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In memoriam of Prof. Pere Menal i Brufal

Abstract

The aim of this paper is to stablish the close connection between
prime ideals and torsion theories in a non necessarily commutative
noetherian ring. We introduce a new definition of support of a
module and characterize some kinds of torsion theories in terms
of prime ideals. Using the machinery introduced before, we prove a
version of the Mayer-Vietoris Theorem for local cohomology and
stablish a relationship between the classical dimension and the
vanishing of the groups of local cohomology on a classical ring.

In this paper we show the relationship between prime ideals and torsion
theories on a left noetherian, non necessarily commutative, ring B. The
techniques we use are based on the prime ideals associated to a left R-
module A and on its support, which we will define here in Section 2.
All the rings in this paper are left noetherian.

In Section 1, we provide the interaction between the associated prime
ideals of a left R-module M and if it is torsion or torsionfree, we give
a characterization of symmetric torsion theories which is useful to char-
acterize stable and symmetric torsion theories. Recall that a torsion
theory o is symmetric if for every a € L{o), there is a two-sided ideal
b € L£{g) such that b C a, and ¢ is stable is the class of all #-torsion
left R-modules is closed under taking cssentisl cxtensions. In Section 2,
we introduce the support of a left R-module and give its basic proper-
ties. We apply, in Scction 3, the technique introduced before to the local
cohomology. First we prove a version of the Mayer-Vietoris Theorem to

*We thank Luis Merino and Eva Santos by their clever comments on the subject of
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local cohomology, and secondly, we establish the relationship befween
the classical dimension of a left R-module and the dominant dimension
relative to a torsion theory o.

Let us recall some results on associated prime ideals and tertiary de-
composition of modules on a left noetherian ring. These results are
avalaible in the literature, but we include them here for completeness.

Let B be a left noetherian ring, a left R-module M is prime if
Anng(N) = Anng{L) for every submodule L of N. Let A be a left
E-module, a prime ideal p of R is associated to M if there is & prime
submodule N of M such that p = Anng{N}. The set of all prime ide-
als associated to M is called Assp(M). BEvery maximal element in the
set of all the annihilators of non zero submodules of M is a prime ideal
associated to M, so if M is a non zero left R-module, then Assp(M) # 8.

Let A be a non zero left R-module, and p a prime ideal, we say M
is p-cotertiory if Assp(M} = {p}. A proper submodule N of M is p-
tertiary in M if M/N is p-coterciario. The left R-module M {resp. a
submodule N of M) is cotertiory {resp. tertiery) if it is p-cotertiary
(resp. p-tertiary) for some prime ideal p.

Lemma 0.1. Let M be e left R-module. The following statements are
equivalent:

1. M is p-cotertiary.
2. Anmp(p) is essential in M and p contains all the two-sided ideals
that annthilate some non zero submodule of M.

Proof: 1 = 2}. If M is p-cotertiary, then Assp(M) = {p},let HC M
be a non-zero submodule such that H N Anng{p) = 0, so Assgp{H) C
Assp(M) = {p}, and Assp(/f} = {p}, which is a contradiction.

2 = 1}. Let p,gq € Assg{M}, and N C M a prime submod-
ule such that q = Anng(N), if Anng{p) is essential in M, then
0# NNAnny(p),andqCp.sowehavegq=p. B

Let A be a non zero finitely generated left R-module. A tertiary
decomposition of a submodule N of M is a finite family of tertiary sub-
modules {Ny,...,N,} such that

I. N=NnN---NN,.
2. The decomposition is irreducible.
3. If Assp{M/N;) = {p:}, then p; # p, for i # 7.

Lesieur and Croisot proved in [5] that if 37 is a non zero finitely
generated R-module, then every submodule N of A has a tertiary de-
composition, and f N =Ny .--NN, =L, N---N L, are two tertiary
decomposition of N in M, then 7 = s and {p1,... ,pP:} = {qa,- .. . Qs }-
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More results related to tertiary submodules can be found in Sten-
strém’s book [8].

