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A UNIQUENESS THEOREM FOR
INVARIANTLY HARMONIC FUNCTIONS IN
THE UNIT BALL OF ¢®

JoAQUIM BRUNA

Dedicat 6 la memdéria d’en Pere Menal

Abstract

We prove a boundary unigueness theorem for harmonic functions
with respect to Bergman metric in the unit ball of € and give
an application to 2 Runge type approximation theorem for such
functions.

Let B be the unit ball in C™ and § its boundary. The invariant
laplacian A in B is the Laplacian associated to the Bergman metric and
it is given in coordinates by

A=(1-2) Z (6:;; — z:2;)D,D;.

t,5=1

The term invariant comes from the fact that it commutes with all au-
tomorphisms ¥ of B: A(uc ¥) = Au o ¥. Correspondingly, those
functions » € C?{B) annihilated by A are called invariantly harmonic
or M-harmonic (see [4, chapter 4] for the more relevant properties of
these functions).

The aim of this note is to give a boundary uniqueness theorem for M-
harmonic functions and an application to 2 Runge type approximation
problem.

1. The uniqueness theorem essentially states that S, though A com-
pletely degenerates there, is non-characteristic for a certain Cauchy prob-
lem:
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Theorem. Let U be a ball centered at { € S, and let w € C*{(U N B}
satisfy Au =0 in U. Then from
61‘1
u=2t_gomUnS
arn
it follows that all derivatives of u are zero on U NS (hence w =0 if it is
reel-analytic eccross 5).

The proof will show in fact that = and g:f: determine all the others
derivatives of u on 5. The statement suggests that the following Cauchy-
Kowalevski type theorem is probably true: if f, g are real-analytic fune-
tions defined on U N S, there is another ball ¥V C U containing ¢
and a real-analytic function » in V such that Av = 0 in V N B and
u=f, %:gonVﬁS.

Proof: Let Ag = Z:‘tj:l(éﬁ — f.iZj)DiDj and let £ = Z? Zij be the
radial (holomorphic) derivative; write R = N +i7T, then N —= r;% and
T is a real tangent field to §. We will show that u alone determines
Niu, j < n—1 and that u, N*u determine all derivatives at points of
5. A computation shows that

ADN—NQQIAQ+N2+T2
(1) AgT —TAy =10
(2) TN - NT = 0.

From thig it easily follows by induetion on k that
(3) ApN*® = Po(N)Ag + EN*T! + RN, T)
where Fi(z) is a monic polynomial of degree k and Ry (z,y) is of degree

<k+1linz,y, but of degree < k in 2. _
Next, the following normal-tangential decomposition in [2] is needed

Ay = # {1-[ZPRR+ A+ (n— )N}.

Here A is the box-laplacian on 5; its particular expression will not be
needed, only the fact that it is a tangential operator. It follows that at
points w € 8

{4) (Aov){w) = (Av)(w) + (n — DI Nv{w).
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Applying this to u we see that Nu=0on 5. Assumg by induction we
have proved N®y = 0 on § whenever « € C>{U N B) is M-harmonic
and zero on U N S, &k < n — 1. Then by {3) and {4}

(n— DING+Uy = AGNEy = kNF+ 1y + RN, T)u
on UNS. By {2},

RN, Tyu= Y NT%

i<k
i+j<k+1

and by (1), T7u is also M-harmonic and obviously zero on S. By the
induction hypothesis, Bp{N,T)u = 0 on U N S. Then we conclude that
NEDy = 0k < n—1. If k = n—1 we cannot conclude Ny = § but
it 15 clear that if this is known to hold, then the induction can continue
and so Ny =0 for all j on U N S, which proves the theorem. W

There is some connection of this result with a result from Folland [1]
according to which an M-harmonic function u in the whole ball of class
C™ up to the boundary must be in fact pluriharmonic.

2. As an application of the theorem we prove:

Theorem. Let K C B be a compact set such that B\K is connected.
Then, every v satisfying Av = 0 in ¢ neighbourhood of K is the uniform
limit on K of a sequence of M-harmonic functions u, tn I3, continuous
on B.

It must be pointed out that this result can be proved as well by com-
bining a general result of [3] on analytic-hypoelliptic operators and (4,
5.5.4). Our proof proceeds by duality and relies on some well-known
facts that we proceed to recall.

