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THE DETERMINATION OF
ABELIAN HALL SUBGROUPS BY A
CONJUGACY CLASS STRUCTURE

WOLFGANG KIMMERLE AND ROBERT SANDLING

Pere Menal in memoriam

Abstract

The object of the article is to show that a Jordan-Hoider class
struclure of a finite group determines abelian Hall subgroups of
the group up to isomorphism. The proof uses the classification of
the finite simple groups.

A conjugacy class structure on a group captures information about its
normal subsets, for example, that which is deducible from its character
table or from its integral group ring. Various such structures were in-
troduced in [KS] and used there to draw conclusions about the group
previously investigated only using the character table or the integral
group ring.

The most basic class structure considered was a Jordan-Hélder class
structure, one which captures the poset of normal subscts of a group,
records their sizes, indicates which normal subsets arc normal subgroups
and which are the preimages of the conjugacy classes of its guotient
groups.

It was shown in [KS] that such a class structure determines the chief
factors of a group. More technically, groups &7 and G+ have the same chief
factors if they are in class correspondence of type JH, that is, if there is
a bijective correspondence between them preserving normal subsets and
their assumed properties. (More formal definitions are available in our
carlier paper.)

It was also shown that the isomorphism type of an abelian Sylow
subgroup is determined by a class structure of type JH, and that of
an abelian Hall subgroup by a stronger class structure (namely, one in
which the set of primes involved in the orders of the elements in conjugacy
classes is also posited). In this paper, this extra hypothesis is removed
to give the following.
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Main Theorem. A Jordan-Holder class structure defermines abelion
Holl subgroups up to isomorphism.

It should be noted that the resnlts of our carlier paper are dependent
on the classification of the finite simple groups. Apart from building on
our earlier results, this paper makes further invocations of the classifica-
tion.

Our collaboration on the topic of abelian Sylow and Hall sabgroups
was a direct consequence of the second author’s participation [San] in
the 1986 ring theory conference in Granada in which Pere Menal played
a prominent role,

We begin the proof of our theorem by fixing some notation. The
groups (¢ and G* will be assumed to be in class correspondence of type
JH with # being used to denocte the bijection {on subsets and subgroups
as well as on elements). We assume that, for a fixed set 7 of primes, G
has abelian Hall #-subgroups. We must show that G+ also has abelian
Hall w-subgroups and that they are isomorphic to those of ¢. By our
result on abelian Sylow subgroups. it suffices to show that G+ has Hall
m-subgroups and that they are abelian {or merely nilpotent).

The proof of the determination of abelian Hall w-subgroups when
|7| = 2 is more elaborate than that for abelian Sylow subgroups. One
reason for this is the absence of a direct analogue for groups with abelian
Hall m-subgroups of the criterion [KS, 2.1] for detecting abelian Sy-
low subgroups. This can be seen from the group obtained by extend-
ing Lo{7%) by the cyclic group Cs acting as field automorphisms (here
w = {3,5}}). (Contrast the behaviour of Sylow subgroups as seen in the
Proposition below with that of Hall subgroups.)

Under a class correspondence of type JH, the orders of z and zx
need not coincide (viz., the quaternion and dihedral groups of order 8).
This renders subgroups like O™ (G}, gencrated by all m-elements of G,
less useful than they would be if orders were preserved as they are by
stronger class correspondences {see [KS|). In their place, we use the
following characteristic subgroup of a group.

Definition. Let Z be a group and p a set of primes. Define C,(Z)
as the subgroup generated by 2ll z in Z for which |Z : Cz(x)| is a
o -number, where Cz{z) denotes the centralizer of z in 2.

Under a class correspondence of type JIH, Cr{Gx) = Cx(G)*. Note,
in addition, that, if G has abelian Hall m-subgroups, then they are all
contained in C,(G); it follows from a theorem of Wiclandt [Suz, 5.3.2
that O™ (@) < C.(G).

In the proof of Theorem 2.1 of [K8], elements normalising cach simple
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factor of each perfect minimal normal subgroup of a group were exam-
ined. For the determination of abelian Hall subgroups, such clements
play a more prominent role which is made more explicit in the following
definition of the characteristic subgroup K (G} which they comprise. If
the group G has a unique minimal normal subgroup and this subgroup is
nonabelian (5o that G is cmbedded in a wreath product [Rose, p.223]},
K (G) is the intersection of G with the base group of the wreath product.

Definition. The characteristic subgroup K(G) of G is defined as the
intersection of all Ng(8) where § is a nonabelian simple subgroup of G
which is normal in Soc &, the socle of G.

