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COHOMOLOGIE LOCALE DE CERTAINS
ANNEAUX AUSLANDER-GORENSTEIN

MARIE-PAULE MALLIAVIN

Dédié & lo mémoire de Pere Menal

Abstract

We give axiomalic conditions in order to caleulate the local co-
homology of some idempotent kernel functors. The resulis lie on
some new dimension introduced by 1. Lovassewr for Auslander-
Gorenstein rings. Under some hypothesis, we gencralize previous
result.

Nous donnons ici des conditions aussi axiomatigues que possible pour
calculer la cohomologice locale de certains foucteurs noyaux idempoternts.

Les résultats reposent sur la découverte récente faite par T. Levasseur
d'une dimension pour les anneaux appelés Auslander-Gorenstein et qui
sont des généralisations naturclles des anneaux de Gorenstein commu-
tatifs.

En imposant & cette dimension de satisfaire un certain nombre
d’hypothéses on retrouve certains des résultats de [B.M] et (Ma2).

1. Généralités

Soit 4 un anneau. Sauf mention du contraire, tous les A-modules sont
des modnles & gauche. On notera Mod A la catégorie des A-modules
& gauche et par Mody A la sous-catégorie des modules de type fini.
On notera, lorsque cela sera nécessaire, par Mod®(A) et Mod}{(/i) les
catégories correspondantes de A-modules & droite. On notera 4 M ou
M 4 pour indiquer que M est un A-module & gauche ou a droite. Cette
notation sera utilisée surtout dans le cas olt A est un A-bimodule.

L'anncau A cst dit neethérien s'il est noethérien a gauche et & droite.
Tous les anncaux qui interviendrount seront noethériens.
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Soit oM (resp. Ma) un A-module. Un élément a € 4 est dit non
diviseur de 2€éro dans M si ez =0, x € M, entraine z = 0 {resp. za =0
entraine x = 0). Si M est un bimodule et si & € A est non diviseur de
zéro dans 4 M (resp. M4) on dit que a est non diviseur de zéro & gauche
(resp. & droite) dans M. Si ¢ est non diviseur de zéro & gauche et 3
droite dans A on dit que a est non diviseur de zéro. Par exemple, si 4
est noethérien et premier et si /' est un idéal bilatére de A non nul, f
contient un non diviseur de zéro.

Soit M un A-module, on notera dha M la dimension homologique de
M et inj.dimg M la dimension injective de M. On dire que A est de
dimension homologique globale finie si la dimension homologique globale
de 4 A et celle de A 4 sont finies; elles sont alors égales car A est noethe-
rien [A]. On notera alors gldim A4 la dimension homologique globale de
A. On dira que A est de dimension injective finie si les moduies 4 A ot
Aa sont de dimension injective finies; elles sont alors égales Z)], car A
est noetherien.

Si M est un A-module & gauche, on appelle grade de A4 ot on note
Ja(M} (ou (M) si aucune confusion peut en résulter) le nombre entier
naturel ou +oco défini par:

Ja(M) = Inf{i, Exty{M, A) £ 0}.

On a évidemment 74((0}) = +00. St M est un A-module & droite on
utilisera la notation j4 (M) ou j¢(M) pour le grade de M. On a toujours
Fa{M} < dha{M) pour M # 0 et siinj.dim{A) = z < oo on a de fagon
evidente j4 (M} < p pour tout A-module non nul M. On a les propriéiés
analogues pour j4,

2. Conditions d’Auslander.
Anneau Auslander-Gorenstein et dimension

Les definitions suivantes se trouvent dans [BJ2], [Bj-Ek], [Ek]. [Le2].
2.1. Définition. Soit 4 un anneau noethérien. Un A-module & droite
ou & gauche de type fini M satisfait le condition d’Auslander si quel que
soit ¢ = 0 on a j4(N) > ¢ pour tout A-sous-module N de type fini de
Extd{M, A).
2.2. Définition. L’anneav noethérien est dit Auslonder-Gorenstein
(resp. Auslander régulier) de dimension p si
1) inj.dim 4 = p < oo {resp. gldim A = 1 < o0},
2) chaque A-module & droite ou & gauche de type fini satisfait la
condition d'Auslander.
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11 est clair qu’un anneau Auslander régulier cst Auslander-Gorenstein.
Dans Particle [F.G.R.] les anncaux Auslander-Gorenstein de dimension
injective p sont appelés anneaux u-Gorenstein. La condition d’ Auslander
dans Pariicle précédemrment cité est étudiéc dans le contexte plus général
de certaines catégories additives. Diantre part il résulte de {Ba] qu’un
anneau conimutatif nocthérien de dimension injective finie est Auslander-
Gorenstein, ceci n’est pas vrai dans l¢ cas non commutatif comme le
montre un exemple de I. Reiten {Re, Exemple 2.4.6].