1. Torsion theories and associated prime ideals

In this section we will study the relationship between torsion theo-
ries and prime ideals on left noetherian rings, we will consider mainly
symmetric torsion theories.

Let R be a ring and ¢ a torsion theory in H-mod, we define
Zi(g) = {p € Spec(R); R/pe T,}.

and
K(s) = {p € Spec(R); R/p € Fs}.

In some cases {Z(o}, K{o}} is a partition of Spec(R).

Lemma 1.1. [4] Let R be a ring and ¢ a torsion theory in R-mod,
then either p € Z{o) or p € K{o).

Lemma 1.2. Let B be a ring and o a torsion theory in Il-mod, then
for every o-torsionfree left R-module M we hove Assg(M) C K(o).

Proof: If q € Assg{M) and q ¢ K(o), then q € Z(o); therefore there
is m € M such that q = Anng({Rm) and an epimorphism R/q — Rm;
since R/q is o-torsion, so Em i3 also o-torsion, which is a contradiction,
therefore it must be Assgp(M) C K{s). B

To prove the converse it is necessary to put conditions on the torsion
theory, as we will sce later.

Proposition 1.3. Let R be a ring and ¢ a lorsion theory in R-mod,
then the following statements are equivalent for any left R-module M :
1. o is symmetric.
2. If M is o-torsion, then Assp(M) C Z(o).
3. If Assg C Kio), then M is o-torsionfree.

Proof: 1 = 2). Let p € Assr(M), then there is N C M such that
p = Anng(N), we can assume N is cyclic and generated by an clement n,
thereforc p is the biggest two-sided ideal contained in Anng{n) € L(7),
so p € L(o).

2 = 1). Let a € Lo}, we consider a chain

0=MyC M C...CM,=R]/a,
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such that M, /M, is p;-cotertiary and p;{M;1/M;) = G. We have that
every M,y q1/M; is o-torsion, therefore p; € Assp(M; /M) C Z{o) C
L{z), and s0 py - pn{R/a) = §, therefore p; - p, C a; finally, since
the product of elements of L{¢) is also in L{o}, we have that ¢ is sym-
metric. '

2 = 3). I M is not o-torsionfree, so o{M) # §, and 0 #
Assp{o(M)} C Assp{M) C K{e); on the other hand ¢(M) is o-torsion,
so Assp{c{M}} C Z(r), which is a contradiction.

3 = 2). Let M be a o-torsion R-module, if Assp(M) € Z(s), then
there is some q € Assp(M), and q € K{c). Therefore there is 0 # N C
M such that Assp(N) = {q}, by the hypothesis we have N € F,,, which
is & contradiction. W

As a consequence, for any left H-module M and any symmetric torsion
theory o, we have M is o-torsionfree if, and only if, Assp{M) C K(s}.
The analogous result for o-torsion modules will characterize stable and
symmetric torsion theories. To reverse the condition (2) in Proposi-
tion 1.3 we need consider a new condition on o.

Lemma 1.4. Lei R be a ring and o a stoable torsion theory in R-mod;
Jor any left R-module M, if Assp(M) C Z(v), then M is o-torsion.

Proof: We can assume M is finitely generated, let us consider a ter-
tiary decomposition of 0 in M,

0=N0...0 Nn,

with N; py-tertiary in M, 1 <1 < n, 4ssg(M) = {p1,... ,pn} and
pi # p; if ¢ # j; so there is & monomorphism M — @, M/N,. Let X
be a p-cotertiary left R-module with p € L{g}, so Annx{p) is essential
in X, for every & € Annx(p) we have z € 6(X), then Annx(p} C o(X],
and since o is stable, X is o-torsion. As a consequence every M/N; is
o-torsion and so M is o-torsion. W

Lemma 1.5. Let R be a ring and ¢ a symmeiric stable torsion theory
tn R-mod, then for every left R-module M we have:
1. Assp{o{M}) = Assg(M)N Z(a).
2. Assp(M/a(M)) = Assp(M) N K{s).
3. Assp(M) = Assplo (M) U Assp(M/o(M)).