For a nonabelian minimal normal subgroup M of G, let
K (G mod Cg(M)) denote the inverse image in G of K(G/Ce(M)). It is
easy to see that K (G mod Cg(M)) is the intersection of all Ng(5), § a
simple subgroup of G normal in M. If follows that K(G) is the inter-
section of all such K(G mod Cs(M)). The definition of K(G) is similar
to that of McBride's K{G) [McB, p.217], and the two subgroups coin-
cide in the case, important here in reduction arguments, where G has a
unique and nonabelian minimal normal subgroup.

One well-known consequence of the classification of the finite simplc
groups which was used in [KS] is needed again here, and is stated for
the reader’s convenience (cf. [GL, 7.10]).

Proposition. Let § be a simple group of order divisible by a prime
p. If X is o subgroup of Aut S in which § < X and p divides the index
of § in X, then X has nonabelian Sylow p-subgroups.

The determination of abelian Hall subgroups is accomplished through
a series of reduction steps (cf. the proof of the main theorem). They lead
to the following situation which is exploited in the subsequent lemmas.

Lemma 1. Suppose that

(i) G has abelian Hall m-subgroups;
{it) each minimal normal subgroup M of G has order divisible by some
privme n w;
(iil) each mainimal normal subgroup M of G 15 nonabelian.
Then Cr(G) < K(G) and C,(G+} < K(G*).

Proof: For the first conclusion, it suffices to show that C.{(G} <
K{(G mod Cg{M)) for each minimal normal subgroup M of G. Let z
be an element of G for which |G : Cg(z)| is a #’-number. By (ii), there
is some p € 7 for which M contains nontrivial Sylow p-subgroups. Let
P be a Sylow p-subgroup of G contained in Cg(z). Then PN M is a



688 W. KIMMERLE, R. SANDLING

nontrivial Sylow p-subgroup of M. It follows that, if S is a simple sub-
group of & normal in M, then z fixes a nontrivial element of 5. Thus,
z € Na(5), which suffices.

The second conclusion follows in a similar way using the result from
[KS] that each minimal normal subgroup M= of G+ is isomorphic to
such a subgroup of G (namely M} so that parts {ii} and (iil} apply to
M ®

While Soe G+ = (Soc G)* and is isomorphic to SocG by [KS] in this
case, we do not know whether similar statements hold for K(G) (for
example, under part (iil) above). Were such statements true, the deter-
mination of abelian Hall subgroups would be accomplished at this point.
In their stead, we turn to a closer examination of two guestions: when
does a group X, § < X < Aut S for a simple group S, have an abelian
Hall subgroup? How can this be recognised using properties detoctable
under a class correspondence of type JH?

Suppose that & has the unigue minimal normal subgroup M, M =~ 5%,
for the nonabelian simple group S; then ¢ may be identified with a sub-
group of Aut 5® which is a wreath product of Aut S and the symmetric
group of degree a. As remarked, K(G) is the intersection of G with the
base group {Aut 5}*. In fact, therc is a subgroup X of Aut S, namely
the image of Ng(5)/Ce(S), for which K(G) is 2 subgroup of X2 whose
projection {o each component is surjective.

The next two lemmas enable us to determine the isomorphism type
of an abelian Hall subgroup of X* on the basis of information deducible
under a class correspondence of type JH. It will be convenient to use
two items of standard notation involving a set p of primes and a group
Z :)Z|, for the p -part of the order of Z and Z, for a Hall p-subgroup
of Z. The first of the lemnmas makes another appeal to the classification
of finitc simple groups.

Lemma 2. Let § be o finite simple group and let Y be a subgroup of
Aut S containing S. Let k be a divisor of |Y| which is relatively prime
to |S|. Then'Y has a unique conjugacy class of subgroups of order b and
these subgroups are eyclic.

Proof: For alternating and sporadic groups, whose outer automor-
phism groups are 2-groups, the statement is vacuous. Cyclic simple
groups have cyclic outer automorphism groups so the lemma is straight-
forward.

For a simple group S of Lie type, only a field automorphism has order
relatively prime to |S| {sce, for example, [McB, Lemma 4.1]). Let o
be the set of prime divisors of k. Now Out S has a cyclic subgroup
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(of field automorphisms) which contains a cyclic Hall o-subgroup. As
Out § is soluble, Y/§ contains a cyclic Hall o-subgroup, and so ¥ does
as well. By the theorem of Wielandt cited earlier, all Hall o-subgroups
of Y are conjugate and every subgroup of order k is contained in a Hall
o-subgroup so that these subgroups are also conjugate in Y. H

Lemma 3. Let S be o finite simple group. Suppose that X and YV
are subgroups of Aut S contatning S and thet [X|x = |Yix. Then X has
abelion Holl m-subgroups if end only if Y does; if X» and Yr are abelian
Hall m-subgroups of X and Y respectively, then X, and Y, are conjugate
in Aut 5.

