map $\phi : S*G \rightarrow \text{End}_R S$ given by $\phi(rg)(x) = r({}^gx)$ is a ring isomorphism; or equivalently, there exist elements a_i, b_i (called a G -Galois basis) such

that $\sum_i a_i {}^g b_i = 1$ if $g = 1$ and the sum is 0 if $g \neq 1$ (i.e., $S\pi S = S * G$).

The “trace map”, $tr : S \rightarrow R$ is given by $tr(x) = \sum_{g \in G} {}^g x$ which is an $(R - R)$ -bimodule homomorphism.

Let T be a G -stable subring of S (that is ${}^g t \in T$ for all $t \in T, g \in G$), we say that S is a T -Galois extension of R if the action of G on T is G -Galois. For details and properties, see [A]. If X is a subset of S , let $I(X) = \{g \in G / {}^g x = x \quad \forall x \in X\}$ be the “inertia group” of X , $(I(X)$ is always a subgroup of G).

2. Separability and skew group rings

In [MS, theorems 2.2 and 2.3] it is shown that if S is a simple ring, G a finite outer group of automorphisms of S and $F = I(Z(S))$, then $S * G$ is H -separable over $S * F$ and $S * G$ is H -separable over S if and only if F is trivial. But in this case $S * G$ is simple and hence the action of G on S is G -Galois. We’ll give a general result relating G -Galois actions with strong and H -separability.

Let $D = C_{S * G}(S)$ and $C = Z(S * G)$. The action of G on S induces a faithful action of G on $S * G$ via conjugation, ${}^g \alpha = g\alpha g^{-1}$ for $\alpha \in S * G$; and G also acts on D . Let M be the inertia group of D , thus G/M acts faithfully on D by ${}^{\bar{h}} \alpha = {}^g \alpha$ for any $g \in \bar{h}$.

Lemma 2.1. $D^G = D^{G/M} = C$.

Proof: The first equality is obvious since M is the inertia group of D . Now let $\alpha \in D^G$, then $\alpha g = g\alpha \quad \forall g \in G$ and by definition of D , $s\alpha = \alpha s \quad \forall s \in S$; hence $\alpha \in C$. Conversely, if $\alpha \in C$, $\alpha g = g\alpha \quad \forall g \in G$ and hence $\alpha \in D^G$, (is clear that $C \subseteq D$). ■

Theorem 2.2. *Let M be the inertia group of $D = C_{S * G}(S)$ and let C be the center of $S * G$. Assume there is a central element w in S with $tr_M(w) = 1$. If D is G/M -Galois over C , then $S * G$ is strongly separable over S .*

Proof: Let $\varphi : S * G \otimes_S S * G \rightarrow \text{Hom}(D_C, S * G_C)$ be the natural $(S * G - S * G)$ -bimodule map, and let $\{a_i, b_i\}$ be a G/M -Galois basis for D over C ; then define the maps f_i by $f_i(x) = tr_{G/M}(b_i x)$, thus $f_i \in \text{Hom}(D_C, C_C)$ and $\{a_i, f_i\}$ form a dual projective basis for D over C .

First we show that $\{f_i\}$ is a basis for $\text{Hom}(D_C, S * G_C)$ as $(S * G - S * G)$ -bimodule. For, let $\alpha \in D$, $f \in \text{Hom}(D_C, S * G_C)$,

then $f(\alpha) = f\left(\sum_i a_i f_i(\alpha)\right) = \sum_i f(a_i) f_i(\alpha) = \sum_i f_i(\alpha) f(a_i)$; thus $f = \sum_i f(a_i) f_i = \sum_i f_i f(a_i)$. Now we prove that φ is an epimorphism. Note that $\varphi(g \otimes g^{-1})(\alpha) = g\alpha g^{-1}$, thus $\varphi(g \otimes g^{-1})$ acts as $\bar{g} \in G/M$ on D and $\varphi(g \otimes g^{-1}) = \varphi(h \otimes h^{-1})$ whenever $\bar{g} = \bar{h}$ in G/M (*). Choose $\{h_1, \dots, h_p\}$ a transversal of M in G , then

$$\begin{aligned} f_j(x) &= \text{tr}_{G/M}(b_j x) = \sum_{h_i} {}^{h_i} (b_j x) = \sum_{h_i} {}^{h_i} b_j {}^{h_i} x \\ &= \sum_i {}^{h_i} b_j \varphi(h_i \otimes h_i^{-1})(x) = \sum_i \varphi(h_i b_j \otimes h_i^{-1})(x). \end{aligned}$$