Si A est un anneau Auslander régulier (resp, Auslander-Gorenstein) et
S est un systéme de Ore A droite et & gauche de A, alors Panneau des frac-
tions S™' A est aussi Auslander régulier (resp. Auslander-Gorenstein);
en effet si M (resp. N) est un A-module & gauche (resp. A droite}
les $='A-modules d droite Bxtl (M, A)S™! et Exth . 4(S71M, 571 A)
sont isomorphes ainsi que les §~ ' A-modules & gauche 57! Ext’ (N, A)
et Exth_, ,(NS~1,571A).

Le plus souvent les anneaux Auslander réguliers sont des anneaux
positivement fAltrés dont le gradué associé est un anncau de polyndmes.
Tel est les cas de Palgébre de Weyl d’indice n sur un corps, ou de P'algtbre
enveloppante 'une algébre de Lie ¢ de dimension finie sur un corps.
Plus généralement si R est une A-algébre qui est un anneau Auslander
régulier (resp. Auslander-Gorenstein) et si g est une k-algébre de Lie de
dimension finie opérant sur R par k-dérivations, Ualgébre R+ T/ (g) [Mc-
Ro] est elle-méme Auslander régulicre (resp. Auslander-Gorenstein).

2.3. Le résultat principal dans 1'étude des anneaux de Auslander-
Clorenstein est contenu dans le résultat snivant dont la preuve peut étre
trouvée dans [Lel] et qui généralise des résultats antérieurs de [Bj1].

Théoréme. Soit A un anneay noethérien el que p = inj . dim A < 0.
Soit M un élémeni de Modf(A).

(a) Il eziste une suite specirale convergente dans Mod(A), soit
ERT(M) := Ext? (Ext®, (M, A), A) = H'™(M)

ou HP~4(M) = 0 sip # q et HO(M) = M. Il en résulte une
filtration finie sur M, appelée la b-filiration qui est de la forme

0y=F*H'MCPMC- - CRMCF'M=M
{b) si A est Auslander-Gorenstein on a des suites exacles

FPA

0= Friar

— EPTHM) — Q(p) — 0
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oup=0,1,...,u et ou Q(p) est un sous-quotient de

p={p+1} Fitl :
2 Ext® T HExtETH (M, A), A)

(c} les constructions précedentes sont fonctorielles en M.

Remarque. Si M est un A-bimodule, on peut appliquer le théoréme
A 4M ot d’aprés le point (c) il résulte que la b-filtration de M est
formée de sous-bimodules de M, que les suites exactes établies en (b) sout
des suites exactes de bimodules. Cependant on prendra garde que, par
exemple, la b filtration pour 4 M n'a ancune raison de coincider en général
avec la b-filtration pour M4. De méme les modules Q(p) apparaissant
pour 4 M ne sont pas nécessairement identiques 4 ceux apparaissant
pour M 4. On pourralt aussi déduire la remarque précédente d'une étude
détaillée de la preuve du théaréme 2.3.

2.4. Le théoréme suivant est le résultat 1.8 de [Bj2]:

Théoréme. Soit A un annear Auslander-Gorensiein. 5i0 — M —
M — M7 — 0 est une suile exacte de A-module de type fini & gauche on
a ja(M) =Inf{7a(M’), 54(M")} et le méme résultat est vrai pour une
suite ezacte de A-modules & droite.

2.5. Par analogie avee certaines propri¢tés des dimensions, J.E. Bjsrk
introduit [Bjl] la définition suivante:

Définition. Soient A un anneau noethérien et M un A-module A
gauche de type fini non nul. Le module M est dit pursi Pon a j4(N) =
Fa(M) pour tous les sous-modules non nuls N de Af. Lorsque d = j4 (M)
on précise en disant que M est d-pur.

Cn a alors le théoréme suivant dont on pourra trouver la preuve dans
[Bj2], [Lel], [Bj-EkK] et [Li-Hul:

Théoréme. Soient A un anneou Auslender-Gorenstein, M un A-
module de type fint non nul, d le grade de M. Alors

(2) Ext% (M, A) est d-pur (la démonstration de ce fait est die & R.
Fossum); en particulier Ext% (Extd (A, A), A) # 0.

(b) Si Ext?) (Exth, (M, A), A) est non nul, c’est un module pur,

(¢} Le module M est pur si el seulemnent si Exth (Exth (M, A), A) =
pour chague p # d.

(d} FPM est le plus grand sous-module X de M tel que le grode de
X est = p.

(e) d =sup{p, M = FPM}.
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Remarque. On peut démontrer directement & partir du théoreme
2.5(d) quesi M est un bimodule, F? M esl, pour tout p, un sous-bimodule
de M. En effet soit a € A; alors (FPAM )a est image homomorphe du
A-module & gauche FPAM; donc d'aprés 2.4, ja(FPM) est inférieur &
Fa|(FPM)al. Par le théoréme précédent, il vient (FPMla S FPM.

