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ON MUCKENHOUPT AND SAWYER
CONDITIONS FOR MAXIMAL OPERATORS

Abstract

Y. RAKQTONDRATSIMBA

Let M.(0 € 5 < n} be the maximal operator
(M F)(x) = sup {|Q|[§—1] N7 1gllLr(ayy @ 2 cube with @ 3 r} ,

and u(z) and v(z) be weight functionson B™. Forl < p< g < oo
and [p~! — ¢~!] £ {s/n), we prove the equivalence of the Sawyer
condition

(MY B15)15]1,0 < SlLgll,e } for all cubes Q@
hd w—ti{p—1

to the Muckenhoupt condition

i/q 1-1
% (L/u) (L/u—l/(p—1)> "<
il /g il /g

< A for all cubes @

#lw

[l

whenever the measure do = v~ /{P—1) dz satisfies

19l Q'
C
@l = ( I

) for all cubes @, Q'
with @' CQand 1 - {s/r) < v.

This growth condition is weaker than the A. condition usually
used to obtain such an eguivalence.

0. Introduction

Let u, v weight functions on B®, n > 1 {i.e. nonnegative locally in-
tegrable functions). The Hardy-Littlewood maximal operator is given

by

(M f)(@) = sup {|QI " f1lollr ayy @ a cube with @ > z}.
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Throughout this paper ¢ will denote a cube with sides parallel to the
co-ordinate planes. It is fundamental in analysis to characterize the pairs
of nonnegative weights {u,v) for which

{1y M7z <Clifllez
for all functions f(1 < p < co, C' = C{n,p,u,v) > 0);

here ||g|l.- denotes (f3. lo|"wdz) T and dx the Lebesgue measure on
R™. Muckenhoupt [Mu] showed that inequality {1} for u = v holds if
and only if

1 Vel 1/(p-1) ok
— o — | oy VT < A for all cubes Q.
(1c;>| /Q ) (IQ! fQ ) : 9

We write v € A,. This condition can be viewed as a particular case of
(u,v) € Alp}, Le.

( 1 ] )”p( 1 ] _1/(p_1))1—§ < A for all cubes Q
—_— T — v . 07 &l CUuDes R
1@l /o Rl Jo

It is clear that (w,v) € A{p) is a necessary condition for (1}, but in
general it is not a sufficient condition {see [Mu] for a countrexample). A
special case of a Sawyer’s result [Sa?] shows that (1) is in fact equivalent
to (u,v) € S(p), ie

, <o for all cubes Q.

(v~ V100l iz < Slltaller_

However for w = v, it is not obvious that {v,v) € A{p) implies (v,v} €

S{p}. This point was solved by Hunt-Kurtz-Neugebaner [Hu-Ku-Ne.
More generally the two weight norm inequality

(2 (IMaflleg <elfllzg l<p<g<oo,B<s<m [p! —¢7" < (s/n)

for the fractional maximal operator

(0, £)(z) = sup {1QIF I F 1l s @ & cube with @ 5 2}

was characterized by Sawyer [Sa?] by the condition (u,v) € S(s,p,q),
ie.

||(Msv_”(p*1)1Q}1Q||Lg‘ < S|1pllee iy <P for all cubes (.
w—iAP—
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A necessary condition for (2) is (u, v} € A(s,p,q), ie.

s+1 1 1 1/q ]. 1{( 1) 1_%
wTrTe | — f u — | p = < A for all cubes Q.
@ (g [o) (@i, ) ¢

Although (u,w) € A(s,p, g} is not sufficient for {2}, it is nevertheless a
more easily verifiable condition. So for de = »~Y—Udy € A, (ie.
do € A, for some r > 1} Perez [Pe| (sec also Sawyer [Sa!]) proved that
{u,v) € A(s,p,q) implies (2).

In this paper we give an analogous result (see Theorem I) for weights
v such that do € B, with [1 — (s/n)] < v, ie:

1IQQI|1: <C (||(g||>” for all cubes ), Q" with ¢’ C @

here |Q|, denotes f, o dz.
If do = A, then do € Bs for some § > 0 i.e.

El, EN?
% <C (H) for all cubes @ and all mesurable sets £ with £ C Q.

But, as we will see, there are measures dyu such that dy € Bs and du ¢
Ag- First it is known [Ga-Fr] that do € A, implies do € D, i.e.

2] < D|Q|s for all cubes @, D = D(o) > 1;

2(2 is the cube with the same center as € but with lenghts expanded two
times. The condition do € Dy, is equivalent to do € D, for some e > 1
{see Proposition VIII below}, i.e.

