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SELF-INJECTIVE VON NEUMANN
REGULAR SUBRINGS AND A THEOREM
OF PERE MENAL

CaRL Farta!

In memoria nobilissimi omnium-Pere

Abstract

This paper owes its origins to Pere Menal and his work on Von
Neumann Regular (= VINR) rings, especially his work listed in
the bibliography on when the tensor product ¥ = A @ B of
two algebras over a field k are right self-injective (= §7) or VIVR.
Fere showed that then 4 and B both enjoy the same property,
51 or VNR, and furthermore that either A and B are algebraic
algebras over k {see [M|). This is connected with & lemma in the
proof of the Hilbert Nullsiellensaiz, namely, a finite ring extension
K = k[a1,...,a,] is a field only if a1,...,an are algebraic over k.

In this paper, we follow Pere’s lead in just the one property, namely
SI, applied to a VN R subring A of a right 57 ring K. Pere proved in
essence that all that is required is for K to be split-flat over 4 (= K
is a flat left module and A is a direct summand of K as a right A-
module). By a theorem of Bourbaki-Lambek [L], the inclusion functor
mod-K — mod-A preserves injectives iff 4 K is flat. Then (when Ky is
injective), 44 is injective iff A4 splits in K4, cquivalently, A4 has no
proper essential extensions in K4 (cf. Proposition 1.1). :

Pere's theorem on tensor products over an arbitrary commutative ring
k similarly can be generalized:

YA part of this paper was written in Spring 1986 during my visit at Centre de Recerca
Matematica (CRM) of the Tnstitut d'Estudis Catalans in Universitat Avtdnoma de
Barcelona (UAB). I owe much to Pere Menal {or inviling me to visit UAB and CRM,
and for our subsequent collaborations. (See my memento of Pere Menal i Brufal at
the close of this article).
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Menal’s general theorem. {1.7). Ifaright ST ring K = AQyBisa
tensor of faithful k-clgebras A and B and is split-flat over a commuiative
ring k, then A and B (also k) are right S51.

The proof requires a further bit of homological algebra {1.3, 1.4, 1.5
and 1.68}. Moreover, Theorem 1.3 shows that only B need be split flat
over k for the conclusion that A is right SI.

The corollary that follows shows in one part of Pere’s theorem [M]
that the field k can be reploced by any commutative self-injective VNR
k.

Corollary. (1.8). If K = A ®; B 1s right SI faithful algebra over a
ST VNR ring k, then A end B are right 51,

The effect of the hypothesis that K is faithful over k is that &k — K,
hence the ST requirement for & is equivalent to: & has no proper essential
extensions in K'; and in this case K issplit over k. {And K is flat because
kis VNR).

We next turn our attention to a maximal VNER subring A, abbre-
viated max VNE in K. Then if X is 2 right nonsingular module over
A, by a theorem of R. E. Johnson, @ = @7, (R) cmbeds uniquely in
K (see, e.g., Lemma 3.1), hence cither K = @, or else 4 = @ is right
SI. Expressed otherwise, when K is nensingular cither A is right ST, or
else K is VNR and = @. Thus, A is then right ST assuming that A is
inessential or that I is not VN R {Corollaries 3.3 A-C).

Furthermore if K is a VN R, even without assuming that K is right
nonsingulor over A, we have:

Theorem. If A isamez VNR inaVNR right ST ring K+£Q%,, (R},
then A s right SI provided that K is left strongly bounded (= SB) in
that sense that every lefi ideal £ 0 contains an ideal # 0.

This theorcm follows from the preceding result for K singular over A,
without assuming $B; and otherwise from Thecrem 5.5. We also have;

Theorem 5.6. If an Abelian VNR ring K is right SI, and right
singular over a max VNR subring A, then A is 8. Moreover,

K= K]_ x A
where K, 15 a skew field.

The next theorem follows from Utumi’s theorem [U3], (U4] that char-
acterizes a continuous VN R ring A by the property that A contains all
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idempotents of ¢ = @F,_ (A). (K Abelian in the theorem means that

max
all idempotents are central).

Theorem 3.3E. 4 maz VNA subring A of a right self-injective
Abelian (e.g., commultative] ring is continuous.

What happens when a max VN R subring A does not contain all cen-
tral idempotents of K? This is decided by Corollary 2.8: K must be
VNR and either K = @ or A is right self-injective.

0. Introduction

I. Wedderburn splitting and semisimple subrings.

A number of conditions on a ring K imply that a VNR subring 4 is
right §1, without assuming that K is right 57, or that A is maximal,
and we cite several below.

(I.1a} K contains no infinite sets of orthogonal indempotents.
{I.1b} K has the ascending condition on right {or left) annihilators, de-
noted acel {or Lace),
(I.lc} K is subring of a right (or left) Noetherian ring.
Note {c) = {b) = (a) for any subring A.

Furthermore, a VN R ring A with no infinite sets of orthogonal idem-
potents is sernisimple Artin, and then every right or left A-module is
injective.

(I.2) The center, cen K, of a VNR is VNR, and, moreover, right S7
when K is VNR right ST by a theorem of Armendariz-Steinberg
[A-S].

(1.3) If K is right SI, then by a theorem of Utumi [U], K = K/rad K
is right §f and VNR. Thus any VINE subring A such that
K = A + (rad K} is necessarily right self-injective inasmuch as
An{rad K =0, hence A ~ K. When this occurs, we say that K
has WEDDERBURN SPLITTING. For any (not necessarily 57)
finite dimensional algebra K over a field, this always occurs when
K is a separable algebra ([J]}, and then 4 is semisimple by (1.1)
above.

II. Two cases of max VNR’s.

The study of a max VN R subring A in a ring K devolves into two
cases:
(I1.1) A contains all central idempotents. This must occur if K is not

VNR,
(I1.2) K = Ale} = A + Ae for a central idempotent e.



544 C. FaiTH

In this case K must be ¢ VNR, and, moreover, o ring epic of A2
(Theorem 4.5 and Corollary 4.3).

II1. Case 1: A contains all central idempotents.