2.6. On trouvera dans [Le2, Thim. 4.2] la preuve du théoreme suivant:

Théoreme. Soient A wun annecu Auslonder-Gorensiein et M €
Mod;(A) avec ja{M) > n. Soit (M;)ien une suile décroissante de sous-
modides de M. Alovs i existe g € N tel que (M /M) 2 n -+ 1 pour
tous les ¢ tels gue 1 > q.

Corollaire. §i M est un module & gauche de type find sur un an-
nean Auslander-Gorenstein A el si ¢ € Enda(M) est injectif elors
A(M/@(M) > ja(M) +1.

Preuve: On considére la suite décroissante de sous-modules {¢* (M) hen
. . .. 1 F i41 y .
el on a pour toud 7 un isomorphisme évident ;“%%JL} — i, (j::;), puisquer
@ est injectif. Done d’apres le théoreme J(%) >iM)+1. m

Ce corollaire est démontré de facon plus générale en 4.3 de [Le2|.

2.7. On trouvera dans [Le2] la définition et la preuve de la proposition
suivanfe:

Définition. Soit 4 un anneau Auslander-Gorenstein de dimension g
On définit la dimension de M € Mod; A par §(M) = pp—3(M). Puisque
H{M)=0,1,...,p0ucco,onad(M)=0,1, .., on —c0.

Proposition. La fonction § : Mod; A — {0,..., p, —0c} posséde les
propriéiés suivantes:

(1) 6(0) = —o0.

(i) S0 — M — M — M” - 0 est une suite de A-modules & gauche
de type fing, on a §(M) = sup{&{M"), 6{(M")}.

(iil) St P est un idéal premier de A et M est un A P-module ¢ geuche
de type fini et de lorsion, alors §{M) < 6(A/P) - 1.

(iv) Si M =My D My D - DM D ... estune chaine de sous-
modules, alors §(Mi/Mip) < §(M) — 1 pour @ suffisemment
grand.

Ces propriétés resseniblent fort & la définition abstraite donnée par
A. Joseph (Application de la théorie des anneaux aux algtbres envelop-
pantes, Cours de 3e cycle, 1981, Paris V1) & P'exception de deux pro-
priétés sur les quelles nous reviendrons plus tard, & savoir que §{(M) =
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—oo si et seulement, i M = 0 et §(M) = 0 si et seulement si M est un
A-module non nul de longueur finie. Les propriétés (i), (i), (iii), (iv)
et les deux propriétés supplémentaires sont vérifiées par la dimension
de Krull et la dimension de Gelfand-Kirillov (pour les algébres sur des
corps), lorsque cette derniére est partitive.

Si A est un anneau commutatif Gorenstein de pure dimension, § est
la dimension de Krull classique de A.

Si A est I'algébre enveloppante d'une algébre de Lie résoluble de di-
mension finie sur un corps & de caractéristique nulle, § cst la dirnension
de Gelfand-Kirillov sur k.

Définition. On a une définition analogue & la précédente pour les
modules & droite de type fini que Pon notera pour la différencier §7.

Remarque. A l'aide de é, le résultat du théoréme 2.3 et 2.5 peut
étre interprété comune suit. Posons d = ja(M), §(M) = s = pn — d.
Le sous-module FPM est le plus grand sous-module X de M tel que
§(X) < p—p. Le module Ext} (M, A) est 12 — s pur. On a des suites
exactes fonctorielles

FPAL
—_—
Frtlpg

0 — Extfj‘ (Exti(ﬂ/f, A), A) — Q(p) —— 0

ot Ext (Ext% (M, A), A) est, soit nul soit p-pur et §{Q(p)) < p - p — 2.
2.8. Définition. Un A-module M € Mod’ A non nul est dit eritique

si Pon a 6(M/N) £ 6{M) pour chaque sous-module non nul ¥ de M.

Si 6(M) = s on dit alors que M est s-critique ct ccci est équivalent i

JM/N) > ja(M) = g — s pour tout sous-module non nul ¥ de M.

Proposition [Mc-Ro, 6.2.10]. Tout module non nul de type fini M
possede un sous-module critique.

Preuve: On raisonne par 'absurde et I'on suppose qu’il existe un cn-
tier n > 0 et un module M, §{M) = n, n’admettant pas de sous-module
critique. D'aprés la propriété 2.7{ii) on peut trouver une chaine stricte-
ment décroissante M = Mg 2 M, 2 ... de sous-modules de M tels que
B(M) = 8(M;) = §{M;/ M1} ce qui contredit 2.7(iv).

