

A UNIQUENESS THEOREM FOR INVARIANTLY HARMONIC FUNCTIONS IN THE UNIT BALL OF \mathbb{C}^n

JOAQUIM BRUNA

Dedicat a la memòria d'en Pere Menal

Abstract

We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of \mathbb{C}^n and give an application to a Runge type approximation theorem for such functions.

Let B be the unit ball in \mathbb{C}^n and S its boundary. The invariant laplacian Δ in B is the Laplacian associated to the Bergman metric and it is given in coordinates by

$$\Delta = (1 - |z|^2) \sum_{i,j=1}^n (\delta_{ij} - \bar{z}_i z_j) \bar{D}_i D_j.$$

The term invariant comes from the fact that it commutes with all automorphisms Ψ of B : $\Delta(u \circ \Psi) = \Delta u \circ \Psi$. Correspondingly, those functions $u \in C^2(B)$ annihilated by Δ are called *invariantly harmonic* or M -harmonic (see [4, chapter 4] for the more relevant properties of these functions).

The aim of this note is to give a boundary uniqueness theorem for M -harmonic functions and an application to a Runge type approximation problem.

1. The uniqueness theorem essentially states that S , though Δ completely degenerates there, is non-characteristic for a certain Cauchy problem:

Partially supported by DGICYT grant PB89-0311.

Theorem. *Let U be a ball centered at $\zeta \in S$, and let $u \in C^\infty(U \cap \bar{B})$ satisfy $\Delta u = 0$ in U . Then from*

$$u = \frac{\partial^n u}{\partial r^n} = 0 \text{ on } U \cap S$$

it follows that all derivatives of u are zero on $U \cap S$ (hence $u \equiv 0$ if it is real-analytic across S).

The proof will show in fact that u and $\frac{\partial^n u}{\partial r^n}$ determine all the others derivatives of u on S . The statement suggests that the following Cauchy-Kowalevski type theorem is probably true: if f, g are real-analytic functions defined on $U \cap S$, there is another ball $V \subset U$ containing ζ and a real-analytic function u in V such that $\Delta u = 0$ in $V \cap B$ and $u = f, \frac{\partial^n u}{\partial r^n} = g$ on $V \cap S$.

Proof: Let $\Delta_0 = \sum_{i,j=1}^n (\delta_{ij} - \bar{z}_i z_j) \bar{D}_i D_j$ and let $R = \sum_1^n z_j D_j$ be the radial (holomorphic) derivative; write $R = N + iT$, then $N = r \frac{\partial}{\partial r}$ and T is a real tangent field to S . We will show that u alone determines $N^j u, j \leq n-1$ and that $u, N^n u$ determine all derivatives at points of S . A computation shows that

$$\Delta_0 N - N \Delta_0 = \Delta_0 + N^2 + T^2$$

$$(1) \quad \Delta_0 T - T \Delta_0 = 0.$$

$$(2) \quad TN - NT = 0.$$

From this it easily follows by induction on k that

$$(3) \quad \Delta_0 N^k = P_k(N) \Delta_0 + k N^{k+1} + R_k(N, T)$$

where $P_k(x)$ is a monic polynomial of degree k and $R_k(x, y)$ is of degree $\leq k+1$ in x, y , but of degree $\leq k$ in x .

Next, the following *normal-tangential decomposition* in [2] is needed

$$\Delta_0 = \frac{1}{|z|^2} \left\{ (1 - |z|^2) R \bar{R} + \Lambda + (n-1) N \right\}.$$

Here Λ is the box-laplacian on S ; its particular expression will not be needed, only the fact that it is a tangential operator. It follows that at points $w \in S$

$$(4) \quad (\Delta_0 v)(w) = (\Lambda v)(w) + (n-1) N v(w).$$

Applying this to u we see that $Nu = 0$ on S . Assume by induction we have proved $N^{(k)}u = 0$ on S whenever $u \in C^\infty(U \cap \bar{B})$ is M -harmonic and zero on $U \cap S$, $k \leq n-1$. Then by (3) and (4)

$$(n-1)N^{(k+1)}u = \Delta_0 N^{(k)}u = kN^{k+1}u + R_k(N, T)u$$

on $U \cap S$. By (2),

$$R_k(N, T)u = \sum_{\substack{i \leq k \\ i+j \leq k+1}} N^i T^j u$$

and by (1), $T^j u$ is also M -harmonic and obviously zero on S . By the induction hypothesis, $R_k(N, T)u = 0$ on $U \cap S$. Then we conclude that $N^{(k+1)}u = 0$ if $k < n-1$. If $k = n-1$ we cannot conclude $N^{(n)}u = 0$ but it is clear that if this is known to hold, then the induction can continue and so $N^{(j)}u = 0$ for all j on $U \cap S$, which proves the theorem. ■