{I11.0) Theorern. Let A be a subring of a ring K that contains all
central idempotents {e.g., suppose A 2 Cen K ).

(IIL.1) If K is a ring product

kK =]]&

ied

then (11L0) implies:

A=]] A4

v f

where A, = ANK; Vie I

(II1.2} Furthermore, 4 is then max VNE in K iff A4, is max VNR in
K, ¥Viel

When K is VNER, then A is said to be a genuine max VN R in K if
A is maximal in the set of all VNR subrings # K.

(IT1.3) Corollary. If A is ¢ VNR subring coniaining all central
idempotents of ¢ VNR ring K, then (II1.1) holds, and then, A is a
genuine maz VN R of K iff there exzists ig € I such thet A, is ¢ genuine
mar VNR of Ky, and A, = K; Vi e { — {ig}. Moreover:

K= Q;'lax(A) uf K, = :nax(Aio)'

The proofs are trivial and are omitted.

To sce how a VN R right ST ring K decomposes into a ring product,
see |G, p. 110]. If the right SI ring K is a Pl-ring, then by a theorem
of Armendariz and Steinberg [A-S], K = Il;cr K, where each K; is a
full matrix ring over an Abelian VN R ring. (Cf. Theorem 3.3 in Section
5 below). Furthermore, in this case, # is an Azumaya algebra over its
center by theorems of [A-S] and [S], see Theorem 2.4c.

Since A+ B is VNR for any VNR subring and VNR ideal 5 of X,
then any max VNA A in anon VN ring A must contain the maximal
regular (= VNR) ideal M{X). Morcover, the implication {IIL1) above
then establishes:



SELP-INJECTIVE SUBRINGS 545

(I11.4) Theorem. If K = M(K} x K;, where M(K) is the mazimal
reqular ideal, and Ky # Q, then any maz VNR A splits:

A=M(R) x A
where Ay is @ maz VNR in K3 and M(K3) #0.

Thus, by [F4], in the next corollary, we reduce the question of when
Ais 8T to when A; is 51:

(I11.5) Corollary. If K is a right and left 51 ring that is not a
VINR, then K and any maz VNR A decompose as stated in (3.4). In
this case, M(K) and Kz are 2-sided SI, and, moreover, A is SI iff Az
is §1.

Actually, M{K) splits off for any 2-sided continuous ring K (see [F4]).
For & VN R right §7 ring K, we apply a fundamental theorem of Utumi
[U3] to decompose K = K; x K2, such that Ky is Abelian (= strongly
regular), K7 has no nonzero Abelian ideals, and K3 is generated by
idempotents.

This is a corollary to Theorem 2 of [U3], and is cited in [U4, Theorem
3.2).

(I11.6) Theorem. If K is a VNR right SI ring, not a centralizing
extension of a genuine maz VINR A, then the stoted Utum:i decomposi-
tion induces a decomposition A = A, x A, where A; = ANK; 15 a gen-
uine maz VNR for exactlyonez € {1,2}, and A; = K forj #4,7=1,
or 2.

IV. Case 2: Does not contain all central idempotents.

In this case, K = Ale] = A = eA for a central idempotent e, hence
K must be VNR, and, as it happens, a ring epic of A2 (Theorem 4.5
and Corollary 4.3). Furthermore, once again, we find that A is right SI
when K # @

{IV.1) Theorem. (2.7) If K is a right self-injective VN, and if K
is a centralizing extension of a genvine mar VNR A, then either

(1 A is right 81,
or

(2) K = Qax(A).

.
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{IV.2} Corollary. Under the same assumptions, then A is right ST
iff A is inessential in K as a right A-module,

We next show that 4 need not be right ST in some cascs.

(IV.3) Example. (Cf. {4.10)) If R is any subring of a right seif-
injective prime ring K, and if R contains 2 nonzerc left ideal H of K|
then K =@ = QL. (R).

Proof: f 0 #£ a, b € K, then al # 0 by primeness of K. Then, there
exists z € LC Rwith0 £ agrx € L C Rand bx C R. So K = (.
(See, e.g., [F, Chapter 8]}. If follows that if A is any VN R subring of K
containing R, then A is right ST if A= K.

To give a specific example let K = End Vp for a right vector space
V over a field D, and let H be the right socle of K (= the sum of all
minimal right ideals). Since H is an essential right idecal, and VNR,
then R = D+ H is VN and essential in K as a right R-module, then

raxlR) = K for any VNR subring 4 O R. Thus, no genuine max
VNI containing K can be right ST,

In Theorem 3.7 we record the following curiosity: if a genunine max
V N R subring A does not contain a maximal ideal of a right self-injective
VNR ring K, then K is a subdireet product of simple homomorphic
images of A (cf. Corollary 4.3). m
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1. Self-injective split-flat extensions,
algebras and tensor products

If A is a subring of K then is a split (resp. flat) extension provided
that A is isomorphie to a direct summand of K as a right A-module
(resp., K is a flat left A-module). Thus, by a theorem of Azumaya, K
is a split extension iff K generates mod-A. (See [F5, p. 145, Cor.
3.27(a)]). Furthermore, K is said to be split-flat over A, if K is both
a split and flat extension of A. If K is an algebra over a commutative
ring k, then K is a split {flat) algebra if K is a split {flat) extension
of k. This implics, in cither case, that K is faithful over &, eguivalently
that the canonical map & — K is an embedding.

1.1. Proposition. If K is right selfinjective, and of K is o flot
left A-module for a subring A, then K is an injective right A-module.
Moreover, in this case A is right self-injective iff K is right split over A,
equivalently, A is a direct summand of K in mod-A.

Proof: Sec [F3). &

1.2A. Corollary. Let K be right self-injective, and G be o finite
group of eutomorphisms of unit order. Then, if A = KC is VNR, it is
right self injective.

Proof: K is flat over A since A is VN R, and a splits in K (both sides)
by Maschke's theorem (e.g., see [F5, p. 475, Theorem 13.21]). B
The next result generalizes a theorem of [P]. {Sec Open Questions,

Section 6).