[tQ, < Q| for all cubes @andallt > 1

Also do € Do, implies do € RD, for some v €]0, 1] {see Proposition VIII
below), i.e.

t" Qs < CItQ|, for all cubes @ and all ¢ > L.

The condition RD, is weaker than the doubling condition D, (for exam-
ple if w(z) = €'l then wdz € RD, for some v €]0, 1] but wdz ¢ D).
Hence if do € As then do € Dy, N RD, for some v €]0,1]. But we can
have do € D, with do ¢ A,, (see [Wi] for an example}. As we will see
below, if do € B, then do € RD, and conversely do € Dy, N RD,, im-
plies do € B,.. The condition do € Dy, M AD, is weaker than do € A
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and it is more verifiable than do € B,,. So if do € D, then do € B, for
v small encugh, while do does not antomatically belong to A.

Contrary to the Perez's approach [Pe| (which consists to obtain (2)
from A{s,p, q) by exploiting properties of Calderon-Zygmund cubes) our
method lies on the same philosophy as the Hunt-Kurtz-Nengebauer [Hu-
Ku-Ne| results mentioned above. Using the condition do ¢ B, we
directely derive the condition S(s,p, g) from A(s,p, ¢). For applications,
the nature of our result leads to the following: “Let do € D.,. For what
reals g, v {withe > 1 and v < 1) have we do € D), and do € RD,? Can
we choose ¢ sufficiently small and v big?.

In Section  we begin to state our main result (see Theorem I}, Then we
give growth conditions (see Proposition II) which are more useful than
those used in our result. In Section 2 with the usual weights u(z) =
|z|, v{z) = |z|> we recall how to realize the A(s,p,q) condition (sce
Proposition IV}. In order to answer the above questions we reviewed
how 4, = D and A, = RD, (see Proposition V), Dy, = RD, (see
Proposition VIII). By these, we bring out precise values of € and v (sce
Section 4). Proofs of main results are in Section 3.

1. The main result

To include classical maximal functions, we work with the operator

(Mo f){z) = sup {@{Q)IQ]_lﬂleHL;(dy);Q a cube with @ > x}

where P is a map defined on the set of cubes, taking its values in |0, cof
and satisfying the following growth conditions H:
1) @(Q1) < C®{Q2) for all cubes @y, Q3 with @ C Qo C =
C(P) > 0.
2) There are C4, C2 > 0, A, € [0, 1[ such that

CLEO(Q) < B(tQ) < Cat™D(Q) for all cubes Q and all ¢ > 1.

When &{(}} = 1 we obtain the Hardy-Littlewood maximal oporator. The

fractional maximal operator M. (0 < s < n) is given by ®(Q) = Q|5

Maximal operators connected to the Bessel potential (see [Ke-Sa)} are
1/n

defined by (@) = folQl wis)ds; and gencrally My arises in studies of

other potential opcrators (see [Ch-St-WH]).

Let 1 « p £ g < oo and (u,v) be a pairwise of weights, We write
{u,v) € S(P,p,q) if for some constant S >0

||(M¢v_1/(p_1)1Q)HLg < S"]’Q"Lp—ucp—r) < oo for all cubes Q.
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Also we write (u,v) € A(®, p, g) holds for some A > 0 if

i1 Y s
o|QI03 (_/ u) (_/ U—IX(P—U) < A for all cubes Q.
<l 1@l Jo il Ja ¥

In this paper we always adopt the convention 0- oo = 0. From condition
A(D,p,q) and the Lebesgue theorem whenever u # 0, we see that it is
necessary to suppose
H3 lim (@ TF) <e

) Jim {2(QIQIF7F) <
For instance H3) is satisfied if [p~! ~ ¢~ 1] < A. For (Q) = 1 H3) implies
g < p, and for ®{Q) = |Q[*/™ it means [p~! — ¢~} < (s/n).

Let p > 0 and do = odz be a weight function. As in Section 0, we
write do € B, if there is B = B{co} > 0 such that

Qo Q1Y F o
<B for all cubes ¢}, @' with Q' C Q.
Qs Q]
Also for a weight function u, then do € B,(u} when
Q']

i »
o < B ('t%t‘) for all cubes @, Q' with @' C @; B = B(o,u) > 0.