Proof: Let P = Assg{M) N Z(s), then there is a submodule N
of M such that Assr(N) = Assp{M) N Z{c) and Assg(M/N) =
Assp(MYN K(c). Then we have Assp(N) C Z{o}, so N is o-torsion,
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and Assp(M/N) C K(o), so M/N is o-torsionfree, it follows that
N=o(M). &

This result can be used to provide a characterization of stable sym-
metric torsion theories in the following way.

Proposition 1.6. Let R be a ring and ¢ a symmetric torsion theory
in R-mod, then o is stable if, and only if, 7, = {M,;, Assp(M) C Z(s)}.

It is possible to characterize non necessarily symmetric torsion theories
o such that Assp{M)} C Z{s) implies M is o-torsion, like those torsion
theories satisfying a property of the Artin-Rees type [6)].

Lemima 1.7. Let R be a ring and o o symmetric torsion theory in
R-mod, then

o= N{on-p; PEK(0)}.

More generally, it is possible $o associate to a set of prime ideals K =
{p.; ¢ € I} a symmetric torsion theory ox defined by ox = A{og_p,; 1 €
I}. It is arise the following guestion: When is K{ox) = K7. we call a
set X of prime ideals is generically closed if for any pair of prime ideals
P C q such that q € K we have p € X. It is clear that for any symmetric
torsion theory ¢ we have (o) is generically closed. The next Proposition
answer the above question.

Proposition 1.8. Let R be a ring, then there is o bijection between
generically closed subsei of Spec(R) and symmetric torsion theories ¢ in
R-mod.

Proof: Let KX € Spec(R), we define ox = A{or_p; p € K}, then it is

straightforward to show that X = K(og). Now the result follows from
Lemma 1.7. &

2. Torsion theories and the support of a module
Let M be a left R-module, we define the support of M as
Suppr{M)} = {p € Spec(R); M is not op_p-torsion}.

Lemma 2.1. Let 0 — M' — M — M” — 0 a exact sequence of left
R-modules, then

Suppp(M) = Suppr{M')U Suppr(M").
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Proof: 1f p ¢ Suppr{M), then M is op_p-torsion, so M’ and M"
are op_p-torsion and p & Suppr(M') U Suppr(M"). Conversely, if
P ¢ Suppr(M') U Suppr(M"), then M’ and M" are gp._p-torsion, so
M is op_p-torsion and p ¢ Suppr(M). B

Proposition 2.2, Let a be a left wdeal of R, and & the bigger two-sided
ideal contained in a, then

Suppr(R/a) = V{(a).

Proof: Let p ¢ Suppr(R/a), then R/a is og_p-torsion and a €
Llomyp), so @ € p, therefore p ¢ V{&). The converse is obvious be-
cause all the implications are reversible. B

Corollary 2.3. Let M be o finitely generated left R-module, then
Suppr(M) = V(Anng(M)).

Proof: Let M = Rm; + ... + Rm,, then we have the identities:

ko

Supp{M) = U Supp(Rm;) = U Supp{ R/ Anng{m,)) =

=1 =1

I
(=

V{ AnnR ) = U V{Adnngp{Rm,)) =

1 i=1

o
1]

= V(ﬂ Anng(Rm;)) = V(Anng(M)). B
i=1

A left noetherian ring R is called left classical if all symmetric torsion
theories are stable. For this kind of rings we can show a strong connection
between associated prime ideals and prime ideals in the support of a left
AH-module.

Lemma 2.4, Let R be o left classical ring and M o left R-module,
then for every prime ideal p we have p € Suppr(M) if, and only i,
there is g € Assp(M) such that q C p.

Proof: Let p € Suppr(M), then M is not og_,-torsion, so Assp(M)N
K{op_p) # @ and there is q € Assp{3f) such that q C p. The converse
is easy. B
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Corollary 2.5. Let R be a left classical ring and M a left R-module,
then Assp(M) C Suppp(M), and the two families have the same mini-
mal elemnents.