1.2B. Corollary. If « VNR K is right SI, and G is a group of
automorphism of unit order, then the fizr ving A = K% is right 51,

1.3. Theorem. If A and B are algebras over k, and if K = AQg B
is right self-injective, and if B is a sphit-flat algebra over k, then A s
right self-injective.

Proof: Since k splits in A, then A = 4 &, k splits in K. Speceifically:
ifBrEbd Xinmodk thenforY =A@ X

K%A@kB%(A{@kk)@(A@kX)%A@Y

in mod-A. Moreover, K is left flat over A, since if 0 - U/ — V is exact
in mod- A, then

U®AKR'JU®A(A®;;B)"»3(U@AA)®_£€B"A‘JU®J€B‘
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Since B is flat over &, then

00U B V&, B
is exact, hence

0—-URsK -VRsK
is exact.

Since K is therefore left flat and a right generator over A, then by
Proposition 1.1, A is right self-injective. &

1.4. Lemma. If K = A®i B is ¢ flat k-algebra, and if @B is a
feithful functor, then A is a flat k-module. A sufficient condition for
foithfulness of @B is for B to be g k-split algebra.

Proof: Let 0 - X — Y be exact in mod-R, and let
0 —U — XK ADY R A
be exact. Then
0—U@B —> XK — Y@K

is exact, but flatness of K then implies that 7V ®; B =0, whenee I/ =0
by faithfulness of 1 B,s500 =2 X ®: A — Y @1 A is exact. This proves
that A is flat over k.

Next suppose that B is split over R, k =~ R® X in mod-R. Then obvi-
ously & B is faithful, since it has a faithful subfunctor: ®; = lpea-p. |

1.5. Theorem. A iensor product ARy B of modules over o commu-
tative ring k generates mod-k iff both A and B generate mod-k.

Proof: A module A generates mod-k iff the trace ideal Ti(A) = &,
where for a k-module A, T{4) is the image of the canonical map A* ®;
A — k, where A* is the k-dual module of A. Now, tensoring over k, we
have

K'gK=A4A"9®B*" @42 B
=(A"@A)®(B*®B)

hence the trace ideal
T{K}=T(AYT{B).

For,ifp; : A*® A — &k and gs : B* ® B — k are canonical, then the
cancnical map K* ® K — k is ¢ = ¢ ® 9 and so

T(K)=imyp = ) Rimpy = T{A)T(B)
it follows that T(K) = k iff T{A) = T(B} = k, proving the theorem. l
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1.6. Corollary. If K = A®y B is a split algebra over k, then so are
A and B. Moreover, if K is a split-flat algebra, then so are A and B.

Proof- A and B are split algebras by Theorem 1.5 and Azumaya’s
Theorem cited at the beginning of this seetion and then A and B are
flat algebras by Lemma 1.4. B

1.7. Menal’s General Tensor Theorem. If K is a right self
injective sphit-flat algebra over a commutative ring k, end if K = A®¢ B,
for subalgebras A and B, then A and B are right self-injective split-flat
algebras.

Proof: Corollary 1.6 and Theorem 1.3. B

1.8. Corollary. If X = A®; B is a right SI faithful algebra over a
SI commutative VNR k, then A and B are right S1.

Proof: K is split-flat over &, so Menal's General Thecrem applics. B

2. Azumaya subalgebras and centralizing extensions

In this section we demonstrate that an Azumaya algebra A over k is
{right and left) self-injective if A embeds in a right sclf-injective split-flat
k-algebra. This follows from the more general theorem (Theorem 1.7}
stating that if K = A®, B is right self-injective “split-fat” algebra over
k then A and B are right sclf-injective, and hence, then so is 4.

We also note that any self-injective ring VNR ring K with polyno-
mial identity (= PI) is Azumayan over its center (Theorem 2.4C). This
follows easily from [A-S] and [S].

For use below, if A is an algebra over a commutative ring k, the en-
veloping algebra A° is defined to be the tensor product A ®s A% of A
and the opposite algebra A°. Then the operation defined by the rule
X{a ®b%) = bza for any a, b, z € A defines A as a canonical (right}
At module. There is a canonical defined by h: A% — End; A

zh{a ® %) = bza

and the image of h is the subring Ag4l4;] of End; A generated by the
subring A, consisting of all right, and the subring A, consisting of all
left, multiplications of the k-module A by elements of A.
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2.0, Azumaya algebra definition and Theorem. An algebra A
over a comrmutative ring k is called an Azumaye algebra if 4 satisfies the
cquivalent conditions.

{Az 1} A is a projective module over the enveloping algcbra A° =
A R AL,

(Az 2) A is a finitely generated projective module over k, and A* =
End; A cancnically.

{Az 3) A® is Morita equivalent to k.

(Az 4} A is finitely generated module over &, and for all maximal ideals
m of k, the factor algebra A/mA is a central simple k/m-algebra.

{Az 5} A is finitely generated projective and central over k and every
ideal I of A is of the form I = Iy A, where Iy = I N k.

{Az 6) A generates mod-A° and & = End 4- A.

When this is so, then Cen A4 = k.

Proof: Most of this is due to Azumaya (Az 1) over local k, and the
carry-over to general k is in [A-O]. Also see [B].

The equivalence of {Az 5) with (Az 1} is a theorem of Rao [R]. More-
over, the Morita equivalence (Az 3) implies (Az 6}. Conversely {Az 6)
= {Az 2), {Az 8) = {Az 2) a theorem of Morita ([F3, p. 190, Theorem
4.1}) and Azumaya (in [Az]). B

2.1. Proposition. If A is an Azumaya algebra over e commutative.
ring k, then the f.a.e.
(2.1.A) A is right self-injective.
(2.1.B) A is left self-injective.
(2.1.C) k is self-injective.
(21.D) A® is right self-injective.
{2.1.E) A® is self-injective.

Proof: k is Morita equivalent to A°, hence A® is right self-injective iff
k is self-injective, and this implies A® is then left self-injective. Moreover,
since Azumaya algebras are flat generators over k {in fact, finitely gener-
ated faithful projective modules over k {in fact, finitely generated faithful
projective modules over k), then A% = A ®; A® implies via Theorem 1.3
{or Theorem 1.7) that A and A? are self-injective {both sides). B

2.2. Azumaya Theorem. If A is an Azumaya elgebra over o com-
mutotive ring k, and if A is a subalgebra of an algebra K over k, then
K =~ AQ A', where A’ is the centralizer of A in K.

