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A UNIQUENESS THEOREM FOR
INVARIANTLY HARMONIC FUNCTIONS IN

THE UNIT BALL OF en

Abstract

JOAQUIM BRUNA

Dedicat a la memória den Pere Menal

We prove a boundary uniqueness theorem for harmonic functions
with respect to Bergman metric in the unit ball of Cn and give
an application to a Runge type approximation theorem for such
functions .

Let B be the unit ball in en and S its boundary. The invariant
laplacian 0 in B is the Laplacian associated to the Bergman metric and
it is given in coordinates by

Partially supported by DGICYT grant PB89-0311 .

(6i7 - zizj)DiDj .

The term invariant comes from the fact that it commutes with all au-
tomorphisms kP of B : 0(u o T) = Du o T . Correspondingly, those
functions u E C2 (B) annihilated by O are called invariantly harmonic
or M-harmonic (see [4, chapter 4] for the more relevant properties of
these functions) .
The aim of this note is to give a boundary uniqueness theorem for M-

harmonic functions and an application to a Runge type approximation
problem .

1 . The uniqueness theorem essentially states that S, though A com-
pletely degenerates there, is non-characteristic for a certain Cauchy prob-
lem :
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Theorem . Let U be a ball centered at ~ E S, and let u E C°° (U f1 B)
satisfy Du = 0 in U . Then from

n
u=

arn
=0 onuns

it follows that all derivatives of u are zero on U fl S (hence u - 0 if it is
real-analytic accross S) .

The proof will show in fact that u and onñ determine all the others
derivatives of u on S . The statement suggests that the following Cauchy-
Kowalevski type theorem is probably true : if f, g are real-analytic func-
tions defined on U n S, there is another ball V C U containing S
and a real-analytic function u in V such that Du = 0 in V n B and
u = f, ánrñ = g on V f1 S .

Proof. Let Ao = Eij-1(Si7 -zizj)DiDj and let R = ~i zjDj be the
radial (holomorphic) derivative ; write R = N + iT, then N = r-2-r and
T is a real tangent field to S. We will show that u alone determines
N3u, j < n - 1 and that u, N'2u determine all derivatives at points of
S . A computation shows that

AoN - NAo = Do +N2+T2

DOT - TDo = 0.
TN-NT=0.

From this it easily follows by induction on k that

DoNk = Pk(N)Do + kNk+1 + Rk(N,T)

where Pk(x) is a monic polynomial of degree k and Rk(x, y) is of degree
< k + 1 in x, y, but of degree < k in x .
Next, the following normal-tangential decomposition in [21 is needed

Do = Ii2 {(1 - Iz12)RR + A + (n - 1)N}z

Here A is the box-laplacian on S; its particular expression will not be
needed, only the fact that it is a tangential operator . It follows that at
points w E S

(4)

	

(Dov)(w) = (Av)(w) + (n - 1)Nv(w) .
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Applying this to u we see that Nu = 0 on S. Assume by induction we
have proved N( k)u = 0 on S whenever u E C°° (U n B) is M-harmonic
and zero on U n S, k < n - 1 . Then by (3) and (4)

on U n S. By (2),

(n - 1)N(k+l) u = Do N(k) U = kNk+1U + Rk(N, T) u

Rk (N,T)u =
i<k

i+j<k+1

NZTju

and by (1), Tju is also M-harmonic and obviously zero on S . By the
induction hypothesis, Rk(N,T)u = 0 on U n S. Then we conclude that
N(k+1)u = 0 if k < n-1 . If k = n-1 we cannot conclude N(n)u = 0 but
it is clear that if this is known to hold, then the induction can continue
and so NW u = 0 for all j on U n S, which proves the theorem .

There is some connection of this result with a result from Folland [1]
according to which an M-harmonic function u in the whole ball of class
Cn up to the boundary must be in fact pluriharmonic .

2 . As an application of the theorem we prove :

Theorem . Let K C B be a compact set such that B\K is connected.
Then, every v satisfying Ov = 0 in a neighbourhood of K is the uniform
limit on K of a sequence of M-harmonic functions un in B, continuous
on B .

