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Abstract

In this paper we characterize commutative rings with fnite di-
mensicnal classical ring of quotients. To illustrate the diversity
of behavior of these rings we examine the case of local rings and
FPF rings. Our results extend earlier work on rings with zero-
dimensional rings of quotients.

In this paper we show how the structure of Spec_ (A) = {P{P ¢
Spec(A), height () < n and P C the zero divisors of A} determines
the Krull dimension of the classical ring of quotients of a commutative
ring A(Qu(A)). Our results extend those of [H].

In the following all rings are commutative with unit. We let D(F) =
{P € Spec(A)|P  F} whenever F is a subset of A. We also set D™ (F) =
D(F)NSpec,, (A). The proof of our first result is a reformulation of 1 < 2
of Theorem 2.1 of [H].

Theorem 1.
If A is a commutative ring the following are equivalent
1) Dim(Qa(A)) < n.
2} &) Spec,(A) is compact in the Zariski topology
b) if o finitely generated ideal I C U Pthenin fact I C
PeSpec, {A)
P for some P € Spec, (A4).
¢} Zd(A) = zero divisors of A = U P
PeSpec, (A)
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Proof:

1 = 2. This follows casily from the fact that in this case Spec, (A}
can be identified with Spec({Q{A)).

2 = 1. Let @ = Qu(4). If dim{Q} > n choose a prime P € Spec,, (@)
with height (P) > n then PN A O Py with height (£)) = n. Choose z4 €

PNA—Fy. We have Spec, (A) = D™ (zo)U| U D™x) ]. Choose a finite
e Py

kil T

sub cover. Say Spec,(A) = D*{(zo) U (U D“(mg)), then J = > Az, is
i=l1 i=0

not contained in any prime consisting of zero divisors with height < n.

Hence J ¢ J P and thus J contains a regular element. And so
PeBpec, (A}
J@ =@ but JQ C P which is a contradiction., R

We now give an application to local rings. A ring is local if it has a
unique maximal ideal. We do net require any Noetherian hypothesis.
The following result uses a prime avoidance result due to Sharp and
Vamos [S&V].

Corollary 1.

If (A, M) is o local ring with uncountable residue field and if Spec, (A)
is countable then the following are equivalent

1) Dim{Qq(A4)) £ n.
2) a) Spec,(A) is compact.
b) Zd(A) = U P

PeSpec,(A)

Proof:
We show that if [ is a finitely generated ideal then I C lJ P=
PeSpes, (A)
I € P for some P € Spec,(A). This follows from Proposition 2.5 of
[S&V]: Let z,...,2x generate I and choose an uncountable family
{ux}, » € A such that u; — t, is a unit when XA # . This is possi-
ble because A/M is uncountable. For each A € A let

ya =2 Furte + -+ (u).}k_lmk elIcC U P
PeSpec {A)

Since Spec,(A) is countable and A is uncountable there is an infinite
subset of A for which y, € F for some Py in Spec, {A). Thus there is a
set Ay, ..., Ax with yx,, ..., ¥, € Po. The k X k matrix B = ((uy,)"1)
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has determinant which is a unit of A (it is a Vandermonde determinant)
and thus B is invertible. We have
(%) Bz, ...,z)T = (s, )

Now applying B~! to both sides of () we find that z; € Py for ¢ =
I,....,kandso/CF N

Note that this result continues to hold whenever Card{A/M) >
Card(Spec,(A4)).

In another direction we now consider FPF (finitely pseudo Frobenius)
rings. A ring A is FPF if each finitely generated faithful A-module
generates the category of modules over A. Faith |F| has shown that the
following are eguivalent:

1) A is FPF.
2) &) QalA) is self injective.
b} each finitely generated faithful ideal of A is projective.

In the following for a ring A we let 4 denote the structure sheaf of
A. Also if § C Spec(A) then I'{5,O) denotes the ring of sections of O
defined over S. Our purpose in the next result is to show that FPF rings
with finite dimensional classical ring of quotients enjoy an important
property first observed by Deligne: Rings of quotients are often egual to
rings of sections. We first became aware of this idea through Lazard [L].
Proofs and additional results along these lines can be found in [C] and
[V].

Theorem 2.
If A is FPF then the following are equivalent

1) Dim{Qq(4)) < n.
2) a) Spec,(A) is compact.
b) A= T'(Spec(4), V) — I'(Spec, (A}, O) (restriction) 15 I-1.

In this case Qu{A) = T(Spec,(A},0) = lim{Hom(J, A)) where J
varies n the downward divected set of finitely genereted and faithful ide-
als of A.

Proof:

1 = 2. Compactness follows as before. For (b) let ¢ € A be identified
with a global section of 0. If a|Spec,(A} = 0 then let Q = Qu{4) and
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choose any P € Spec(Q) = Spec, (Q). We have PN A = P € Spec,{4)
hence there exist g € A — P with ua = 0. It follows that the image of
in Q» for any prime of ¢} is zero thus a = 0 as required.

2 = 1. Note that (a) and {b) of two are inherited by §. Assume
that there is a prime P € Spec(q)) with height (P} > n then the open
set D{P) 2 Spec, (). By compactness there exists a finitely generated
ideal I C P with the same property. It follows from (b) that /1 = {z €
Q|xI =0} = 0. Since & is self injective we have by the double annihilator
condition. {This is part of a theorem due to Ikeda and Nakayama). See
[S, page 274, Prop. 2.1} that I+ = Q. This is a contradiction.

For the final statement we note that if [ is a finitely generated ideal of
A then [ is faithful < I contains a regular element & D{I} D Spec,,(A).
To see this observe that if I is f.g. and faithful then THom(I, A} =
Hom{!, A) since I is projective (the dual basis lemma). We thus have
Ilgn(Hom(J, Ay = li_r.n(Hom(J,A)) and so 1i_r::1(Hom(J, A)) = Qia(A)
(the maximal flat epimorphic extension of A [S]). Because of this, if
a f.g. faithful ideal consists entirely of zero divisors then Qui(A) #
Qe A) but this is not the case since Qq{A) is self injective and hence flat
epimorphicly closed. The second equivalence is now a consequence of (b).
The rsult follows from this ohesrvation because Qo{A) is the localization
of A at the Gabriel filter of ideals containing regular elements [8] and by
Theorem 5.24 of [V] since Spec,,{ A) is compact and generically closed. B

We add that the proof of this result shows that the condition (4 —
I'(Spec, (A}, O} is 1-1) implies 2b) + 2¢) of Theorem 1 for any FPF ring.
Thus another proof is available. We choose our statement of Theorem 2
and our approach because of its geometric character.
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