Proof: (B, p. 111-28, Corollary 4.3]. &
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2.3. Corollary. If K is right self-injective, and if o subring A is an
Azumaya algebra cver a subring k of C = Cen K, then (a) A is right
self-injective, (b} k is self-injective, and {c} A is left self-injective.

Proof: K = A @, A" by the theorem, and then A and A’ are right
self-injective by Theorem 1.7. Then &, also A on the left, is self-injective
by Proposition 2.1. B

We need a now classical resnlt.

2.4A. Lemma (Azumaya). If K is an Azwmaye algebra over k,
then for any proper ideal I of K, the subalgebra K/I is ceniral over
R/(INR).

Proof: Suppose that 7 € K and that zy—yz € [ forally € K. Let m
be a maximal ideal of k so that mK D I. Then K = K/mK is central
simple over k = k/mk, consequently Z € k proving that z € k. This
shows that k/k N [ is the center of K/I. B

2.4B. Proposition. If K is an Azumaya olgebra over k, and if A is
a (maz) VNR subring, then Ank is VNR.

Proof: Write Ag = AN R, and let a € Ap. Then, by regularity of A,
there exists £ € A such that aza = a. Since a € k, then z¢® = a, if
y € K, then

yza’® = ya = ay = za’y = rya®

so yz — zy annihilates ¢?K = oK. This implies that in K/aK that z
maps onto an element of the center of K/aK, so the lemma implies that
z € k. Thus, z € Ay proving that Ay is VNR.

A ring K is biregular provided that for all a € K every principal ideal
KaK is generated by a central idempotent. Evidently, every simple ring
is biregular, i.e., a biregular ring need not be regular. W

We note the following characterization of Azumaya algebras over
VNR's.

Szeto’s Theorem. ([S]) A ring K is an Azumaye algebre over a
commutative VNR subring C iff K is a biregular ring finitely generated
as a module over its center C.

We also note:
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Renault’s Theorem. ([Re2|). A VNR right 57 ring K is biregular
iff every prime ideal is mozimal.

Ci. [Re2, Proposition 3.7, which states that QT . (R) is biregular
when R is reduced.

2.4C. Theorem. A VNR right SI ring K with PI 15 an Azumaya
algebra over its center k.

Proof: The center k of K is a VNR ring, and by [A-S, Theorem 3.7
and Corollary 3.2]) K is a biregular ring that is a finitely generated
projective module over its center k. It follows from Szeto’s Theorem
that K is an Azumaya algebra over k. B

2-4D. Notes. 1. Theorem 2.4C is implicit in [A-S] where the ideal
correspondence

I — IK

is proved a bijection with ¢~ '{(.J) = J Nk for an ideal J of K. This
is a consequence of the biregularity of K see [A-S|, footnote added in
proof. (Also see [A-8, Corollary 3.6], where the ideal correspondence is
proved using the fact that X is a direct sum of finitely many Azumaya
algebrast).

2. Using 1, Theorem 2.4C also follows from (Az 5} of Theorem 2.0.

{ Ideals & —- IdealsK

2.4E. Corollary. Let A be a VNR central subalgebra of a VN R right
ST algebra K with I over its center k. Then A is self-injective iff A is
an Azumaya algebra over k.

Proof: If A is Azumaya over k&, then 4 is ST by Corollary 2.3. Con-
versety, if A is S/, then A4 is Azumaya over k by Theorem 2.4C. K

2.4F. Remark. In [A-8], the PI’s have coefficients in the centroid
of K, but since K is SI, the centroid is k. (At least one coefficient must
be a unit).

Centralizing extensions.

An ring K is a central extension of a subring A provided that K is
the subring A[C] generated by 4 and C = Cen K. If K = A[A'] is
generated by A and its centralizer 4° = Ceng A, then we say that K
is a centralizing extension of A. By Theorem 2.1, K is a centralizing
extension of any subalgebra that is Azumaya over a subring k of Cen K.

An idempotent e € K centralizes a subring A if, o belongs to the
centralizer of A in K. '
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2.5. Lerama. If A is a VNR subring of a ring R, then so is Ale] =
A + Ae for any idempotent e of K that centralizes A,

Proof: A ring B is VN R if there exists a VN R ideal T so that B/I is
VNR. {In this case every factor ring and every ideal is VNR). In our
case, let B = A+ Ae, and then I = Ae, isan ideal of B and isa VNR
ring since it is a homomorphic image of A. Moreover, B/ =~ A/(I N A)
is also a homomorphic image of 4, s0 Bis VNR. |

If N C M are A-modnles, then N C M denotes that N is an essential

submodule of A =

If M is a right A-module, then the singular submodule sing My is
defined by
sing My = {m € M|anngam C A}
a55

where, as stated,
annsm = {a € Alma = 0}.

Now S = sing M4 s a fully invariant submodule of M, that is, bs € §
for all b € End M4 and all s € 5. This implies that sing A4 is an ideal.
If sing M4 = 0, then M is said to be nonsingular, otherwise singular.

2.6A. Lemma. If K is o ring and A is a subring, then the right
singular A-submodule § = sing K4 is a {K, A)-submodule of K, hence o
left ideal of K.

Proof: 8 is a fully invariant A-submodule of K. &

2.6. Proposition. If K is a right self-injective ring and right non-
singular over ¢ subring A, then S = sing K4 is en ideal of K under any
of the conditions:

(1} K is a central extension of A.

(2) K = A[A'] is the subring generated by A and the centralizer A" of

A K.
(3) ACC=CenkK.

Proof: Since § is a (K, A)-submodule, then S is an ideal iff SK C §.°
It suffices to prove (2), since A’ D C so K = A[C] = K = A[|A']. Also,
ACC = A=K so K = A|A'] in this case too.