Proof- Let 0 =7 — w(8) and let k = |X|, = |Y|s. Suppose that X,
is an abelian Hall 7m-subgroup of X. By the Proposition, |X : S| = &.
By Lemma 2, X, = S,C where S = 5N X, and where C is cyclic of
order k. Lemms 2 also shows that ¥ has a subgroup D of order & and
that there is an sutomorphism a € Aut S such that D = €. It follows
that X=~ is a Hall w-subgroup of ¥. That all such Hall m-subgroups are
conjugate in Y follows from the previously cited theorem of Wielandt.
Thus, X, and Y, are conjugate in Aut S, W

Proof of Main Theorem: Recall that our object is to show that Gx
has an abelian Hall m-subgroup. We may assume that On(G) =
1 = On(G#). Note that O™ (G¥) = O™ (G)+, as O™ (G} < Cu(G),
O™ (C)x < Crp{G)x = Cr(G#) so that C,(G#) contains all m-elements of
G*.

By induction, we may assume that any proper quotient of G+ has
abelian Hall w-subgroups. We may also assume that G and G+ are not
simple by [KS]. Let M be a minimal normal subgroup of G so that
G /M= has an abclian Hall m-subgroup. As M» &~ M, M also has an
ahelian Hall w-subgroup. By the theorem of Wielandt cited above and 2
theorem of Hall [Suz, 5.3.12], G has a Hall m-subgroup. By our carlier
Sylow result, each Sylow p-subgroup for p € 7 is abelian; it remains to
show that a Hall #-subgroup is itself abelian. As its image in any proper
quotient of G+ is abelian, we may assume that M+ is the unique minimal
normal subgroup of G+ and thus that A{ is the same in G.

If M and M+ are abelian, then, for some p € 7, they are {elementary
abelian) p-groups. For zx € G» such that |Gx : Cg.{z*)| is 7', M+ <
Ce.(z+). As these elements generate Cr{G*), M» centralises Cr(G*)
whence M* commutes with all w-elements of G=, Thus M is a central
subgroup of each Hall 7-subgroup of G*.

Let Hr be a Hall m-subgroup of G*. By induction, I +/M+ has an
abelian Hall o-subgroup L*/M* for o = w — {p}. As Mx is of coprime
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index in L#*, it has a complement K'x which is an abelian Hall ¢-subgroup
of G«. Let P be a Sylow p-subgroup of G+ contained in Hx. As
M= < P, K* normalises P+. Moreover, K stabiliscs the normal series
Px > M+ > 1 so that K« centralises P [Suz, 4.1.13]. Thus Hx is
abelian as required.

Suppose, then, that M and M are nonabelian. By Lemma 1, K(G)
containg all Hall m-subgroups of G. As described above, K{G) is iso-
morphic to a subgroup of X* where M =~ 5%, § < X < Aut S, K(G)
projects onto each direct factor X and X has abelian Hall m-subgronps.

In a similar manner K{G'«) is isomorphic to a subgroup of Y¢ where
Mr = M= 5% 5 <Y < Aut S and K(G+) projects onto each direct
factor Y. By Lemma 1, C5(Gx) < K(G+). But Cr(G*) = Cr(G)*
and |Gl. = |[Cr(G)|x so that K(Gx), being normal, contains a Hall
m-subgroup of Gx. We show that it is abelian by proving that Y has
abelian Hall w-subgroups. For this, it suffices by Lemma. 3 to show that
Xl = [¥n.

For each p € 7w Nw{S), X and Y have abelian Sylow p-subgroups, in
the latter case because Y is the image of K{(G'*) which has abelian Sylow
p-subgroups. By the Proposition, X, and ¥, are contained in S so that
|X|p = |S|p = [Y],.

It remains to show that |X|, = |Y|, for ¢ = # — n(S5). By Lemma
2, X, is cyclic so that |X|, = expX,. As K(G)} < X° and as K(G)
projects onto X, exp X, = exp K{G),. Also, exp K{G), = cxpG, =
exp{G/M), since o Nw{M} is empty.

As in the previous case G/M and G+/M+ have isomorphic abelian
Hall o-subgroups so that exp{G/M}, = exp(G+/M=+),. As before,
exp(Gx/M+), = expG*, = exp K{G*),. Finally, Y has cyclic Hall
g-subgroups by Lemma 2 and again exp K(G%), = exp Y, = |Y|,. Trac-
ing through the equalities, we conclude that | X|, = |Y|, as required. ®

It may be possible to recognise whether a group has nilpotent Halt
subgroups under a class correspondence of type JH. The proof above
in the M abclian case, or an easy argnment using the Fitting subgroup,
provides the following result as evidence.

Proposition. A cless correspondence of type JH determines whether
or not Hall subgroups of a soluble group are nilpotent.
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