Now we can state our main result:

Theorem 1.
Let 1 < p £ g < o0 and let © be o function which satisfies H1)-2-3.
A) If (u,v) € S(®,p,q) for a constant § > 0, then (u,v) € A(D,p,q)
for the constant A = 5.
B) If (u,v) € A(®,p, 4} for a constant A > 0, then (u,v) € 5(D,p,q)
whenever one of the following condition is satisfied:
i) do=v VP Ndre B, withl — A< v
i) do = v~ VP Vg € By (u).
If B is the constant in the condition on do then the constant in S(P,p, q)
takes the form S = ABc(®,n) in case of i), and S = ABYPc(®,n) in
case of it), here ¢{®,n) > 0 depends only on ® and n.

Proposition 11.

A) If do € B, for some v €]|0,cc|, then do € RD,. Conversely if
doe D,NRD, thendo € B,.

B) If do € B(pq)(1) N Do, there are & € [1, 0] and v €]0,1] such
that do € RD,, du € D, end vq < gp. Conversely if do € RD,
and du € D, for some £ € [1,00[ end v €0,1] with ¢p < vg then
do € B(.p/q)(u}.
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Consequently, for the case of the fractional maximal operator, we can
state

Proposition III.

Letl <p<g<oo,0<s<mn, and[pl~q71) < {s/n). Then
(u,v) € S(s,p, q) is equivalent to (u,v) € A(s,p,q) if one of the following
holds:

i) do = v~ PN dy € Doy NRD, with 1 — (s/n} < v
i) do = v~ Y-Vdg e RD,; du € D, with ep < vg.

2. Applications and furthers results

Assume the condition A(s,p,q) holds for a constant A > 0. It is also
equivalent to ask

3) y s
. a1
B3 +i- (%}/ u) (173/ v~1/(p—1)) " < A, for all balls B
B B

with A; = Ae(s,n,p, ¢).
Let B be the ball B{xg, R) = {y € B*; jx —yj < R}

If |zo| < 2R then B C B(0,3R) and hence the first member of (3) is
majorized by the quantity

l/q 1-2
(L / ) (_L / t,_mp_n)
R Jlyi<r R™ Jiyi<r

which can be easily computed mainly if © and v are radial functions.

If 2R < |zg| then {1/2)|z¢] < |y] < (3/2}|z¢| for each ¥ € B and hence
the first member of (3) is now majorized by

s+

< [
|

c(s,n,p,q)R

l/q 1_1‘1)
C(Srﬂspaq)RH%_%( sup u(y)) ( sup U(y)—l/(p—l))

I~2 R lvl~2I R
where § € N*¥,

Also if each of functions w, v~ 1/(P~1) satisfies a growth condition as:

[
< = w(y) dy
Rr (/CL R<ly|€e2R

{l/4)R<|z|<4R

{ sup w{z)
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and if [p~! — ¢~} < (s/n) then condition (u,v) € A(s,p, q) is equivalent

to
1/q ' 1-1
e ([ ) (] ) s
R"™ Jiyi<n R Jly<r

A2 = AC(S,R,;D, Q)
Taking u(z) = |z|°, v(z} = |z|* we obtain

Proposition 1V,
Assume
)1<p<g<oo,0<s<n,[p~!—q¢1 <(s/n);
i) n<a<nlp-1);
i) ps —n < a;
iv) 8=(¢/p)(n+a)—gs—n;
and define u(x) = [¢|?, v(z) = |z|*. Then (u,v) € A(s,p,q).

The condition ii) is equivalent to v € A;. Now we recall a known
result, ylelding D; or RD, from the A, condition.

Proposition V.
A) Letl < p < oo, and w € Ay for ¢ constent A > 0, Thenw € Dy
ie

[t < Dt"P|Q|y for all cubes @ and allt > 1; here D = AP,

B) Let 1 <r < oo, and w € RH,;p_y t.e.

-3
(ﬁ/@w[r/(r—l)]) SR(&/QH}) for all cubes Q,

R=R{w)>0
then w € RDy,, with the constant R.

If w € A, then it is known ([Ga-Fr]) that w € RHi4, for some
p > 0 (which depends on n, p, w) and so w € RD, for some v €0, 1.
Proposition V can be merely seen by the use of the Holder inequality.

Proposition VL.
Let 1 < r < 00,y € R and wiz) = |z|”. If —n < min(y,yr) then
w € RH, and so w € RD1_q17y.

