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A bstract

THE DETERMINATION OF
ABELIAN HALL SUBGROUPS BY A
CONJUGACY CLASS STRUCTURE

WOLFGANG KIMMERLE AND ROBERT SANDLING

Pere Menal in memoriam

The object of the article is to show that a Jordan-H&lder class
structure of a finite group determines abelian Hall subgroups of
the group up to isomorphism . The proof uses the classification of
the finite simple groups .

A conjugacy class structure on a group captures information about its
normal subsets, for example, that which is deducible from its character
table or from its integral group ring . Various such structures were in-
troduced in [KS] and used there to draw conclusions about the group
previously investigated only using the character table or the integral
group ring .
The most basic class structure considered was a Jordan-Hdlder class

structure, one which captures the poset of normal subsets of a group,
records their sizes, indicates which normal subsets are normal subgroups
and which are the preimages of the conjugacy classes of its quotient
groups .

It was shown in [KS] that such a class structure determines the chief
factors of a group . More technically, groups G and G* have the same chief
factors if they are in class correspondence of type JH, that is, if there is
a bijective correspondence between them preserving normal subsets and
their assumed properties . (More formal definitions are available in our
earlier paper.)

It was also shown that the isomorphism type of an abelian Sylow
subgroup is determined by a class structure of type JH, and that of
an abelian Hall subgroup by a stronger class structure (namely, one in
which the set of primes involved in the orders ofthe elements in conjugacy
classes is also posited) . In this paper, this extra hypothesis is removed
to give the following .
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Main Theorem . A Jordan-Hólder class structure determines abelian
Hall subgroups up to isomorphism .

It should be notad that the results of our earlier paper are dependent
on the classification of the finite simple groups . Apart from building on
our earlier results, this paper makes further invocations of the classifica-
tion .
Our collaboration on the topic of abelian Sylow and Hall subgroups

was a direct consequence of the second author's participation [San] in
the 1986 ring theory conference in Granada in which Pere Menal played
a prominent role .
We begin the proof of our theorem by fixing some notation . The

groups G and G* will be assumed to be in class correspondence of type
JH with * being used to denote the bijection (on subsets and subgroups
as well as on elements) . We assume that, for a fixed set 7r of primes, G
has abelian Hall 7r-subgroups . We must show that G* also has abelian
Hall 7r-subgroups and that they are isomorphic to those of G . By our
result on abelian Sylow subgroups, it suffices to show that G* has Hall
7r-subgroups and that they are abelian (or merely nilpotent) .
The proof of the determination of abelian Hall 7r-subgroups when

17ri >_ 2 is more elaborate than that for abelian Sylow subgroups . One
reason for this is the absence of a direct analogue for groups with abelian
Hall 7r-subgroups of the criterion [KS, 2 .1] for detecting abelian Sy-
low subgroups. This can be seen from the group obtained by extend-
ing L2(75) by the cyclic group C5 acting as field automorphisms (here
7r = {3, 5}) . (Contrast the behaviour of Sylow subgroups as seen in the
Proposition below with that of Hall subgroups .)
Under a class correspondence of type JH, the orders of x and x*

need not coincide (viz ., the quaternion and dihedral groups of order 8) .
This renders subgroups like 0"(G), generated by all 7r-elements of G,
less useful than they would be if orders were preservad as they are by
stronger class correspondences (sea [KS]) . In their place, we use the
following characteristic subgroup of a group .
Definition . Let Z be a group and p a set of primas . Define Cp (Z)

as the subgroup generated by all x in Z for which IZ : CZ (x) j is a
p'-number, where CZ(x) denotes the centralizar of x in Z.
Under a class correspondence of type JH, Ci,(G*) = C, r (G)* . Note,

in addition, that, if G has abelian Hall 7r-subgroups, then they are all
contained in C, (G) ; it follows from a theorem of Wielandt [Suz, 5.3 .2]
that 0-'(G) < C, (G) .

In the proof of Theorem 2 .1 of [KS], elements normalising each simple
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factor of each perfect minimal normal subgroup of a group were exam-
ined . For the determination of abelian Hall subgroups, such elements
play a more prominent role which is made more explicit in the following
definition of the characteristic subgroup K(G) which they comprise . If
the group G has a unique minimal normal subgroup and this subgroup is
nonabelian (so that G is embedded in a wreath product [Rose, p.223]),
K(G) is the intersection ofGwith the base group of the wreath product .

Definition. The characteristic subgroup K(G) of G is defined as the
intersection of all NG(S) where S is a nonabelian simple subgroup of G
which is normal in Soc G, the socle of G.