It must be pointed out that this result can be proved as well by com-
bining a general result of [3] on analytic-hypoelliptic operators and [4,
5.5 .4] . Our proof proceeds by duality and relies on some well-known
facts that we proceed to recall .
There is a decomposition formula, valid at least for u E C2 (B),

U(Z) = I P(~, z)u(~) do,«) + I Au(S)G(~, z) d>,«)
s

	

s

that corresponds to the Poisson-Green formula in Euclidean space . Here
do, is the normalized Lebesgue measure on S, d>,«) = (1-1 ~ j2)-n-1dV«)
is the invariant measure, P«, z) is the invariant Poisson (or Poisson-
Szegó) kernel

_

	

2 n
P«, z) = Í 1- (Z I 2 , (ES, zEB,
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and G«, z) is the Green function with pole at z,

(1 _ t)n-1
G«, z) = G(wz«), 0) = cn

	

,~,

	

dt,
~~Pz(S)j2

t

c,z being a constant and ~oz the automorphism of B, unique up to unitary
transformations, that sends z to 0 and 0 to z . Moreover,

1 - I(Pz«)I 2 = (1 -
IZI2 )(1 - I(12)
11 - rzl2

so that G is in fact symmetric . One way of obtaining (5) is to write
precisely the Poisson-creen formula for u o coz at 0 and change variables
in the resulting integrals .
A second (and better) way of looking at (5) is through the creen

identity in the Bergman metric for A C B

(u0v - v0u) dA _
fa (Uáv - v

8v)a

	

a

	

dS.

Here v is the outward unitary normal (by the Bergmann) metric to áA
and dS is the induced measure on 8A. Formally, one obtains (5) by
specializing to A = B, v(~) = G,«) = G«, z) and checking that

OCG«, z) dA(~) = Sz,

	

z E B
G«, z) = 0

	

E S

(6)

	

wC
G«, z) dS = P(~, z) da

	

E S, z E B

(in a rigorous way one should choose as A the ball of radious r < 1 and
then make r --> 1) .
Formula (5) implies the following facts :

(a) The general form of an M-harmonic function u in B, continuous
on B is

u(z) = P[f](z) = f P«, z)f«) do,
s

with f E C(S) ; equivalently, P[f] is the unique solution of the Dirichlet
problem Du = 0 in B, u = f on S .

(b) For u E CZ(B) of compact support

u(z) = fB Du(S)G«, z) dN(~)



Le . u coincides with the Green potential of its Laplacian . The simmetry
of G then implies that for a measure tt with compact support in B, the
Green potential Gp

an
(e)

	

P(~, z) = cn 9rn G(r(' z) r= 1 '

	

E S, z E B .

This is because what (6) really means is, as said before,
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Gj¿(z) = I G(~, z) dp(~)
s

satisfies (AGít) dA = dM in the weak sense, and in particular OGil = 0
in the usual sense off the support of p, .

Finally, we will need a reformulation of (6) in terms of the Euclidean
normal, which is

P«, z) = lim aG(r(, z)
do,

.

Since v = c,, (1 - r)n
á and dS = c, (1 - r) 1-2' do, (we denote by c', all

constants depending on n), (c) follows by L'Hopital's rule . Alternatively,
(c) can be proved of course by direct computation .

Note that ~G«, z)j = 0(1- I(j2)n for a fixed z . Hence ár; G(r(, z) = 0
for ( E S, j =0, . . . . n- 1 .

Proof of the theorem : Let p be a measure on K which is orthogonal
to all M-harmonic functions in B, continuous on B. By (a) above this
is equivalent to

I P«, z) dp(z) = 0 for ( E S .
x

We consider the Green potential of p

G(p)(w) = I G(z, w) dM(z)
x

so that OG(p,) = 0 off K. Moreover G(p) is still defined and is real
analytic in a neighbourhood of B, off K, because so is each cp,z for z E K .
Note that all such potentials satisfy

7

ár~ G(p)«) = 0, j = 0, . . .,n - 1,

	

E S.
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By (c), (7) says that also

v(z) = fB Ov«)G«, z) d,\«) = L\x
Ov«)G(~, z) dA«) .

Hence by Fubini's theorem

n

Órn G(P)(~) = 0,

	

ES.

Therefore, by the theorem in Section 1, all derivatives of G(p) vanish at
S and, since B\K is assumed to be connected, we conclude that G(M) is
identically zero in B\K.

Let now v as in the statement ; multiplying by a test function, we can
assume that v is compactly supported in B . By (b),

L v(z) dp(z) =

	

B~\x
Ov(~)

{Ix
G«, z) dp(z) } dA«) =

x

-

	

Av«)Gli(~) dA(~) = 0
~B~x

which finishes the proof, by Hahn-Banach's theorem .
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