From Propositions [II-IV-VI we- get
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Proposition VII.
Assume
) l<p<g<oo,0<s<n,[p” 1—q_1]<{s/n)
i) —n<a<slp-1);
i) ps —n < @;
iv) B ={g/pHn+a)—gs—n;
and define u(z) = |z|°, v(z) = |z|*. Then there is ¢ > 0 such that

[Msfllze <cllfllze for all nonnegative functions f.

Finally we end with the fact that the D, condition itnplies I3, or RD,
{for some ¢ and v).

Proposition VIII.
A) Letw € Dy te. |2Q)w < D|Q|w for all cubes @, D D(w) > 1.

Then w € D.: fe |tQ|w < Dt™|Q|y for all cubes ) and all

. _ lnp -
t> 1, withe = 25

In partficular if 2% < D thene > 1.
B} Let w € D, with a constant D > 1.
Then w e RD,: t.e. "]|Q|, < 2™ DItQ|,, for all cubes Q) and
allt > 1, where v =v(e,D,n) = 5= In [%}5&]

In particular if 2 < 127 D2 then v < 1.

Let 8 > 0, then § > ¢ if and only if D < 278 and @ < v if and enly if
127 D2 < [2—“;—] From this proposition we see that if wdz € D, with
a doublmg constant D = D{w) > 1 then w € RD, with v = »{D,n) =
= 1n [Dccl} where ¢ = 4+ 23,

Part A can be easily obtained by induction. The next part was proved
by Strémberg and Torchinsky [St-To], but here we include the proof
sirce we need the precise value of v.

3. Proofs of the main resulis

For each cube Yy we define the local maximal function

(Mg, f)(z) = sup { PR I 1gll1(ayy; @32, @ C Qn}-

‘The proof of Theorem I is based on the following lemmas
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Lemma 1.

There is C = C(n,d) > 0 such that for each cube Qp and for ench
function f locally integrable whose support is contained in (Jy

(Mo g, f)(z) £ (Mg f)(z) < C{Mo g, f)z) for all z € Qo.

Lemma 2.
Suppose (u,v)A(P,p,q) and do satisfying one of i)-i1} as in part B
of Theorem 1. Let Qy be o cube with 0 < [Qgle < oo. Then

SUP. g0 (Mo,0s 1000)(2) < AIZIZL < oo,

Lemma 3.
With the same hypothesis as in Lemma 2, one can find a subcube ¢

of Qo such that (Ms,g,10,0)(2) < 4 (ﬁg{f@ﬂg) for all z € Q.

We postpone the proofs below, and we first show how Theorem I is
derived from these lemmas.

Proof of Theorem I

Since
(@(QG) lQOlO’) lQO{) < (M‘:,,QOJ-QOU) ()IQO()
Qo

it is clear that if {u,v) € S(®,p,q) for a constant 5 > 0, then (u,v) €
A(®,p, g} with the constant 4 = 5.

Conversely let (u,v) € A(®,p, ¢} for a constant A > §, and let Qg be
a cube. If |(Qols = O then it is trivial to have (u,7v) € S${®,p,¢}. Also
(since 0 oo = Q) if |Qple = oo then {u,v) € S{P,p,¢) because in this
case |&ol. = 0. So we can assume 0 < |Jg]s < co. From Lemmas 1 and
3 we first have

H(Ma10,0)1qullLs < Cll{Ma,0o10e0) 1golly O = Cin, ®)

@(Ql) ) ]_/q
540( )il ) 1ol

Now suppose do = v~ VP dy € B, with 1 — A < v. Then we get

I(Mo1g,0) 10, llzs < C(@, n)(@)"“(ma) <<I>(Qo) lQoIa)l ol

i2ol)  \@olo /\ 71001
11\ [ (Qo) v
< c(a, )B(|Q0|) ( L )|Qe| ‘

< C(®,n) BA|Qo|Y? = C(®,n)BA||1gll -
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Now suppose do = v~/ (P~ dz ¢ Bipsq)(u}. Then we obtain

® " l/q
||(M¢1QQU)IQOI|L3. < 40( I(C;Qli) IQl‘o) lQlH/q (%F?:_u)

|Ql|,)””(|@o|u)”* Y
SwA(iQola Qi) @0l

< 4CABY|1q, [l W

Proof of Lemma 1:

Let g be a cube and let f be a function whose support is contained
in QJq. Firstly it is clear that

(Ma g, f)(z) < (Mg f)(z) for all z.

For the converse we use the growth properties H)1-2 of ®. Let @ be
a cube which contains z, with x € )y, We suppose that Qg does not
contain @ (otherwise there is nothing to prove). We distinguish two
cases.