2.9. Le résultat suivant est bien connu pour la dimension de Gelfand-
Kirillov. La preuve est la méme ici.

Proposition. Supposons la dimension § idéal-invariante, c’est-d-dive
que pour tout A-module de type fini M et tout idéal bilatére T de A, on a
S(I@a M) < 8(M). Alors si M est un module critique, son annulateur
est premier.
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Preuve: Soit P = Anng(M) et soit [ et .J deux idéaux bilatéres de 4
tels que IJ C P. De lapplication surjective naturelle IQ 4 M/JM — IM
vésulte par 2.7(ii) que s(IM) £ 8(1 84 j—‘L - Puis par idéal-invariance
S(I®@a _ﬁ"—i) < §(-25). Done 8§(1M) < §(-44). Comme M est critique,
ou bien JM =0et.J C Poubien JM # 0. Donc §(M/JM) S §(M) et .
S(IM) S (M. Done par 2.7(ii) 6(M) = 5(),—‘“‘;—(,) et done IM = 0. Dol
ICP m

3. La résolution injective minimale de
certains anneaux Auslander-Gorenstein

Dans toute la suite on considérera des idéaux bilateres P de A et des
bimodules correspondants M = A/P. Pour le calcul de Ext?, (M, A)
on utilisera la structure de A-module & gauche sur M et on mettra
sur Exth (M, A) la structure de A/P-A-bimodule, A-moduie a droite
provenant de la structure A4 et %—module a gauche provenant My, p.
On calculera ExLﬁ(ExtL{M,A),A} pour la structure de A-module
droite de Ext’y (M, A).

3.1. Lemme. Soient A un annean Auslander-Gorenstein de dumnen-
sion injective p, P wn ideal premier de A, M = A/ P et j(M)} = d. Alors
ona M = FIM et FEYM = (0); en particulier M est d-pur.

Preuve: Dapres 2.5(e) on a M = F*'M ey daprés 2.5(a} Ext4
(Extfl(M,A),A) est non nul; il est donc d-pur. On en déduit que
FFIM/FHIM) = d = j(M). Si FHU{M) n'éait pas nul, ii existerait
un idéal bilatere / de A contenant strictement £ tel que F@HIM = I/P.
L'idéal bilatére I/P de 'armeau noethérien A/FP contiendrait un non
diviseur de zéro. Donc 8{A/1) < §{A/P)— 1< §(A/P). On obtiendrait
la contradiction

M FAp
§ ("—FdHM) =6 (THM) S 8(M)=68(A/P). B

3.2. Les deux théorémes suivants sont essentiellement démontrés dans
[Mal]:

Théoreme. Soit A un annean Auslonder-Govenstein de dimension
injective p. On suppose la dimension § idéal-invariante. Soit P un idéal
complétement premier de A, M = AJP el ja(M) = d. Seit Fr{A/P) le
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corps des froctions de A/ P. Alors le I'r{A/P) espace vectoriel & gauche
Fr(A/P)®a Exté (Ext} (M, A), A) est de dimension 1.

Preuve: Considérons la suite exacte de A-bimodules
0 — M — Ext4(Ext (M, A), A) — Q(d) — 0

ou §(Q(d}) < 8{M) -2 d'aprés la remarque 2.7. D’apres la propriété (ii)
de 2.7, on a, en posant Q(d) = Fas = 4®.4Q(d), Q) < 6(Q(4) §
6(A/P). 11 résulte de 2.7(1i} que chague sous-module & gauche monogéne
de Q{d) est de la forme A/T ot I est un idéal & gauche de A contenant
strictement P. On a donc cn posant § = (A/PI\{0}, §°'Q(d) = (0).
Posons V; = Ext®(Ext® (M, A), A) ct tensorisons la suite exacte de A-
modules & gauche

0~—M—V; — Qd) — 0 par A/P.
On oblient la suite exacte de A/P-modules 3 gauche
Tor (A/P,Q(d)) — A/P — V; — Q(d) — 0

ou on a posé Vy = V,;/PV,.
On décompose la suite précédente en les trois suites exactes

(1) Tor{' (A/P,Q(d)) — J/P — 0
0 — J/P — AJP —s A}J — 0
(3) 00— Af — Vg — Q(d) — 0

on J est un idéal & gauche de A contenant P.
Montrons gue J coincide avee P. En eflet si ou avait J 3 P, il
résulterait de 2.7(iii) que
8(A/J) S 6(A/P) - 15 86(A/P).
Tensorisant la suite exacte de A-modules & droite
0— P — A— A/P—Q(

par Q(if), on obtient

0 — Tor(A/P,Q(d)) — P®4 Qd) — Q(d) — Q) — 0.
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D’aprés 2.7(ii) on a
5(Tor{ (A/P, Q(d)) < 6(F ®4 Q(d))
et en raison de Vidéal-invariance de §, on a
§(P @4 Q(d)) < 8(QUd)) 5 6(A/P).
D’aprés la suite exacte (1) et en appliquant 2.7(ii) on a
§(.J/P) < 8(Tor{ (AP, Q(d)).

1l résulte de tout ceci que §(J/P) S 6(A/P).
La suite exacte (2} et la partitivité de § (cf. 2.7(ii)} donne

8(A/P) = sup(8(J/ P), §(AJ.T)).
En utilisant los inégalités §(A/J) S §(A/P) et 6(J/P) & 6{A/P) on
arrive & une contradiction.
On a done démontré que J = P. La suite exacte (3) devient
00— A/P — Vy — Q{d) — 0.
En appliquant 57! & cette suite, ot § = (4, P)\{0}, on obtient
0 — Fr{4/P) — 57V, — S~'Q(d) — 0.