(2)Ifbe A" and s € 5, then

sb(stNA)=s(stNAW=0

so sb € S, that is, S is a right A[4')-submodule of K. Then K = A[4']
implies that S is an ideal. B
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2.7. Theorem. If K is a right self-injective VNR, and a centralizing
extension of a genuine max VNE subring A, then either

(1) A is right self-injective; or else
(2) K =QLax(4)

Proof: If K = A[A'] is a centralizing extension of A, then S is an ideal
of K, hence §isa VNR ring-1. If § #£ 0, then S+ A is a VNR subring
properly A, so K = § + A by maximality of A. Thus, A4 splits in K in
mod-4 (also in A-mod), so A is injective by Proposition 2.1. If S = 0,
then Corollary 2.3 A applics. B

2.8. Corollary. If K is right self-injective, and if A is a genuine
mazimal VNR not containing all central (or centralizing) idempotents
in K, then K is ¢ VNR ring, and either A is right self-injective, or else
K =Q7.,.(A) = A+ Ae, for a central idempotent e.

Proof: Supposc that e = e? belong to the centralizer 4’ of 4 in K
but non in A. Then, since A + Ae is a regular ring by Lemma 2.5,
K = A+eA = Ale] is a central extension of 4, so the theorem applies.

3. Self-injective rings nonsingular over regular subrings

This section is mainly devoted to rings described by the section title,
but in some instances other conditions are considered, namely K flat
over a nonsingular subring A, or K Galois over regular subrings, without
assuming K nounsingular over A.

We also consider dense flat maximal subrings of self-injective rings.
If Af D N are modules over 4, and if x € M, then

(z:N)={a€ Alza € N}

is the conductor of z in N. If N is an essential submodule of M, then
(z : N) is an essential right ideal of 4. The annihilator of z in A is
(z : 0), also denoted by anng z. '

A subring A of K is left (right) essential if A C K as a left (right)

[:5:3

A-module. Otherwise A4 is left (right) inessential in K.

3.1. Lemma. If a right self-injective ring K is right nonsinguler over
a VNR subring A, then @ = Q7. (A4) embeds uniquely as a subring of K

1T,
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containing A. A sufficient condition is that A is a right or left essential
VNE subring of K.

Proof: This is essentially a theorem of R. E. Johnson (see, e.g. [F,
Chapter 8]). We give a proof here for completeness and comprehen-
sibility. By a theorem of Auslander-Harada, every (right and left) A-
module is flat (see, e.g. [F5, p. 434, Theorem 11.4]). By Lemma 2.64,
S =sing K4 is a (K, A)-submodule of K. Since SN A = § by nonsin-
gularity of A, then § = 0, when A is left or right essential in K. In this
case, K is right non-singular over 4.

Since K is (right and left) flat over A, by Theorem 1.1 then K is
injective in mod- A, hence contains an injeciive hull E(A) = E of A. We
first prove that F is the unique injective hull of A contained in K: If
F were another one. then there is an isomorphism f : B — F of A-
modules. But if x € F, the conductor of x in A is an essential right ideal
I {notation I = (z: A)) and

za = f(za) = flz)aVa el

so x — f(z) annihilates 7, hence belongs to the singular submodule
sing , K. Since K is nonsingular, then sing, K = 0,50 f(z) =z Vz € E,
hence F = F. _

Now as in [F, Chapter 8, Theorems 1 and 2], E has the structure of
the maxirmal guotient ring € = Qmax{A4), 80 it remains to show that the
ring product z -y in Q coincides with that in K forallz, y € E. To do
this if 7 the conductor of ¥ in A, then

(z-y)a = x(ya) = z(ya) = (zy)a

so0 z -y — xy annihilates an essential right ideal I, hence z -y — 2y €
sing K4 = 0. This proves that z -y = zy Vz, ¥y € £ and therefore @
embeds in K. &

3.2. Proposition. If A is a semisimple subring of a ring K, then K
is right and left nonsingular over A.

Proof: The only essential one-sided ideal of a semisimple ring 4 is A,
Since 1 € A, then both right and left A-singular A submodules of K are
zero. W

3.3A. Corollary. If K is a right self-injective ring right nonsingular
over ¢ mazrimal VN R A, then either K = Q7 (A), in which case K is
VNER, or A is right self-injective.
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Proof: K is right nonsingular over A, so @ = @, (A} embeds in X
by the theorem. However, ) is a regular right self-injective ring, so either
Q = K, or else § = A is right self-injective. M

3.3B. Corollary. If A is a right essential VNR subring of o right
self-injective ring K, then K = @, (A), hence K is Y NR.

Proof: A is right essential, hence K is a nonsingnlar right A-module,
so Lemma 3.1 applies, that is, K 2 Q7. {A4), hence X = Q7 (A). &

3.3C. Corollary. If K is a right self-injective ring right nonsingular
over a maz VNR A, and if either K is not VN R or A is right inessential,
then A is right self-injective.

Proof: In either case, K # @, hence A = ¢ by Corollary 3.3A. ®

3.3D. Corollary. Let K be right SI. If every nonzero left ideal of
K contains a nonzero cenirel idempotent then K is right nonsingular
over any right nensingular subring A containing all central idempotents,
hence the conclusions of Corellary 3.3C hold.

Proof: The right singular submodule S = sing K 4 is & left ideal of K
satisfies SN 4 = 0 since A is right nonsingular. But § # 0 implies the
existence of a central idempotent e £ { in S which viclates SN 4 =0,

If every idempotent of top K = K/J lifts to an idempotent of K, we
say that top idempotents lift. A ring K is Abelian if all idempotents are
central. B

3.3E. Theorem. If K is an Abelian self-injective ring, then a max
VNR A is continyous.

Proof: We may assume K is not VNR. By Lemma 2.5, A contains all
idempotents. By a theorem of Utumi [U1], all top idempotents of a self-
Jinjective ring lift, so A contains all idempotents of X = K /J. By Lemma
3.3D, K is nonsingular over A = A, hence contains Qrax(A) & Qmax(4),
and therefore 4 is continuous by Utumi's Theorem ((U3], [U4]}. B

3.3F. Corollary. If K is a right self-injective ring nonsingular over
a mazimal commutetive VNR A, then either K = 7, (A), or else A
s self-injective.