1) For |Qo| < |QI:

Let Q1 be a cube with the same center as Jy but with the lengths
3]Q[*/™. Since 7 < 1 we first have

2(Q) _ |Qol 2(@1)

Rl ~ QI [l
1@} 7" &(Qo)
<cen(ig) o
< C(@,n)%.
It results that
3(Q) 2(Qs) 1
|Q| "(leD)]'Q”Ll SC(CI),'R) |QOI "leonL

< C(®,n)(Ms g, f)z).
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2) For |Q| = |Qol:
One can find a cube Q3 C Qg such that |Q| = @2}, @N Qs C Q2 and
£ C 3@Q2. Hence we get

i3 &3
—gj’ 1(F1g0) Tall,: < l(QCj”nlezny
®(Q2)
S C((I)! 'R) ngl ||f1Q2“L1

= C(@: n)(M‘i’,Qof)(m)' a

Proof of Lemma 2:

Let z € (Jg and @ a subcube of ¢ such that @ 3 z. Using one of
hypothesis in part B of Theorem [ we have to show

Q) Qols’?

This implies: sup,eq, (Me,0,1¢,9)(2) < 0o. And so to obtain (§) it suf-

fices to consider (%QI”QIC) |Qg|,1f ¢ and to estimate this with A|Q0|‘1,f P

as we have done in the proof of Theorem I. B

Proof of Lemma 3:
Since sup,cq,{Ma,Q,1,0){2) < 0o there is one y € Qg such that

(Mo.0,10,0)(z) < 2(Ma g, 1q,0){(y) for all z € Q.

Again, there is a subcube @) of Qo which contains y such that

{(Mo,0,1q,0)(y) < 2 (lql)g’f;) |@1 lo)

and so

sup (Ms g 1g,o){(2) < 4 (Q(Ql)i&lc) .
r€qio IQll

Proof of Proposition II
Part A
Let do € B, for some v €]0,00] i.e.

B (@> for all cubes Qq, Q1 with @), C UJy.

|Q1|a <
Qo

|Qﬂlo‘ -
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Let © be a cube and ¢t > 1. Taking &) = Q and @y = £ we obtain
t™1Q|s < R|tQ|,, where R =B

which means do € RD,.

Converserly let do € RD, for a constant R > 0. Also if do € IJ, then
for £h C Qp we have

Qilo < R (:g‘:) 1Qalo

where ()2 has the same center as 1 and |Q2] = |0l

|Q11)
< (|@ ) B@ls

|Q1|)
<KD (IQ ) 1@l

where IJ depends on the constant which is in the doubling condition for
do. So it appears that do € B, with the constant B = RD.

Part B
Let do € Bip/qy(u), ie

|Q1|G’ (inlu
AT

Suppose also do € D,.. Let § be a cube and ¢ > 1. Taking ¢; = ¢
and (Jy = £@ and using the fact that do € D, for some £’ > 1 (see
Proposition VIII} we obtain

1 1@l (@)”q
e = G0, < B\l

ltQl., < (DB)Y/Pe'a?|Q],

which means du € D, with £ = ¢'{g/p) > 1. Also since vdz € RD, for
some ' €]0,1] (see Proposition VIII) we get

/g
<Bi{R—
1tQle ~ i

™79 Qle < B(RP/ Q)

pfq
) for all cubes Qq, ¢ with ¢y C Q.

that is

that is
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which means do € RD, with v = v'(p/q) < 1. On other hand we must
have forall £ > 1
1< DB(R)P/qtnFE’*V’(p/q)]

hence 0 < ¢/ — v/(p/q), or vg < ep.

Conversely let do € RD,, du € D, for some ¢ € [1,00[ and v €]0, 1]
with ep < wq. For all cubes )y, G with Q1 C @ we have

Q1o (|Q0|u)p/q (@)U-S(p/q)
Qole Q) =P\ 1Qo]

< RD
which implies do € By, (u) for constant B = (RD)4/P). m

4. Proofs of further results

Proof of Propasition I'V:

Let R > 0. The condition ii) implies that v and v/} are locally
integrable functions and