Proposition 2.6. Let R be a left classical ring and o o symmelric
torsion theory in R-mod, then we have:

T, = {M € R — mod; Suppr(M) C Z(s)}.
Proof: Since R is a left classical ring, then M is o-torsion if, and only
if, Assp(M) C Z(c). I Suppr(M) C Z{c), therefore Assp(M) C
Suppr(#M) C Z(o) and M is o-torsion. On the other hand, if M is

o-torsion and p € Suppr{M}), then there is q € Assg{M) C Z(0) such
that q C p, so p € Z(o) and Suppr(M} C Z(z). K

Proposition 2.7. Let R be o left classical ring and M a left R-
module, then Suppr{M) = Suppp{E(M)).

Proof: We apply Lemma 2.4. B

Corollary 2.8. Let R be a left classical ring, M a left R-module and
0— Ep(M) > Ey(My— -
a minimal injective resolution of M. Then for every i > 0 we have

Suppr{Ei(M)} € Suppr(M).

3. Local cohomology and Krull dimension

Let R be a ring and & a torsion theory in R-mod, it is well known that
o determines a left exact functor

¢ R —-mod — R — maod,

if we derive on the right the functor ¢, wc have a sequence of functors
{H?{—)}}n>o0, and for any exact sequence

0> M - MM -0
of left R-modules, there is a long exact sequence

0= o(M') = o(M) = o(M") — HI{(M') = ...
Lo HPUMYY > HMM') = HP (M) — HMM") — ...
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Of course HZ (M) € 7, for all left R-modules M and n > 0.

If  is stable, then H?{M) = 0 for any o-torsion left R-module 3 and
n>1,so HMM) 2 H*(M/o(M)). One can also prove the main result:
for any left R-module M, we have an cxact sequence

80— o(M) > M — Q. (M) — HN{M) — 0,

where (M) is the localization of M in the torsion theory o. In finishing
this short summary on local cohomology, one can prove that H2t! is
naturarly isomorphic to R*(},, the n-th right derived functor of Q,.

Proposition 3.1. Let R be a ring and ¢, T two symmetric and stable
torsion theories in R-mod, then for every left R-module M there is an
exact sequence

v = Hop (M) — Hy (M) ® HA (M) — Hyy (M) — HE (M) — -
Proof: Let a € £L{o) and b € £{7), then therc is an exact sequence
80— R/(anb) — R/ac R/b— Rf(a+b) -0
It we apply Hompg(~, M), we have a long exact sequence

0 — Homgp(R/{a +b), M) — Homg(R/a® R/b, M) —
— Homp(R/{anb),M) — Ezth(R/(a+b), M} — ...

Since direct limits are exact, there is an exact sequence

0 — lim Homg(R/(a+b), M) — tim Homg(R/a® R/b, M) —
&b

a. b

w.b

— lim Homp(R/(anb), M) — lim ExtL{(R/(a+b), M) — -

We know there are isomorphisms

lim Exth(R/a, M)~ lim Exth(R/a, M) = HL(M),

s.b ac fia)

and we will prove the isomorphisms

lim Exty(R/(anb), M) = H, (M)

a,b

k € L(o v 7) if, and only if, there are a € £(c¢) and b € £(7) such that
ab C k. Since ¢ is stable it satisfies the Artin-Rees property, and there
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is ag € £(z) such that agnb C ab C k, thus {anb; a € L{c),b € L({7}}
is a cofinal subset of L{g V T}, therefore

lim Exth(R/anb, M) 2 lim Exthy(R/k, M) = H., (M),

a.b

Finaly we can prove

lim Exth(R/(a + b), M) = H, ().

a.b

Ifac L{c)and b e L(7), thena+b e L{cAn7T)and {a+b; ac
L{z),b € L{7}} is a cofinal subsct of L{o A T), s0

lim Exth(R/(a+b), M) = lim Extp(R/k, M) = H., (M) &

ahT
a.b

Using the local cohomology, it is possible to establish a kind of dimen-
sion, the so calicd o-dominant dimension. We say M has s-dominant
dimension greater or cqual to n if HL(M) = 0 for al 0 < ¢ < n, or
equivalently, the first n terms in a injective minimal resolution of M are
o-torsioniree.