Comme S§™1Q(d) = 0, il vient

- A
FriA/P)=8§"'Vy=Fr (F) 84 Vu=
= Fr(A/P) ®4 Exth (Ext? (M, A), A),

qui est 'isomorphisme cherché. W

3.3. On va étendre la dimension §; & tout A-module & gauche non
néeessairement de type fini en posant

8, (V) = sup{8,(Q)}

ol @ parcourt les sous-modules de type fini de N. Il est clair d’apres
2.7(i1) que &,{N) = 6(N) si N cst de type fini.
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Définition. On dira qu'un idéal premier P de A est d-modéré d
gauche si pour d = j{A/P) on a pour toul > d,

5,(Exts (A/P, 4)) £ 6(A/P).

11 est clair que si x = d, tout idéal premier de A est g-modéré a gauche
car alors pour i > u '

Exty (A/P, A) = 0 donc 8,(Exty(A/P, A)) = ~co.

Remarque. St A est une algébre sur un corps k. il résulte de [Len,
Lemnie 2] que si § est la GK-dimension de A4, alors tout idéal premier
de A est modéré & pauche.

3.4. Définition. Solent A un annean noecthérien, P un idéal
complétement premier de A. On notera p;{P, A) ¢t on appellera 3¢
mwarient de Bass de A la dimension sur le corps gauche Fr{A/P) de
Pespace vectoriel

Fr{A/P) @4/p Ext},(A/P, A).

Théoréeme. Soient A un annean Auslonder-Gorenslein de dimension
injective u, P un idéal complétement premier de A, d le grade du A-
module & gauche M := AfP. On a alors

(i) pa(P,A)# O et (P, AY=0s115d,
(ii) 5% P est d-modéré & gouche on a j;(P, A} = 0 pouri # d.

Preuve: Posons S = (A/P)\{0}, K = Fr(A/P).

(i) On a évidemment je;(P, A) = 0 si i < d puisque Exty,{A/P, A} =0
pour ¢ < d. Montrons que pg{P, A) # 0. Pour cela raisonnons par
'absurde; supposons que ug{P, A) = 0 et arrivons a une contradiction

K @4 Ext$ (M, A) = 51 Ext% (M, A) =0.

En tant que A-medule & droite, le bimodule Ext% (M, A) est de type fini;
donc il existe s € A\P tel que s Ext%{M, A} = 0. La multipfication &
gauche par s dans Extjﬁ_ (M, A) provient de la multiplication & droite par s
dans M = A/P. Mais P étant complétement premier, la multiplication
a droite par ¢ dans A/P conduit 4 une suite exacte de A-modules A
gauche.

. A
AP S App
0 [P —= AP — 5 ‘
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d’on la suite exacte de A-modules & droite
Ext4(A/P + As, A) — Ext(A/P, A) =5 Exty (A/P, A).

Dlapres 2.7(iii) on a 8(A/P + As) S 6(A/P) = pu—d  Donc
Exti{, (AP 4 As, A) = 0 el la multiplication & gauche par s est injective;
comme s Lixt4 (A/P, A) =0, on a Exth (A/P, A) =0, ce qui contredit la
définition de d.

(ii) Supposons P modéré a gauche et ¢ > d et notons Ny le —‘f-l,-A-
bimodule Ext? (M, A). Alors 6,(N;) S 6(A/P). Par suite chaque sous-
module monogéne Q de 4, p(N;) est tel que 6(Q) S 6(A/P). Comme @
est isomorphe & A/ ot T est un idéal & gauche de A contenant P, cet
idéal contient strictement P. Done, puisque P est complétement premier,
§71Q = 0. Il en vésulte que S™'N; = (0) cest-a-dirc p;(F, A)=0. |

Remarques. 1) Pour un idéal complétement premier, la condition de
maodération a gauche est équivalente au fait que (P, A) = 0 pour ¢ £ d
olt d = §(A/P). En clfet si ¢ < i et S™1 Exty(A/ P, A) = 0, alors pour
rout sous-module monogéne @ du A/ P-module & gauche Ext} (A/P, A)
onaS71Q =0. Donc @ ~ A/F o1  est un idéal & gauche de A contenant,
strictement P. Par 2.7(1i), on a 6,(Q) < d et donc b, (Exty (A/ P, 4)) <
S{A/P).

2) Si A est le localisé cn une clique d’unc algebre enveloppante dune
algebre de Lic résoluble de dimension finie alors (A} est la dimension de
Krull de A {¢f. [Br]) et tout idéal (maximal) de A est modéré & gauche
pour la dimension K-dimA — j(M) .1l ne devrait pas étre difficile de
démontrer que pour tout A-module A gauche M de type fini de A on a
K-dimM = K-dim A — (M) mais ceci est vrai pour un module de la
forme A/ P ot PP est un idéal maximal et, par récurrence sur la longueur,
on le démontre pour tout A-module de longueur finie.