There is a decomposition formula, valid at least for v € C%(B),

(5) M@zﬁmwwmwm+éamwaaﬂm

that corresponds to the Poisson-Green formula in BEuclidean space. Here
do is the normalized Lebesgue measure on S, dM() = (1—-|¢[?) "7 4V{(Q)
is the invariant measure, P((, 2} is the invariant Poisson {or Poisson-
Szegs) kernel
(1 —|*)"
Pl z)y=——"—-,(€85 2B,
€2 =\ g €
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and G{(, z} is the Green function with pole at z,
! I
G5 =G0 = [ BT

e {C)12 &

¢, being a constant and ¢, the automorphism of B, unique up to unitary
transformations, that sends z to 0 and 0 to z. Moreover,

_ o _ (1= 121 - 1¢1%)
1= @)1 = -G

so that G is in fact symmetric. One way of obtaining (5) is to write
precisely the Poisson-Green formula for u o, at 0 and change variables
in the resulting integrals.

A second (and better) way of looking at {5) is through the Green
identity in the Bergman metric for AC B

v Ou
/A(uéu —vAu)ydi = f{m (ua - ?}5) ds.

Here v is the outward unitary normal {by the Bergmann) metric to 84
and dS is the induced measure on JA. Formally, one obtains {5) by
specializing to 4 = B, v({) = G.({) = G((, z) and checking that

AG(C,2) dAC) = 6., 2€B
G((,2) =0 Ces§

{(6) ——Q—G(C,z)dSZP(q,z)dcr (€S z2€B
8!/'c

(in a rigorous way one should choose as A the ball of radious r < 1 and
then make r — 1).

Formula (5) implies the following facts:

(2) The general form of an M-harmonic function u in B, continuous
on B is

wz) = Plf)(z) = fs P(C, 2)§(C)da ()

with f € €(8); equivalently, P(f] is the unique solution of the Dirichlet
problem Au=0n B,u= fon 5.

(b) For u € C?(B) of compact support

w(z) = fB AB(QG(C, 2) M)
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i.e. u coincides with the Green potential of its Laplacian. The simmetry
of 7 then implies that for a measure p with compact support in B, the
Green potential G

Gulz) = /B (¢, 2)du(Q)

satisfies (AGu)dA = dp in the weak sense, and in particular AGu =0
in the usual sense off the support of u.

Finally, we will need a reformulation of (6) in terms of the Euclidean
normal, which is

¥l

(©) PC2) = en oo G

5o (r¢, 2}, (€S, 2€ B.

This is because what (6) really means is, as said before,
.0 dS
P(¢,2) = lim =~ G(r(, 2) o

Since v = ¢a(1 — 7)* & and dS = ¢, (1 — r}' 7" do (we denote by ¢, all
constants depending on n}, (¢} foliows by L'Hopital's rule. Alternatively,
(c) can be proved of course by direct computation.

Note that |G (:, )| = 0(1 — 1¢)%)™ for a fixed z. Hence £5G(r¢,2) =0
for{e5,7=0,...,n— 1.

Proof of the theorem: Let u be a measure on X which is orthogonal
to all M-harmonic functions in B, continuous on B. By (a) above this
is equivalent to

(7) ‘/K P{{,z}du{z)=0for { € 8.

We consider the Green potential of p

W) = [ Glavw) dutz)

so that AG{u) = 0 off K. Moreover G(u) is still defined and is real
analytic in a neighbourhood of B, off K, because so is cach ¢, for z € K.
Note that all such potentials satisfy

8
37 Gu)(¢)=0,3=0,...,n—-1, (€S
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By {¢), (7) says that also

Z e =0, ces.

Therefore, by the theorem in Section 1, all derivatives of G{p} vanish at
§ and, since B\ K is assumed to be connected, we conclude that G{u) is
identically zero in B\X.

Let now v as in the statement; multiplying by a test function, we can
assume that v is compactly supported in B. By (b},

vw=£awm@aﬁm=éwm@wmﬂﬂm'

Hence by Fubini's theorem

/K v{z) dplz) = /B\K Av(() {/K G(¢, 2) dp,(z)} dM() =
- /B\K A”(QG#(C)Q—'/\(C) =0

which finishes the proof, by Hahn-Banach’s theorem. &
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