For a nonabelian minimal normal subgroup M of G, let
K(GmodCG(M)) denote the inverse image in G of K(G/CG(M)) . It is
easy to see that K(GmodCG(M)) is the intersection of all NG(S), S a
simple subgroup of G normal in M. If follows that K(G) is the inter-
section of all such K(GmodCG(M)). The definition of K(G) is similar
to that of McBride's k(G) [McB, p.217], and the two subgroups coin-
cide in the case, important here in reduction arguments, where G has a
unique and nonabelian minimal normal subgroup .
One well-known consequence of the classification of the finite simple

groups which was used in [KS] is needed again here, and is stated for
the reader's convenience (cf. [GL, 7.10]) .

Proposition . Let S be a simple group of order divisible by a prime
p . IfX is a subgroup of Aut S in which S <_ X and p divides the index
of S in X, then X has nonabelian Sylow p-subgroups.

The determination of abelian Hall subgroups is accomplished through
a series of reduction steps (cf. the proof of the main theorem) . They lead
to the following situation which is exploited in the subsequent lemmas .

(i) G has abelian Hall 7r-subgroups;
(ii) each minimal normal subgroup M ofG has order divisible by some

prime in 7r ;
(iii) each minimal normal subgroup M of G is nonabelian.

Then C� (G) < K(G) and C� (G*) < K(G*) .

Proof.. For the first conclusion, it suffices to show that C� (G) _<
K(GmodCG(M)) for each minimal normal subgroup M of G . Let x
be an element of G for which IG : CG(x)j is a 7r'-number . By (ii), there
is some p E n for which M contains nontrivial Sylow p-subgroups . Let
P be a Sylow p-subgroup of G contained in CG(x). Then P n M is a
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nontrivial Sylow p-subgroup of M . It follows that, if S is a simple sub-
group of G normal in M, then x fixes a nontrivial element of S. Thus,
x E NG(S), which suffices .
The second conclusion follows in a similar way using the result from

[KS] that each minimal normal subgroup M* of G* is isomorphic to
such a subgroup of G (namely M) so that parts (ii) and (iii) apply to
M* .

While Soc G* = (Soc G) * and is isomorphic to SocG by [KS] in this
case, we do not know whether similar statements hold for K(G) (for
example, under part (iii) above) . Were such statements true, the deter-
mination of abelian Hall subgroups would be accomplished at this point .
In their stead, we turn to a closer examination of two questions : when
does a group X, S <_ X <_ Aut S for a simple group S, have an abelian
Hall subgroup? How can this be recognised using properties detestable
under a class correspondence of type JH?
Suppose that G has the unique minimal normal subgroup M, M~ Sa,

for the nonabelian simple group S; then G may be identified with a sub-
group of Aut S' which is a wreath product of Aut S and the symmetric
group of degree a . As remarked, K(G) is the intersection of G with the
base group (Aut S)a . In fact, there is a subgroup X of Aut S, namely
the image of NG(S)/CG(S), for which K(G) is a subgroup of Xa whose
projection to each component is surjective .
The next two lemmas enable us to determine the isomorphism type

of an abelian Hall subgroup of Xa on the basis of information deducible
under a class correspondence of type JH. It will be convenient to use
two items of standard notation involving a set p of prrmms and a group
Z : ¡Zl p for the p -part of the order of Z and Zp for a Hall p-subgroup
of Z. The first of the lemmas makes another appeal to the classification
of finite simple groups .

Lemma 2. Let S be a finite simple group and let Y be a subgroup of
Aut S containing S. Let k be a divisor of ¡Y¡ which is relatively prime
to ¡Si . Then Y has a unique conjugacy class of subgroups of order k and
these subgroups are cyclic .

Proof.. For alternating and sporadic groups, whose outer automor-
phism groups are 2-groups, the statement is vacuous . Cyclic simple
groups have cyclic outer automorphism groups so the lemma is straight-
forward .
For a simple group S of Lie type, only a field automorphism has order

relatively prime to 151 (see, for example, [MeB, Lemma 4.1]) . Let o,
be the set of prime divisors of k .

	

Now Out S has a cyclic subgroup
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(of field automorphisms) which contains a cyclic Hall Q-subgroup . As
Out S is soluble, Y/S contains a cyclic Hall Q-subgroup, and so Y does
as well . By the theorem of Wielandt cited earlier, all Hall v-subgroups
of Y are conjugate and every subgroup of order k is contained in a Hall
u-subgroup so that these subgroups are also conjugate in Y .

Lemma 3. Let S be a finite simple group . Suppose that X and Y
are subgroups of Aut S containing S and that IX I, = ¡Y¡, . Then X has
abelian Hall 7r-subgroups if and only if Y does ; if X,r and Y, are abelian
Hall 7r-subgroups of X and Y respectively, then X, and Y, are conjugate
in Aut S .