Another dimension can be defined in (classical) left noetherian rings
is the so called classical dimension. Let M be a left R-module, we define
the classical dimension of M to be greater or equal ton, el —dim{M} > n
if in Supp(M) there is a strictly ascending chain of prime ideals

PoCP1C...C Pa

And M has exactly classical dimension n if ¢f — dim(M) > n and
el —dim(M) # n — 1. In this way, we return to the definition of Kruil
dimension on commutative rings. It would be interesting to study how
the classical dimension gives information on the structure of left noethe-
rian rings. We will prove a theorem relating the classical dimension with
the vanishing of some groups of local cchomology, and therefore with the
o-dominant dimension,

Theorem 3.2. Let R be o left classical ring, in which op_p 15 perfect
for every prime wdeal p, M a left R-module and o a symmetric forsion
theory. If ¢l — dim{(M) =n, then HL{M) =0 for every i > n.

Proof: Since every left R-module is a direct limil of finitely generated
submodules, we can assume M is finitely gencrated, and since R is left
noetherian, there is a finite chain of submodules of A7

O=MyCM C-- CM,=M
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such that
1. Every M, is tertiary in M.
3. M;y1/M; is annihilated by its associated prime ideal.

Then to prove the result we can reduce to the case in which M is p-
cotertiary and o-torsionfree (annihilated by its associated prime ideal).
If n = 0, then in any injective resclution of Ad,

0 M — Eg(M) — E\(M)— ...,

we have Assp(E (M} C Supprp(Fi(M)) C Suppr(M) = {p}, and
E(M) € Flo) for all 1 > 0, and so H{M) = 0 for all i > 0. Let
us consider n > 0, we assume the result is true for every left R-module
N such that ¢l — dim(N} = m < n. Since Assp(M) = {p} C K{o}, then
M is ¢g_p-tovsionfree, we have then an exact sequence

0— M — Qr_p(M) — Qn_p(M)/M — 0.
Because M is essential in Qp_p (), it follows

Assp(Qr_p(M)) = Assr(M) = {p}.

If we apply now the Corollary 2.3 and Lemma 2.7. we have
Suppr{M) = V(p) = Suppr(Qr\p(M)),
since p ¢ Suppr(Qr_p(M)/M), then
Suppr(Qr-p(M)/M) C Suppr(Qr—o(M))\ {P} = Suppr(M)\ {p},

and m = of — dim{Qr_p (M)/M) < cd — dim{M) = n. By induction we
have _
H(Qr_p(M}/M)=0fori>m.

We consider a minimal injective resolution of Qgp_p(M),

0= QrpM) - Eo(Qr—p(M)) - Ex(Qrp(M)) — ...
If we aply Qr_p, to the exact sequence

EU(QR—D(M)
QR—p(M)

. Eg(Q@ur_pla)) .. .
we have again the same exact sequence, so —Ga_gray I8 o-injective an

o-torsionfree. Then repeating this process, it is possible to prove that
all the E;(Qr_p(M)) are og_p-torsioniree, then they arc o-torsionfree,
and for any ¢ > 0 we have H:(Qr_p{M)) = 0. If we consider now the
leng exact scquence

+— Hy(Qr-p(M)/M) — HZF' (M) - H  (Qr-p(M)) — -+

it is clear the conclusion. W

0 - @r-p(M) — Eo{Qr—p(M)) — — G,
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Corollary 3.3, Let R be a left classical ring, in which op_p is perfect
for every prime ideal p, M a left R-module and ¢ a symmeiric torsion
theory. Then

o — domdim{M} < o — dim(M).
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