3.5. On supposera que l'annean A est Auslander-Gorenstein, que
la dimension § est idéal-invariante que tous les idéaux premiers de A
sont compldtement premiers el wmodérés A gauche, Comme 'anncau
A est noethérien, chaque A-module (A gauche) injectif est somme di-
recte d'injectifs indécomposables ([Str., V.4.5]). Un A-module injec-
tif incdécomposable est de la forme E{X), enveloppe injective d'un A-
module §-criticque X olt Anng(X) = P est premier; ceci résulte du fait
que les injectifs indécomposables sont, uniformes et que chaque module
non nul contient un sous-module d-critique dont Pannulateur est premier,
car § est supposé idéal-invariante. Alors ou bien le module X est sans
torsion comme A/P-module anquel cas X est isomorphe 4 un idéal &
gauche du domaine A/ P, puisque £ est supposé complétement premier
et Von & E{X)} = E(A/P); ou bien X est un A/P-module de torsion.
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Finalement sous les hypothéses précédentes, tout A-module injectif est

delaforme BET@ET o E'= ® v(P)E(A/P), les v{P) étant des
PeSpec(A)

cardinaux ct ol EY! est P'enveloppe injective d*une somme de modules
&-critiques chacun d'eux étant de torsion modulo son annuiateur.

En particulier ceci s’applique aux termes Ei{i = 0,1,...,p4) de la
résolution injective minimale de 4 A et il est clair que u; (P, A) est le car-
dinal (P) défini dans la décomposition de E/ en facteur irréductibles; en
effet puisque Hom(A/ P, @v(P}A/P) ~ &v(PYA/P, isomorphisme de
A/ P-modules a gauche, il résulte de la définition des groupes Ext4(—, A)
en terme de la résolution injective de 44, que (P, A) est exactement
le rang uniforme maximal d'un A/ P-sous-module sans torsion du mod-
ule & gauche Ext}(A/P, A). On a donc la généralisation suivante d’un
résultat de [Matl].

Théoréme. Soient A un anneau Auslender-Gorenstein, dont la di-
mensgion § est idéal-invariante el dont tous les idéoux premiers sont
complétement premiers el modérés & gauche. Alors la résolution injective
minimale du A-module 4 4 est de la forme

0—A—E —E —. .. —E,—0
ot E; = El @ E/ ovec B = ® v(P)E(A/P) et ot El! est
PESpec(A)
A/ P)=n

Venveloppe injective d’une somme de modules d-critiqgues, chacun d'eux
étant de torsion modulo son annulateur.

3.6. Dans ce paragraphe nous utiliserons une forme affaiblie du
théoréme 3.5 et qui se démontre de maniere analogue.

Théoréme. Soient A un annesu Auslander-Gorenstein de dimension
injective p dont tout idéal premier de grade o est complélement premier.
On suppose que la dimension § est idéal-invarianie. Alors le dernier
temre de la résolution injective minimale de 44 est E, = E; & .Eﬂf
o El= @ w(P)E(A/P) et od E]! est 'enveloppe injective d'une

PeSpec(A)

A/ P=p
sornme de modules d-critiques, chacun d’euz élant de torsion modulo son
annulateur.

3.7. Les paragraphes 3.5 et 3.6 ne donnent aucune information sur
las invariants de Bass v(FP). Cependant il existe des cas ot 'on sait que
v{P} = 1. c’est en prenter lien celui des anneaux commutatifs Goren-
stein [Ba] et en second celui des algébres enveloppantes des algébres de
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Lic résolubles de dimension fnic sur un corps de caractéristique nulle
(Ma1l. Ce dernier résultat a été retrouvé par unc autre démonstration
utilisant la, localisation en des cliques (Br-Le].

4. Cohomologie locale de
certains anneaux Auslander-Gorenstein

4.1. Dans tout ce paragraphe A designera un anneau noethérien sur
lequel nous ferons les hypothéses (A), (B) et (C) suivantes.

(A) Tout idéal & gnuche mazimal de A est bilulére (et cuidemment
mazimal). Un caleul évident montre alors que tont idéal maximal
cst complétement premier.

(B) La famille F des idéauz bilatéres co-artinicns de A est une
famille d’Artin-Rees ¢ gauche, un idéal I co-artinien étant tel
que Panneau A/7 est artinien. Il n'est pas nécessaire de préciser
si idéal est co-artinien & droite ou & gauche puisque A est
noethérien & droite et A gauche,

Remarquons que F est la famille des idéaux bilatéres de A qui contien-
nent un produit d’'idéaux bilatéres maximaux. Rappclons qu’une famille
d’idéaux bilateres est dite d’Artin-Rees a gauche si elle vérilie:

a) SiJ € Fet I CJonJest un ideal bilatére de A, alors J & F.

b) Si f et J € F alors le produit {J appartient a F.

¢) 8i A est nn A-medule & gauche de type finl et M un sous-A-
module de N, si I € F, il oxiste J € F tel que JNN M C IM.