Proof. Let u = 7r - 7r(S) and let k = IXIo = ¡Y¡, . Suppose that X,
is an abelian Hall 7r-subgroup of X . By the Proposition, IX : Si = k .
By Lemma 2, X, = S~C where S, = S n X,r and where C is cyclic of
order k . Lemma 2 also shows that Y has a subgroup D of order k and
that there is an automorphism a E Aut S such that D = Ca . It follows
that Xa~ is a Hall 7r-subgroup of Y. That all such Hall 7r-subgroups are
conjugate in Y follows from the previously cited theorem of Wielandt .
Thus, X, and Y, are conjugate in Aut S .

Proof of Main Theorem : Recall that our object is to show that G*
has an abelian Hall 7r-subgroup . We may assume that 0, , (G) =
1 = O,r , (G*) . Note that 07"(G*) = 0"'(G)* ; as 0"'(G) < C, (G),
0" (G)* <_ C,,(G)* = C,, (G*) so that C,(G*) contains all 7r-elements of
G* .
By induction, we may assume that any proper quotient of G* has

abelian Hall 7r-subgroups . We may also assume that G and G* are not
simple by [KS] . Let M be a minimal normal subgroup of G so that
G*1M* has an abelian Hall 7r-subgroup . As M* ~:d M, M* also has an
abelian Hall 7r-subgroup . By the theorem of Wielandt cited above and a
theorem of Hall [Suz, 5.3.12], G* has a Hall 7r-subgroup . By our earlier
Sylow result, each Sylow p-subgroup for p E 7r is abelian ; it remains to
show that a Hall 7r-subgroup is itself abelian . As its image in any proper
quotient of G* is abelian, we may assume that M* is the unique minimal
normal subgroup of G* and thus that M is the same in G .

If M and M* are abelian, then, for some p E 7r, they are (elementary
abelian) p-groups . For x* E G* such that IG* : CG* (x*)j is 7r', M* <_
CG* (x*) . As these elements generate C,r (G*), M* centralises C,(G*)
whence M* commutes with all 7r-elements of G* . Thus M* is a central
subgroup of each Hall 7r-subgroup of G* .

Let H* be a Hall 7r-subgroup of G* . By induction, H*/M* has an
abelian Hall Q-subgroup L*/M* for u = 7r - {p} . As M* is of coprime
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index in L*, it has a complement K* which is an abelian Hall Q-subgroup
of G* . Let P* be a Sylow p-subgroup of G* contained in H* . As
M* <_ P*, K* normalises P*. Moreover, K* stabilises the normal series
P* > M* >_ 1 so that K* centralises P* [Suz, 4.1 .13] . Thus H* is
abelian as required .

Suppose, then, that M and M* are nonabelian . By Lemma 1, K(G)
contains all Hall 7r-subgroups of G . As described above, K(G) is iso-
morphic to a subgroup of X' where M .z ; S°, S < X <_ Aut S, K(G)
projects onto each direct factor X and X has abelian Hall 7r-subgroups .

In a similar manner K(G*) is isomorphic to a subgroup of Y° where
M* ti M zt~ S°, S _< Y <_ Aut S and K(G*) projects onto each direct
factor Y. By Lemma 1, C,r (G*) _< K(G*). But C,(G*) = C,(G)*
and IGI, = IC,(G)j, so that K(G*), being normal, contains a Hall
7r-subgroup of G* . We show that it is abelian by proving that Y has
abelian Hall 7r-subgroups . For this, it suffices by Lemma 3 to show that
IXI71 = IYL11 .

For each p E n n 7r(S), X and Y have abelian Sylow p-subgroups, in
the latter case because Y is the image of K(G*) which has abelian Sylow
p-subgroups . By the Proposition, Xp and Yp are contained in S so that
Ap = I SIp = Mp .

It remains to show that IXI, = jY1, for u = 7r - 7r(S) . By Lemma
2, XQ is cyclic so that IXw = expXQ. As K(G) _< X' and as K(G)
projects onto X, exp XQ = exp K(G) Q. Also, exp K(G) o = exp GQ =
exp(G/M)a since u n 7r(M) is empty.

As in the previous case G/M and G*/M* have isomorphic abelian
Hall v-subgroups so that exp(G/M)Q = exp(G*/M*)Q . As before,
exp(G*/M*)o = exp G*a = exp K(G*)Q . Finally, Y has cyclic Hall
o ,-subgroups by Lemma 2 and again exp K(G*)Q = exp Y, = ¡Y j, . Trac-
ing through the equalities, we conclude that IX IQ = ¡Y¡, as required .

It may be possible to recognise whether a group has nilpotent Hall
subgroups under a class correspondence of type JH. The proof above
in the M abelian case, or an easy argument using the Fitting subgroup,
provides the following result as evidente .

Proposition . A class correspondence of type JH determines whether
or not Hall subgroups of a soluble group are nilpotent .
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