/ =11 gy =f |~/ =D gy ~ grle/(e-1),

l¥l<R l¥l<R

From iii) and iv}) we have 8 = (¢/p){n + &) — gs — n > —n, and so

[ way=[ iy~ ROk a)ap) - a5) > 0)
lyl<R lul<R

Since [p~! — ¢7!] < (s/n) we only have to estimate

. 1/g 1 1_%
peti-2 ( / u) (_] u—l/(P—l)) (see Section 2).
R» Rr
lyl<R lyl< R

Using the two equivalences aboev this last quantity is equivalent to

Rls+(n/@)~(n/p( plntada/pi—go—lyl/a pl-afe-1\1-3 _
_ Rls+(n/@— (/) H{n/p)Ha/p—s—(nja)~(a/)] _ 1 m

Proof of Propoesition VI:
Let —n < min(+y,yr), and let B be the ball B(zq, R).
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1) If |zo| < 2R then B C B(0,3R) and B(0, R) C 3B. Hence

() < (58 f ) -

and since —n < 4 then, by Propositions IV-V, wdz € D, and it follows
51/,) > 20 (151, )
— fw|>Dy) | = w
(31 /) = 20 (13 /,
> D'(y) c(t) / ly|*dy ) ~ R”.
R Jiyien

2) If 2R < |zp| then (1/2){zol < |y| < (3/2)|xo| for each y € B and it
results

(l_;'/Bw*") ~ (27R)" with j € N*, and (ﬁ/ﬁw) ~ (2R)".

In all cases, since wdx € D, we get

(ﬁ/@wr)r < Dl (Téf[/@w) for all cubes @

and hence wdz € RH,. M

Proof of Proposition VIL

Let o(x) = v~ /P~ U(g) = |z|~12/(P-LL Note that do € A, and so
do € D, (see Proposition V}. If @ < 0, then —n < v = —a/(p—1) < vr
for all # > 1. Choose r > 1 with {n/s) < r then from Proposition VI
do € Do N RDy (17 with [1 — (s/n)] < v = [1 - (1/r)]. To obtain
the same conclusion for & > {, we choose v > 1 such that (n/s) < r <
[n{p — 1}/, and so —n < yr < 4.

Finally using Propositions IV-III and the Sawyer theorem [Sa?] then

|Msfllea < cllfllze for all functions f. W

Proof of part B of Proposition VIII:
We need the following lemmas whose proofs will be given below,

Lemma 4.

Let wdz € D, for some £ € {1, cof and with o constant D = D(w) > 1.
Then |3Q|, < 6™D|Q\ (3Q)|, for each cube Q.
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Lemma 5.

Let wdz € D, for somee € [1,00] and with a constant D = D(w) > 1.
Then |%Q|w < Bl@|w for each cube Q, with § = %l, and so
B €0, 1[.

The part B can be derived from Lemma 5. Indeed if ) is a cube then
@l < 87|27 Q)., for each m € N™.

Let ¢t > 1. There is k = &({t) € N* such that 27! < ¢t < 2* (s0
(Int)/(In2)] < k). It results

QLo < B*12*Ql
< 2" DB QL
— 2nsDe[(ln £/ In2)in t|tQ1w
< 2neDe[(lnﬁ)/ In 2] ]nt|tQ]w

1 —{lnfA)/In2
=" D ‘:E} ItQ|w
and
lnj{—fj
IOl < 2% DJtQ|w With v = —2-.
In2»

If 2 < 12" D? we get
(12n5D2 + 2n) S (211—-112115_02 + 2n—112neD2) _— 2n12n£D2

1
or 127 D? < 27(127¢ D? — 1) which implies 5 < 2" and so v = llni% <1

Proof of Lemma 4:

In the proof of the Theorem I we have already used the following
geometric argument:

“Let €, (2 two cubes such that QNQ2 # @ and |G |1/ < 1@y |1/
then @ C 3Q,."” Let Q be a cube and Qg a subcube of (Q\(27'Q)) with
lenghts (1/4)}|Q|Y/™ and let @y = (27'Q). Then (271Q) N 2Qq # @
and [271Q) |1/ < |2Qq|!*/™]. Using this argument we obtain (271@Q) C
3{2Q0) = 6y and then

< |6Q[}|w

W

< 6% D|Qolu
<6%D )Q\ (%Q)

1
\5‘9

w
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Proof of Lemima 5:
Let & be a cube. By hypothesis

—-nE }
210l < D[

, D =D(w) > 1.

kil

So using Lemma 4 we get

2-n£|Q|w < 6n5D2

Q\(%Q)w

n 1
S 6 EDQ [lQlw - EQ

J

It resuits that

1
)aQ

< Bilw

with

6n£D2 —_ 9-ne IQREDZ -1
B=—mpr— = —jgupe adso fE01. W
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