Proof: By Theorem 3.1, @ = Qumax(A) embeds in K. Since ¢ is
commutative VNI and self-injective, then by maximality of A4, either
K =0 or A=(Q. Since @ is 57, the latter implies that 4 is. W
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3.3G. Corollary. If K is o right SI ring thet is righi non-
singular over @ max commutative VNR A, and if either (1) K is non-
commutative or (2) K is not VNR, or (3} A is inessential, then A is
SI.

Proof: Same as Corollary 3.3C. W

3.3H. If a max commutative VNR A is right or left essential in 2
right ST ring K then K = Quax{4) is commutative.

Proof* K is right nonsingular over A by Theorem 3.3, Since 4 is
essential but #£ K, then A cannot be injective, hence A # Qumax(4) = K,
by Corollary 3.3D. B

4. Central idempotents and direct products

In this chapier we prove theorems on & maximal VNR subring A of 2
direct product K = Il,ep K,
The first result restates Theorem (I11.0) of the Introduction.

4.1. Trivial Lemma. I. If o subring A contains all central idempo-
tents of o ring K, then any direct product representation K = Il,ea Ky
induces g direct product representation A = l,en A, where A, = K NA.
(If e, is the unit element of Ky then Ag = ex4).

2. If K is VNR, then A is genuine mazx VNR in K iff there exists
B € A such that A, = K, for all o except oo = 3 and Apg 15 a genuine
maz VNR in Kp.

4.2. Theorem. Let A be a genuine max VNR of K, and let e be any
central idempotent.

(1) Ife¢ A, theneA =eK and (1 —e)A=(1—-e)K, and
Kredx(1-e)An AJ(AN{L—e)A) x AJAMeA.

{2} If e € A, then either (2o} or (2b) holds:
{2a} eK = eA, whence

K=eAx{(1-e)K
(2b) {1 —e)K =(1—e)A whence
K=eK x{1-e)A.

Morepyer, any idempotent ¢ € Ceng A 15 central.
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Proof: By Lemma 2.5, B = A 4 eA is a regular ring, hence in case
e ¢ A necessarily B = K by maximality of A. The rest of (1) is evident.

Since K # A, then either e # ed or (1 — e)K # {1 — e)4, when
e € CNA. Hence in case (1 — e)K # {1 — e)A, then by Lemma 2.5,
B = A+{(1—€)K is a V N R subring properly containing A, hence B = K,
s0 (2a) holds, and (2b) holds in the contrary case.

Now let € € Ceng A. One easily shows that By = eKe+ Aisa VNR
subring containing A4, and similarly for B; = {1 —e}K{1 — e} + A. If
By # A, then K =eKe+ A, hence (1-e){ =(1—e)Aso(1-e)Ke =0,
By symmetry eK{1 — e) = 0, so e is central. Similarly when By # A,
then 1 —e¢, whence ¢, is central, Finally By, = Bs; = A is impossible since
A#K.

4.3. Coroliary. Let A be a genuine max VNER of o VNR ring K,
and let e be a central idempotent. If e ¢ A, then K is an epic image of
A?, hence is VNR; and if e € A, then either eA or (1 —e)A is a direct
factor of K.

4.4. Theorem. If A is a genuine maximal subring of ¢ VNR ving
K. Let K = K, % Ka, and let e; denote the identity of K;, 1 = 1,2. If
onee, & A, saye; € A, thene,A=K;,i=1,2, so

{1} K=e:4 xeA

Moregver, if one hence both ¢; € 4, 1 = 1,2, then

{2a) K=e;Ax K;
or
{2b} K =K; x e A,

In (2a), e1A is a genuine max VNR of Ky, and in (2b), e24 is a
genuine max VNR of Ks.

Proof: Follows from Theorem 4.2 and the Trivial Lemma 4.1. B -

4.5. Theorem. If A is a mazimal {commutative) VNR subring of a
non-V N R ring K, then A contains all central idempotents, and moreover
all idempotents of K that centralize A.

Proof: By Lemma 2.5, B = A 4+ Ae is a VNR subring of K, hence
B = A by maximality (also In case A is a maximal commutative VN R
subring}), so € € A for all idempotents e € A’. Since 4’ 5 ¢ = cen K,
then A contains all central idempotents, B
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4.6, Corollary. If 4 is ¢ mazmal (commutative] VNR subring of
anon-VNE ring K, and if C = Cen K is generated by idempotenis then
A D C. Moreover, if A’ is generated by idempotents, then A 2 A'. In
case A is right SI, then so is A’ in the lalter case.

Proof: 1f A’ is generated by idempotents, then 4 2 A’ by the theorem.
If A is right S, then so is A’ = Cen A by the theorem of [A-S]|. B

4.7. Corollary. If A is o mazimal commutative VNER subring of a
non VNR ring K, and if A’ is generated by idempotents then A is e
mazimal commutative subring of K.

Proof: Singe A O A’ D A, then A = A’ is a maximally commutative
subring in K. M

4.8, Corollary. A commutative ring K genercted by idempotentis s
a VNR ring.

Proof: A union of VNR rings is VNR, so if we deny the theorem,
then K contains a genuine maximal ¥V N R subring A. By the corollary,
however, A contains Cen K = K. &

4.9. Corollary. If A is o mazimal commutative VNR subring of
¢ noncommutative VNR ring, and if Cen K (resp. A’} is generated by
idempotents, then A D Cen K {resp. A = A’ is a mazimal commutative
subring).

Proof: Same. K

We use the concept of a dense submodule M of a right A-module K,
equivalently, K is a rational extension of M. The condition is that

Homa(T/M,K) =0

for all submodules T of K containing M. See [L2] or [F|, [F2] for other
characterizations, and the background for the following,.

K is right torsion free over A provided that no nonzero element of K
annihilates a dense right ideal of A. When A is right nonsingular, then
a right ideal [ is dense iff [ is an essential right ideal, so torsionfreeness
is eguivalent to nonsingularity over non-singular rings.