Therefore $f_j \in \text{Im}(\varphi)$ and hence φ is epic. Notice that the expression of f_j above is independent of the choice of the transversal of M in G by (*). It is only left to show that φ splits as $(S * G - S * G)$ -bimodule homomorphism. Let M be given by the set $\{m_1, \dots, m_q\}$ and let $l_k = \sum_{i,j} {}^{h_i m_j} w b_k \otimes (h_i m_j)^{-1} \in S * G \otimes_S S * G$. Then

$$\begin{aligned} \varphi(l_k) &= \sum_{i,j} {}^{h_i m_j} w {}^{\overline{h_i m_j}} b_k \varphi(h_i m_j \otimes (h_i m_j)^{-1}) \quad \text{and by } (*) \\ &= \sum_{i,j} {}^{h_i m_j} w {}^{\overline{h_i}} b_k \varphi(h_i \otimes h_i^{-1}) = \sum_i \left(\sum_j {}^{h_i m_j} w \right) \varphi(h_i b_k \otimes h_i^{-1}) = f_k. \end{aligned}$$

Hence we may define the map $\psi : \text{Hom}(D_G, S * G_G) \rightarrow S * G \otimes_S S * G$ by linearity with $\psi(f_k) = l_k$. To show that ψ is an $(S * G - S * G)$ -bimodule map, we need to show $\alpha l_k = l_k \alpha$ for all $\alpha \in S * G$. Let $r \in S$, since $b_k \in D$ and w is central in S we have:

$$\begin{aligned} r l_k &= \sum_{i,j} r (h_i m_j) w b_k \otimes (h_i m_j)^{-1} \\ &= \sum_{i,j} (h_i m_j)^{(h_i m_j)^{-1}} r w b_k \otimes (h_i m_j)^{-1} \\ &= \sum_{i,j} h_i m_j w b_k \otimes {}^{(h_i m_j)^{-1}} r (h_i m_j)^{-1} \\ &= \sum_{i,j} h_i m_j w b_k \otimes (h_i m_j)^{-1} r = l_k r, \end{aligned}$$

and if $g \in G$, we have:

$$g l_k = \sum_{i,j} g h_i m_j w b_k \otimes (h_i m_j)^{-1} = \sum_{i,j} (g h_i) m_j w b_k \otimes ((g h_i) m_j)^{-1} g,$$

but $\{gh_i\}$ is another transversal of M in G , hence by $(*)$ $gl_k = l_k g$ and therefore ψ is an $(S * G - S * G)$ -bimodule map. We then have

$$\begin{aligned}\varphi(\psi(f)) &= \varphi\left(\psi\left(\sum_k f(a_k) f_k\right)\right) = \varphi\left(\sum_k f(a_k) l_k\right) \\ &= \sum_k f(a_k) \varphi(l_k) = \sum_k f(a_k) f_k = f.\end{aligned}$$

and so ψ splits φ . ■

Now we want to show an equivalent condition for the skew group ring $S * G$ to be H -separable over S . We start by giving some notation and some necessary conditions assuming all the notation as in theorem 2.2.

For every $g \in G$ define $\phi_g = \{r \in S / r^g s = sr \quad \forall s \in S\}$. If $\phi_g \neq 0$ g is said to be ω -inner, and if $\phi_g = 0$ for every $g \neq 1$ G is said to be ω -outer. It is not difficult to see that $D = \sum_{g \in G} \phi_g g$.

For the proof of the main theorem we will need a result that appears in [A], and we reproduce here for completeness.

Proposition 2.3. ([A, prop. 3.3]) *Assume $S * G$ is H -separable over S . Then G is ω -outer and $D = Z(S)$.*

Proof: Since $S * G \cong \sum_{g \in G} (S \otimes g)$ as S - S -bimodules, $C_{S * G}(D) = S$ by [S, proposition 1.3]. Hence $Z(D) = C_{S * G}(D) \cap D \subseteq S$ and therefore $C \subseteq Z(D) \subseteq Z(S)$. Now let $r_g \in \phi_g$, so $x = r_g g \in D$, and hence $tr_{G/M}(x) = \sum_{\bar{h} \in G/M} hr_g gh^{-1} = \sum_{\bar{h} \in G/M} {}^h r_g hgh^{-1} \in C \subseteq S$. Thus ${}^h r_g = 0$ if $hgh^{-1} \neq 1$, this is if $g \neq 1$ and so $r_g = 0$ if $g \neq 1$. Therefore $\phi_g = 0$ if $g \neq 1$, and so G is ω -outer. By the comment above $D = \phi_1 \cdot 1$, so $D = Z(S)$. ■

Theorem 2.4. *Let D, M, C, S, G and w as in theorem 2.2. D is G -Galois over C and M is trivial if and only if $S * G$ is H -separable over S .*

Proof: (\Rightarrow) Assume the same notation as in the proof of theorem 2.2; so now we have $l_k = \sum_{i,j} h_i w b_k \otimes (h_i)^{-1} = \sum_i h_i b_k \otimes h_i^{-1}$, and hence

$$\begin{aligned}\psi \cdot \varphi(1 \otimes 1) &= \sum_k \varphi(1 \otimes 1)(a_k) l_k = \sum_k a_k \sum_i h_i b_k \otimes h_i^{-1} \\ &= \sum_i \left(\sum_k a_k {}^{h_i} b_k \right) h_i \otimes h_i^{-1} = 1 \otimes 1.\end{aligned}$$

Thus $\psi \cdot \varphi = \text{id}_{S * G \otimes_S S * G}$ and φ is an isomorphism.