There is some connection of this result with a result from Folland [1] according to which an M -harmonic function u in the whole ball of class C^n up to the boundary must be in fact pluriharmonic.

2. As an application of the theorem we prove:

Theorem. *Let $K \subset B$ be a compact set such that $B \setminus K$ is connected. Then, every v satisfying $\Delta v = 0$ in a neighbourhood of K is the uniform limit on K of a sequence of M -harmonic functions u_n in B , continuous on \bar{B} .*

It must be pointed out that this result can be proved as well by combining a general result of [3] on analytic-hypoelliptic operators and [4, 5.5.4]. Our proof proceeds by duality and relies on some well-known facts that we proceed to recall.

There is a decomposition formula, valid at least for $u \in C^2(\bar{B})$,

$$(5) \quad u(z) = \int_S P(\zeta, z)u(\zeta) d\sigma(\zeta) + \int_B \Delta u(\zeta)G(\zeta, z) d\lambda(\zeta)$$

that corresponds to the Poisson-Green formula in Euclidean space. Here $d\sigma$ is the normalized Lebesgue measure on S , $d\lambda(\zeta) = (1 - |\zeta|^2)^{-n-1} dV(\zeta)$ is the invariant measure, $P(\zeta, z)$ is the invariant Poisson (or Poisson-Szegő) kernel

$$P(\zeta, z) = \frac{(1 - |z|^2)^n}{|1 - \bar{\zeta}z|^{2n}}, \quad \zeta \in S, z \in B,$$

and $G(\zeta, z)$ is the Green function with pole at z ,

$$G(\zeta, z) = G(\varphi_z(\zeta), 0) = c_n \int_{|\varphi_z(\zeta)|^2}^1 \frac{(1-t)^{n-1}}{t^n} dt,$$

c_n being a constant and φ_z the automorphism of B , unique up to unitary transformations, that sends z to 0 and 0 to z . Moreover,

$$1 - |\varphi_z(\zeta)|^2 = \frac{(1 - |z|^2)(1 - |\zeta|^2)}{|1 - \bar{\zeta}z|^2},$$

so that G is in fact symmetric. One way of obtaining (5) is to write precisely the Poisson-Green formula for $u \circ \varphi_z$ at 0 and change variables in the resulting integrals.

A second (and better) way of looking at (5) is through the Green identity in the Bergman metric for $A \subset B$

$$\int_A (u \Delta v - v \Delta u) d\lambda = \int_{\partial A} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) dS.$$

Here ν is the outward unitary normal (by the Bergmann) metric to ∂A and dS is the induced measure on ∂A . Formally, one obtains (5) by specializing to $A = B$, $v(\zeta) = G_z(\zeta) = G(\zeta, z)$ and checking that

$$(6) \quad \begin{aligned} \Delta_\zeta G(\zeta, z) d\lambda(\zeta) &= \delta_z, & z \in B \\ G(\zeta, z) &= 0 & \zeta \in S \\ \frac{\partial}{\partial \nu_\zeta} G(\zeta, z) dS &= P(\zeta, z) d\sigma & \zeta \in S, z \in B \end{aligned}$$

(in a rigorous way one should choose as A the ball of radius $r < 1$ and then make $r \rightarrow 1$).

Formula (5) implies the following facts:

(a) The general form of an M -harmonic function u in B , continuous on \bar{B} is

$$u(z) = P[f](z) = \int_S P(\zeta, z) f(\zeta) d\sigma(\zeta)$$

with $f \in C(S)$; equivalently, $P[f]$ is the unique solution of the Dirichlet problem $\Delta u = 0$ in B , $u = f$ on S .