A subring A of K is right dense if A is a dense right A-submodule of
K, and A is left flat if K is a flat left A-module.
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4.1’ Theorem. If K is e right self-injective ring and right torsionfree
over a left flat subring A then Q@ = QT (A) embeds uniguely as a subring
of K containing A.

Proof: The proof is the same mufatis mutandi as the proof of Theorem
3.1

Similarly the following corollaries are proved as the corresponding
corollaries above. B

4.83'A. Corollary. If K is a right self-injective ring torsionfree over
a left flat mazimal subring A, then either K = @, or else A = Q.

4.3'B. Corollary. If A is a right dense left flat subring of a right
self-injective ring K, then K = Q.

Coroliary 4.3'C does not have enough content to restate.

4.3'F. Corollary. If K is a right self-injective ving is right or left
torsion free over a flat moximal commutative subring A, then either K =

Q,or A=0Q.

4.3'G. Corollary. If a right self-injecitve K has a dense flai mazimal
commutative subring A, then K = @, hence K is commutative end Q is
self-injective.

4.10. Proposition. If K is a right self-injective ring, and ¥f a maz
VNR subring A conlains either a faithful left ideal L of K or a dense
right ideal I of K, then @7, (A) = K.

Proof: It £ x e K, then L £ 0, hence x AN A =0, s0 Ais a right
essential subring of K, and @7, (&) = K by Corollary 3.3B.

max
Inasmuch as K is a rational extension of [, then K = @7 (I} and it
follows that K = @7, (A). &

Note. The max VN R hypothesis is not needed in the second instance.

5. Right self-injective rings singular over regular subring

A ring K is left bounded if every essential left ideal contains an ideal;
K is left strongly bounded (= left $B) if every nonzero left ideal a
nonzere ideal. If K is both lcft and right §B, we say that K is 5B.

A simple Artinian ring K is §B, since it has no essential one-sided
ideals # K, but not left 5B since K has no non zero ideals &£ K.
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A ring K is left {right) duo if every left (right) ideal is an ideal. A
left. duo ring is thus trivially left 5B. A duo ring is both left and right
duo, hence §B. Any Abelian VN R K is duo, hence §B, since, e.g. if L
is a left ideal, and » € L, then Kz = Ke for an idempotent ¢ € Cen K.
Thus, x € Ke = eK so

sK CKx=KeCL

proving L is an ideal.

A ring K has bounded index (= BI) n provided that every nilpotent
element has index < n, but at least one has index n. Then K is a Bf
ring, on has BJ.

A VNR is unit regular {= UR) provided that for every ¢ € K there
is a unit z € K such that axe = a. Then wesay R is a UVNR ring.

A ring R is Dedekind Finite (= directly finite in [G, p. 49)) ifzy =1
for z, y € Riff yz = 1. Any Abelian VNR ring K is UR, any UVNR
ring K is DF, and any n x n full matrix ring over an Abelian, or UR,
or DF, VNR is again DF. (See |G, p. 50, prop. 5.2 and 5.3]).

If a ring K has no infinite set of orthogonal idempotents, then K is
Dedekind finite by a theorem of Jacobson (see e.g., [F6, p. 85] ff.).

5.1. Remark. If I is an ideal of a ring K, then K is VNR iff both
I and K/J is VNR. Moreover, any {lcft, right) ideal Iy of [ is a (left,
right) ideal of K.

Proof: See |G, p.2, Lemma 1.3) for the first statement. The proof
shows that if @ € I, and if aze = a for some € K, then y = zax is an
element of such that aya = a. Now let [y be, e.g., a left idcal of I, and
a € Iy. Then e = ya satisfies e2 = e € Ka, and then

ae=aya=a € Ko

so that
Ke=Ke={(Ky)aCfaC Iy,

that is, Ip is a left ideal of K. B

5.2. Proposition. Let S = Sing K4 denote the right singular sub-
module of a ring K over o right nonsingular subring A.
Then.

(1) S is o left ideal of K such that SAC S end SNA=0

(2) Ife=¢e>€ S, theneKNA=KenA=20,(l-e)A~ A, and
(1 —e)dn A s an essentiol right ideal of A.

(3) If K is injective in mod-A (e.g., if K is right self-injective, and
a flat left A-module}, then (1 — e} K contains an tnjective hull of
(1-e)d= A in mod-A.
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Proof: The singular submodule of a module is fully invariant, so S is a
(K, A)-submoduie of K since K — End K 5 cancnically. Since A is right
singular, then N4 = {, and hence KeMA4 = § and also e/ANA = 0. Since
eKNACeANnA, theneKNA=0. Thus (1 —e)A =~ A. Furthermore
(1 —e)ANA is an cssential right ideal of A since it is the annihilator in 4
of e € §. This proves (1) and {2}, and (3) follows from injective module-
theory, since, under the hypotheses, K whenee (1 ~ ) K is injective over
A, {The parenthetic assertion comes from Proposition 1.1). W

5.3. Theorem. Let K be g right self-injective VNR ring. The fol-
lowing conditions are egquivalent:

{1}y K is BI.

{(2) K is PA.

(3) K/M is ortinian for all mazimal ideals.

(4) K is isomorphic to a finite product of full maltriz rings over abelion

regular Tings.
In this case K is self-injective.

Proof: See [G, p. 79]. (1) = (2) is & theorem of Utumi, (1) = {(4) isa
theorem of Kaplansky (K], assuming all K/M have the same index, and
Armendariz-Steinberg [A-S] in the general case. (1) = (3) is a remark

of Goodearl’s (loc. cit.), and the last assertion is a theorem of Utumi
[Uz]. =

5.4. Theorem. Lei L be a right self-injective VNR ring.

(1) (Renauit) If K is Dedekind finite then: () every nonzero ideal
conlains a central idempotent.

(2) (Utuwmi [Ul})}) If K is ofso left (Rg—) self-injective then K is
Dedekind finite, hence (x) holds.

(3) (Utumi) If K is a PA, equivalently, BI ring, then K is left self-
injective, hence (%} holds.