(\Leftarrow) Assume $m \in M$ and $\alpha \in D$, then $\varphi(m \otimes m^{-1})(\alpha) = m\alpha m^{-1} = \alpha = \varphi(1 \otimes 1)(\alpha)$, but φ is an isomorphism, hence $M = 1$. Now we will show D is G -Galois over C . By proposition 2.3 D is commutative, and by [S, proposition 1.3] D is a separable C -algebra. Assume that there exists a non zero idempotent $e \in D$ and a pair $h \neq g \in G$ such that ${}^gxe = {}^hxe$ for all $x \in D$. If we let $e' = {}^{g^{-1}}e$, we have $e' \neq 0$ and $xe' = {}^{g^{-1}h}xe' = e' {}^{g^{-1}h}x$. But G is ω -outer, hence $g^{-1}h = 1$, thus $g = h$, a contradiction. Therefore D is G -Galois over C by [DI, proposition III. 1.2]. ■

If S is a simple ring and G is outer, then $Z(S)$ is a field, and hence G/M is G/M -Galois over $Z(S)$ where $M = I(Z(S))$. Therefore applying the previous theorems we obtain an improvement of [MS, Theorem 2.3 and Theorem 2.2,ii)] :

Corollary 2.5. *Let S be a simple ring and G be outer.*

- i) *If $\exists w \in Z(S)$ such that $\text{tr}_M(w) = 1$, then $S * G$ is strongly separable over S .*
- ii) *$S * G$ is H -separable over S if and only if $M = 1$.*

We can see now a relationship between H -separability and T -Galois extensions in the following corollaries:

Corollary 2.6. *$S * G$ is H -separable over S if and only if S is a central Galois extension of R .*

Proof: (\Leftarrow) $\exists a_i, b_i \in Z(S)$ such that $\sum a_i \pi_G b_i = 1$, but $Z(S) \subseteq C_{S * G}(S) = D$ and D is G -invariant, hence D is G -Galois over $D^G = C$ and by theorem 2.4 $S * G$ is H -separable over S .

(\Rightarrow) Obvious from the theorem 2.4 and proposition 2.3. ■

The case of commutative rings is now determined:

Corollary 2.7. *Let S be a commutative ring. $S * G$ is H -separable over S if and only if S is G -Galois over R .*

Consider again the action of G on $S * G$ by conjugation. It follows that the centralizer of G in $S * G$ is precisely equal to the fixed ring $(S * G)^G = I$, which in the language of C^* -algebras is called the algebra of G -central functions, (see [OP]). Hence we obtain:

Proposition 2.8. *Let $S * G$ be H -separable over S . Then $S * G$ is a $Z(S)$ -Galois extension of I and therefore $S * G = Z(S)I$.*

3. H -separability and fixed ring

Now we study some necessary conditions for the ring S to be H -separable over the fixed ring R . The centralizer of R in S will be denoted by E and all the notation from Section 2 will be assumed.

Let X be a G invariant subset of S . It can be easily seen that $C_S(X)$ is a G -invariant subring of S and thus G acts on it. Furthermore we have that $(C_S(X))^G = C_R(X)$. Hence, if we take $X = R$ we get the following relation: $E^G = Z(R) \subseteq Z(E)$. On the other hand it is obvious that $Z(S) \subseteq Z(E)$.

Proposition 3.1. *Let S be H -separable over R . Then:*

- 1) G is ω -inner.
- 2) $R = C_S(E)$
- 3) $E^G = Z(R) = Z(E)$

Proof: 1) Recall that $\phi_g = \{r \in S / r^g s = sr \quad \forall s \in S\}$. Consider the $(S - S)$ -bimodule Sg . Then $Eg = C_{Sg}(R)$ and $\phi_g g = C_{Sg}(S)$, therefore we get $Eg = E \otimes_{Z(S)} \phi_g g$ and hence $\phi_g \neq 0$.

2) It is clear that $R \subseteq C_S(E)$. Now, let $r \in C_S(E)$ and let $g \in G$. We can see g as an element of $\text{Hom}_{R-R}(S, S)$ which is isomorphic to $E \otimes_{Z(S)} E$ by [H2, proposition 4.7]. Thus there exists elements $d_i, e_i \in E$ such that ${}^g x = \sum_i d_i x e_i$ for all $x \in S$, and therefore ${}^g r = \sum_i d_i r e_i = r \sum_i d_i e_i = r$; so $r \in R$.