(b) For $u \in C^2(B)$ of compact support

$$u(z) = \int_B \Delta u(\zeta) G(\zeta, z) d\lambda(\zeta)$$

i.e. u coincides with the Green potential of its Laplacian. The symmetry of G then implies that for a measure μ with compact support in B , the Green potential $G\mu$

$$G\mu(z) = \int_B G(\zeta, z) d\mu(\zeta)$$

satisfies $(\Delta G\mu) d\lambda = d\mu$ in the weak sense, and in particular $\Delta G\mu = 0$ in the usual sense off the support of μ .

Finally, we will need a reformulation of (6) in terms of the Euclidean normal, which is

$$(c) \quad P(\zeta, z) = c_n \frac{\partial^n}{\partial r^n} G(r\zeta, z) \Big|_{r=1}, \quad \zeta \in S, \quad z \in B.$$

This is because what (6) really means is, as said before,

$$P(\zeta, z) = \lim_{r \rightarrow 1} \frac{\partial}{\partial \nu} G(r\zeta, z) \frac{dS}{d\sigma}.$$

Since $\nu = c_n(1-r)^n \frac{\partial}{\partial r}$ and $dS = c_n(1-r)^{1-2n} d\sigma$ (we denote by c_n all constants depending on n), (c) follows by L'Hopital's rule. Alternatively, (c) can be proved of course by direct computation.

Note that $|G(\zeta, z)| = 0(1 - |\zeta|^2)^n$ for a fixed z . Hence $\frac{\partial^j}{\partial r^j} G(r\zeta, z) = 0$ for $\zeta \in S$, $j = 0, \dots, n-1$.

Proof of the theorem: Let μ be a measure on K which is orthogonal to all M -harmonic functions in B , continuous on \bar{B} . By (a) above this is equivalent to

$$(7) \quad \int_K P(\zeta, z) d\mu(z) = 0 \text{ for } \zeta \in S.$$

We consider the Green potential of μ

$$G(\mu)(w) = \int_K G(z, w) d\mu(z)$$

so that $\Delta G(\mu) = 0$ off K . Moreover $G(\mu)$ is still defined and is real analytic in a neighbourhood of \bar{B} , off K , because so is each φ_z for $z \in K$. Note that all such potentials satisfy

$$\frac{\partial^j}{\partial r^j} G(\mu)(\zeta) = 0, \quad j = 0, \dots, n-1, \quad \zeta \in S.$$

By (c), (7) says that also

$$\frac{\partial^n}{\partial r^n} G(\mu)(\zeta) = 0, \quad \zeta \in S.$$

Therefore, by the theorem in Section 1, all derivatives of $G(\mu)$ vanish at S and, since $B \setminus K$ is assumed to be connected, we conclude that $G(\mu)$ is identically zero in $B \setminus K$.

Let now v as in the statement; multiplying by a test function, we can assume that v is compactly supported in B . By (b),

$$v(z) = \int_B \Delta v(\zeta) G(\zeta, z) d\lambda(\zeta) = \int_{B \setminus K} \Delta v(\zeta) G(\zeta, z) d\lambda(\zeta).$$

Hence by Fubini's theorem

$$\begin{aligned} \int_K v(z) d\mu(z) &= \int_{B \setminus K} \Delta v(\zeta) \left\{ \int_K G(\zeta, z) d\mu(z) \right\} d\lambda(\zeta) = \\ &= \int_{B \setminus K} \Delta v(\zeta) G\mu(\zeta) d\lambda(\zeta) = 0 \end{aligned}$$

which finishes the proof, by Hahn-Banach's theorem. ■

References

1. G. FOLLAND, The spherical harmonic expansion of the Poisson-Szegő kernel for the ball, *PAMS* **47** (1975), 401-408.
2. D. GELLER, Some results on H^p theory for the Heisenberg group, *Duke Math. J.* **47**, no. 2 (1980), 365-390.
3. B. MALGRANGE, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, *Ann. Inst. Fourier* **6** (1956), 271-355.
4. W. RUDIN, "Function theory in the unit ball of \mathbb{C}^n ," Grundlehren **241**, Springer-Verlag.

Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona)
SPAIN