Proof: See |G, p. 105, Theorem 9.25 and 9.29] for (1) and (2), and
[G, p. 70, Corollary 6.22] for (3). Also see op. cit., pp. 70, 79 and 109
for specific references. B

5.5. Theorem. If a right self-injective VN R ring K is right stngular
over a maxr VNR A, and if K is left strongly bounded, then A is a right
self-injective, and the right singular A-Submodule § of K is @ minimal
wdeal such that K/5 ~ A, and

K=54+A4dAand SNA=0
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Proof: By Proposition 5.2, S is a left ideal of K such that SN 4 = 0.
Let L be a nonzero ideal contained in §. Then, L is a regular ideal
and by Remark 5.1, L 4+ A is a regular ring D> Aso L+ A = K. Since
SO L,and SNA=0,then S =L+ (5N A) =L is a minimal ideal
and X = 8+ A. Since A is a direct sumnmand of K in mod-A, then A is
right self-injective by Proposition 1.1 and clearly K/S~ 4. B

5.6. Theorem. If o right SI Abelian VNR ring K is right singuler
over o maxr VNR subring A, then A is vight SI, and isomorphic o a
ring divect factor Ko of K.

K:K]_XKQXK] x A
where K, the singular right A-submodule of K is a skew field.

Proof: K is Abelian, hence 5B, hence Theorem 5.5 applics 4 is a right
SI,and K1 N A =0, where K| = sing K4 is a (K, A)-submodule of K.
Since K is Abelian, hence duo, then every one-sided ideal of K is an
ideal. By Thecrem 3.3, K; is a minimal ideal of K, and by Remark 5.1,
every (left, right) ideal I of K is a (lefi, right) ideal of K, hence I = K.
This shows that K, is a skew field.

Moreover, if e = €2 € K, is a nonzero idempotent, then e is central
and

Ki=eK =Ke=eKe
splits off of K as a ring factor:
K= Kl hd Kz

where K; = (1 - e}K. Now, since K/K; = A by Theorem 5.5, then
Ky == A as rings, in fact since Ky, N A =0, then eAn A =0, hence

Ko={l-e)K=(1-e)4= A
Finally, by Theorem 5.3, both K and 4 are 2-sided S/ ®

Max K denotes the set of maximal ideals of K.

5.7. Theorem. Let A be a genuine mazimal VN R subring of directly
finite right self-injective VN R ring K.
(1) If A contains a mazimal ideal M of K, then A/M is a genuine
mazimel VN R subring of a simple right self-injective VNER ring
K/M.
(2) Otherwise
K — HM,,EmaxKKXMa = HG,A/(AHJM'&)

subdirect

t.e., K 15 tsomorphic to a subdirect product of simple homomor-
phic images of A.
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Proof: Theorem 9.32 of [G] implies K /M is right SI, so (1) is evident.
If (1) fails, then M, is a regular ideal ¢ A, hence by Remark 5.1, K =
A+ M, € MaxK. By Corollary 9.26 of [G], necessarily NaA4 = 0,
hence K is a subdirect product as stated. M

Note. Corollary 8.26 is a consequence of a theorem of F. Maeda. See
notes, p. 109 of [G], where also the origin of Theorem $.32 is sketched.

6. Open Questions

There are many open problems associated with max VNR subrings
of rings, and this paper barely scratches the surface. Here are sample
questions.

Does Menal's Theorem hold for the general context of Menal’s General
Theorem 1.77 Namely, is A or B algebraic over k, if A®, B is 87 (or
VNR)?

Can Theorem 5.6 be extended to a full n x n matrix K = R, over
a right 57 Abclian VN R ring R, i.e., if K is right-singular over a max
V NR subring A, is A necessarily SI? If so, is A isomorphic to a ring
direct factor of K7

What is the Galois Theory for ST VN R subrings of a VN R right ST
ring X7

By Proposition 1.1, the invariant or Galois subring 4 = K7 is also
right ST whenever K is split-flat over A, If || = n is a unit, then A is
SI, when 4K is flat, e.g. when A is VN R (Corollary 1.2A). This and
Corollary 1.2B generalizes the theorem of A. Page [P].

7. Pere Menal i Brufal: A Memento

It would be impossible to fully express in this brief space the debts of
friendship, both personal and mathematical, that I owe to the late Pere
Menal.

It all began in 1981 when I wrote to Pere about his work [M] that I
discussed in the Abstract on algebraic regular rings in connection with
tensor preducts. He expressed amazement and delight that it was con-
necied with the Hilbert Nullstellensatz.

After some years of correspondence, we began contemplating an al-
gebra semester under the auspices of Manuel Castellet’s CRM, and we
went on to organize one in Spring 1986; another much larger conference
foliowed in Fall 1989.

Much creative mathematics flowed out of these conferences, particu-
laxly the theorem of Pere Menal and Peter Vamos [M-V] that realized
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a three decades-old dream of ring theory: an embedding of any ring in
an F P-injectve ring!.

In the 1989 semester, Pere and 1 collaborated on a problem that eluded
us individually for many years, and we finally found that what we were
looking for: “A counter-example to a conjecture of Johus” which just ap-
peared in the Proceedings of the American Mathematical Society {1992).

These are just two of the myriad collaborations that Pere Menal had
with others: Jaume Moncasi, Pere Ara, Claudi Busqué, Ferran Cedd,
Dolors Herbera, Rosa Camps (his talented students and colleagues) and
Brian Hartley, Warren Dicks, Kenneth Goodearl, the aforementioned
Peter Vamos, Boris Vaserstein (to mention but a few of his intense in-
teractions with others).

In particular, Pere’s paper with Dolors Herbera [H-M], Ferran Cedd
paper [C], Dolors Herbera's paper with Poobhalan Pillay [H-P], and
her Doctoral Thesis at U.A B., each greatly advanced our knowledge on
subjects taken up in seminars during these conferences.

I am grateful that [ happened to write to Pere back in 1881; otherwise,
I might never have met this noble and gentle genius of Cataluaya, who
became an inspiration to so many.

Wherever Pere is now, I like to think that he is continuing his work
that he left here on earth. and collaborating with the Great One.
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