Les propriétés (A) et (B) sont vérifides si A est Palgébre enveloppante
d’une algebre de Lie résoluble de dimension finie sur un corps de car-
actéristique nulle [B.M] ou si A est le localisé d'une telle algébre en une
clique [MaZ2].

On notera o le foncteur noyau idempotent symétrique correspondant
ala famille F, dest-d-dire o = m Homu(A/I,—). Tl vésulte de [He-Ve,

}_
Proposition 2] et de [Ve, Proposition 5.8} que o est stable, ¢’est-a-dire
que la classe I1, des A-medules de o-torsion est ferinde par enveloppe
injective.
On notera Mod?;, la sous-catégorie pleinc et épaisse de mod{._ cdont les
ohjets sout les A-modules dont Pannulateur appartient & F.
La. derniérc hypothése que I'on mettra sur lanncau A est la suivante:

(C) Lamnean A est Auslander-Gorenstein, & est idéni-invarianie; on
a §(M) = 0 si ei senlement si M est de longueur finie non nul;
st 6(M) = ~00 alors M = (0); cette derniére condition est triv-
ialement vérifide si A est Auslander régulier.
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4.2. On démontre comimne dans la proposition 2.11 de {B.M] le résultat
suivant:

Proposition. Soit A un anneav vérifiant les condilions de 4.1 et soit
#¢ la dimension injective de A. On pose T = Extj(—, A). Alors T
est naturcllement équivalent sur la cotégorie Mod?, & Homa(—, E) ow
E = lim Extf (A/I, A). De plus E est un A-module ¢ gauche injectif.
F

Si on note H la cohomologic locale relative 4 o, on a done H*{A) = E.

On veut montrer que sous les hypothéses de 4.1, E apparait comme le
dernier terme de la résolution injective mninimale du A-medule & ganche
aA.

4.3. Lemme. Seoit T un idéal bilatére co-artinien de A. Alors on a

Hom4(A/], E’[‘:I) =0 pouwr tout g =0,..., .

Preuve: N suffit de vérifier que Homa(A/1, #) = (0) pour tout facteur
indécomposable H de E‘(‘:‘, Raisonnons par Pabsurde et supposons que
z soit un élément non nul de H annulé par 1. Alors Az C H = E(Azx) et
Az =~ AfJ, ol J est un idéal & gauche de A contenant I donc co-artinien.
Quitle & remplacer Az par un sous-module simple qu’il contient, on peut
supposer I'tdéal J maximal & ganche. Dene par la condition (A), J est
bilatere et on a H =~ E{A/.J) ot J est un idéal maximal bilatére ce qui
contredit le fait que H C E}/. &

Corollaire. 5iJ est un idéal ¢ gouche co-artinien de A, on ¢
HomA(A/J,E;") =0 pourg=0,...,u

Preuve: On raisonne par récurrence sur la longueur de A/J en par-
tant du cas de longuenr 1 donné par le letnme 4.3. Le module A/J
posséde une suite de composition dont les factcurs sont isomorphes
a des A/P; ot F; sont des idéaux bilatéres maximaux de A. Soit
0C Hy € Hy C - C Hy = A/J une telle suite. D'aprés le lemme,
s'il existait un homomorphisme f : A/J — E!' alors f scrait nul sur A
et par hypothése de récurrence serait nul sur H,/H;. Done f =0. &

4.4. Lemme. Chaque élément de E;: est annulé por un idéal co-
artinien de A,

Preuve: On a Ex{ = & w(P)E(A/FP). 11 suffit de montrer que
PeSpec{A)
P omax{
chaque élément de £(A/£) est annulé pat un idéal co-artinien de A. Soit
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z € BF(A/P); M = A/P est un A-module a gauche simple essentiel dans
E{A/PY), done M C Az. Puisque Anna(M} =P € F, il existe J € F
tel que JAzNM C PM = (0}). Comme M est essentiel dans Az, on a
J Az = (0), c’est-a-dire Jz =0 avec J co-artinien. @

Corollaire. On a El = lim Homa (A/1, El).
f
4.5. Le lemme suivant est adapté de la proposition 5.4 de [B.M].

Lemme. Soient B un nnneau premier, 1 un idéel bilatere de B tel
gue Homg(B/{,B) = 0. S0t 0 — B — Ey — E| — ... une
résolulion ingective minimole du B-module gB. Soit 1 € N tel gue
Homp(B/I,E;) # 0. Alovs le grade du B-module & gauche BT est
< 4.