3) By the comments above, it is only necessary to show the second equality. But, by part 2) we have: $Z(R) = R \cap C_S(R) = R \cap E = C_S(E) \cap E = Z(E)$. ■

Remark. Note that in proposition 2.3 we showed that if the skew group ring $S * G$ is H -separable over the base ring S , then the action of G must be ω -outer. Here we obtain the opposite condition, if the ring S is H -separable over the fixed ring R , the action of G must be ω inner. Therefore we cannot have a “chain” of H -separable extensions in faithful group actions.

Proposition 3.2. *Let S be H -separable over the fixed ring R and assume there exists a central element in S of trace one. Then E is separable over $Z(S)$ and H -separable over E^G (so E is an Azumaya algebra).*

Proof: The existence of a central element of trace 1 makes the trace map $tr : S \rightarrow R$ split as a $(R - R)$ -bimodule map. Hence R is a direct summand of S as $(R - R)$ -bimodules and by [S, proposition 1.3] E is

separable over $Z(S)$. Furthermore, since $Z(S) \subseteq Z(E)$, the theorem of Azumaya for separable extension over commutative rings implies that E is separable over its center $Z(E)$ and $Z(E)$ is separable over $Z(S)$. Therefore, E is H -separable over $Z(E)$, which by proposition 3.1 is equal to the fixed subring E^G . ■

The action of G on S induces an action on E , but we need to consider the inertia subgroup $K = I(E)$. In this way G/K acts faithfully on E . We now describe conditions for E to be a Galois extension of E^G .

Proposition 3.3. $g \in K$ if and only if $\phi_g \subseteq Z(E)$.

Proof: Since $\phi_g \subseteq E$ the necessary condition is obvious. Now let $\alpha \in \phi_g \subseteq Z(E)$; then $\alpha({}^g x - x) = 0$ for all $x \in E$ and therefore ${}^g x = x$ for all $x \in E$. ■

Theorem 3.4. *Let S be H -separable over R and assume there is a central element of trace 1. S is an E -Galois extension of R if and only if $C = E^G$ and K is trivial.*

Proof: (\Rightarrow) By definition of E -Galois extension, K is trivial and the action of G on E is G -Galois, moreover by proposition 3.2 E is H -separable over E^G . Furthermore, by [S2], $E = \sum_g \phi_g$ is a direct sum and $\phi_g = Cx_g$, thus proposition 3.3 implies that $Z(E) = C$, so proposition 3.1 gives us the result.

(\Leftarrow) Since K is trivial and the fixed elements in E coincide exactly with the central elements we have that the sum $\sum_g \phi_g$ is direct; moreover in this case $E = C_E(E^G)$ and $E^G = Z(E)$ giving us $C_E(E^G)$ equal to the direct sum of the correspondent ϕ_g' . Thus by [S2, theorem 1.2] the action of G on E is G -Galois. ■

References

- [A] ALFARO R., *T*-Galois Extensions on Rings and a submodule correspondence, *Comm. in Algebra*, to appear.
- [D] DEMEYER F., Some notes in the general Galois Theory of rings, *Osaka J. Math.* **2** (1965), 117–127.
- [DI] DEMEYER F. AND INGRAHAM E., “*Separable Algebras over Commutative Rings*,” Lecture Notes in Mathematics 181, Springer-Verlag, 1971.

- [H1] HIRATA K., Some types of separable extension of rings, *Nagoya Math. J.* **33** (1968), 107-115.
- [H2] HIRATA K., Separable extensions and centralizers of rings, *Nagoya Math. J.* **35** (1969), 31-45.
- [MS] McMAHON E. AND SHAPIRO J., On strong and H -separability in ordinary and Skew group rings, *Houston J. Math.* **15**, no. 3 (1989).
- [MM] McMAHON E. AND MEWBORN A. C., Separable extensions of non-commutative rings, *Hokkaido Math. J.* **XIII**, 1 (1984).
- [OP] OSTERBURG J. AND PELIGRAD C., A Strong Connes Spectrum for finite group actions of simple rings, *J. Algebra*, to appear.
- [S] SUGANO K., On centralizers in separable extensions, *Osaka J. Math.* **7** (1970), 29-40.
- [S2] SUGANO K., On a special type of Galois extensions, *Hokkaido Math. Journal* **9** (1980), 123-128.
- [SM] SZETO G. AND MA L., On center-Galois extensions over a ring, *Glasnik Matematicki* **24** (44) (1989), 11-16.

University of Michigan-Flint
MI 48502
U.S.A.

Rebut el 25 de Novembre de 1991