Preuve: Supposons que U'on alt E-xtjg(B/l, B) = 0 pour tout j < 1.
Montrons par récurrence sur & que Hompg(8/I, E;.} cst nul pour tout £ <
. Puisque Hompg(B/I, B) = 0, il en résulte que Homp(B/I. £y) = 0.
En effet si z € Kp\{0} vérific {2 = 0 on considere un élément o € B tel
que 0 # ax € Beton lor =20 Dol ar =0, ce qui est la contradiction
cherchée. Supposons i > 1 et soit 0 < & < i tel que Homp(B/{, Ex) soit
nul. Montrons qu'il en est de méme de Homp(B/1. Exy). A partir des
smtes exactes

i, \ diy)
By =5 ey — Ergo

on obtient les suites exactes
Bl
HOITIB(B/!, Ek) ic-* HD‘I‘I]B(,B/JFT Ek+1) i I‘IO]T‘IB(B/I, Ek_;.g).

Comme & + 1 < i, on a par hypothdse Extit'(B/1,B) = 0; d’ott I'on
déduit ker §,., = (0). Considérons les suites exactes

Il
0 — ker dk_}.] — Ek+1 i; E)H_g

0 ~— Homp(B/I, kerdyi) ~——
Bri1

— HOI‘I‘lB(Bff,Ek_l_l) — I‘IOIHB(B/I,E;;+2).

On a0 = kerdpyy = Homp{B/J kerfiy1). D'ou, puisque Ey., est
Veneloppe injective du B-module ker §x41, 0 = Homg{B/J, Ei41). B
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4.6. Théoréme. Soit A un annean premier vérifiant les conditions
(A), (B) el (C) et E; = lei®*™° terme de le résolution injective minimale
du A-module 4 A. Alors EJ! = (0) et E] = lim Extg(A/1, A) = HE(A).

fer

Preuve: 1Yaprés 4.2, lim Extfi(A/T, A} = E est un A-module injec-
teF
tif et T = Iixt4(—, A) est naturellement équivalent & Homua(—, BE) sur
Mod?.

On remarque d’abord que si M est un A-module & gauche artinien alors
Hom4{M, Ep) = 0sip £ p. En effet par un argument de récurrence sur
la longueur de Af on se raméne au cas oit M est simple. En effet si
Homa(M, £,) =051 p S p lorsque M est simple alors 0 — M" — M —
M’ — 0, {M"y < I{M) et M’ simple, d'on

0 — Homa(M', E,}) =0 — Homu{M, E,) —
— Homy(M", E,) =0 — 0.

Alors M = A/J ou J est un idéal bilatére co-artinien par (A). On a
J(M) = o car §(M) = 0. Done Homa{#, A) = 0. 1l suffit d’appliquer
4.5. On a alors le résultat car si Hom 4 (M, E;) est non nul alors j{M) <2
done ¢ = .

Les foncteurs de Moda dans A, Extfi(—, A) = T et Homa(—, E,,)/
Im{Hom (-, E,_1)) sont isomorphes. Puisquec si M € z\flodjf, on
a Homa(M,E,_1) = 0, sur la catégoric Modi, les fonctewrs T et
Homa(—, £,) sont isomorphes et pour tout idéal bilatére J co-artinien,
les A-modules & gauche T'(A/J) et Homa({A4/J, I5,) sont isomorphes.
Par syite imT(A/J) ~ lim Homa(A/J. E,) et donc I est isomorphe

ier reF

& lim Homu(A/J,E,.} = lim Homa(A/J, E) © lim Homa(A/J, E[).
JeF JeF JeF
D’aprés 4.3, on a que £ est isomorphe a 11__11} Homa(A/J, B},{) ¢’est-a~

JeF
dire & £} d'aprés le corollaire 4.4.

Montrons a présent que pour Lout sous-module M de type fini de
El! on a Exti (M, A) = 0. Raisonnons par 'absurde et supposons que
Q = Exty (M, A) # 0. Puisque Ext’y(Exti (M, A), A) = 0si 4 < p,
I'anneau A étant Auslander-Gorenstein, il résulte du fait que @ %# 0 que
Fon a Extf (@, A) # 0. En effet si Ext’{Q, A) = 0 pour tout v on aurait
8(Q) = —oo et donc @ = 0, d'apres (C). Alors Ext/) (Ext’y (M, A), A) est
un A-module & gauche non nul de longueur finie, puisque son § est nul.
Il est isomorphe & F*Ad, ce qui résulte du théoréme 2.3(b). Il existe
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done un homomorphisme non ! f @ FHA — EJY ce qui contredit le

corollaire 4.3.

i f
f

Soit Fa{A/1) une composante non nulle de £/, & supposer qu'elle
existe, of { est un idéal & gauche de A, D'aprés ce qui précede on a
Exty (A/f, A) = 0. Si B,y P5' E, — 0 est la demitre Hiche de la
résclution injective minimale de 4, Vapplication Homa(A/1, B, 1) -
Homa(A/T, E,) qui en résulte est surjective, puisque le conoyau
Exthi(A/1, A) est mil. Done il existe un homomorphisme [ @ A/f —
Ea1, tel que p—j o [ soit Iidentité sur A/1 et, par suite, f est injectif.
Comme ker p,, - est essentiel dans By, onaalors Imf Nkerpy,— # 0, ce
qui consredit le fait que py,—y o f est Uidentité sur Afl. Donc E},{" =0 u
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