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ON MUCKENHOUPT AND SAWYER
CONDITIONS FOR MAXIMAL OPERATORS

A bstract

Y. RAKOTONDRATSIMBA

Let MS(0 < s < n) be the maximal operator

(Ms f)(x) = sup{ IQI[-1-1 ] li f1Q11L1(dy) ; Q a cube with Q E) x} ,

and u(x) and v(x) be weight functions on R' . For 1 < p <_ q < oo
and (p-1 - q-1 ] < (s/n), we prove the equivalence of the Sawyer
condittion

II(Msv-1/(P-1)1Q)1QIILq <_ SII1QIILP

	

for all cubes Q
,1-1/(P-1)

te the Muckenhoupt condition

( ,

	

f -)
1/q

	

1_P

IQI Q

	

M( , IQ

whenever the measure da = v-1 /(P-1 ) dx satisfies

IQ'I° < c

	

Q'I

	

V for all cubes Q, Q'
MI (IQI

< A for all cubes Q

with Q' C Q and 1 - (s/n) < v.

This growth condition is weaker than the A~ condition usually
used to obtain such an equivalence .

0. Introduction

Let u, v weight functions on Rn, n >_ 1 (Le . nonnegative locally in-
tegrable functions) . The Hardy-Littlewood maximal operator is given
by

(Mf) (x) = sup {
M-111

fl Q 11L1(dy) ; Q a cube with Q D x} .
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Throughout this paper Q will denote a cube with sides parallel to the
co-ordinate planes . It is fundamental in analysis to characterize the pairs
of nonnegative weights (u, v) for which

( 1)

	

IIMfIILú < CIIfIIL,

for all functions f(1 < p < oo, C = C(n, p, u, v) > 0) ;

here 11911 L, denotes (fR� IgIrw dx) l/r , and dx the Lebesgue measure on
Rn . Muckenhoupt [Mu] showed that inequality (1) for u = v holds if
and only if

IQI ~Q
v) 1'P

	

IQI ~Q
v-1/(P-1)

)1

	

P

< A for all cubes Q.

We write v E Ap. This condition can be viewed as a particular case of
(u, v) E A(p), Le .

1

	

1

	

¡

	

-p1/P

~QI ~Q
u)

	

~QI JQ
v-1/(P-1))

1

	

< A for all cubes Q.

It is clear that (u, v) E A(p) is a necessary condition for (1), but in
general it is not a sufficient condition (see [Mu] for a countrexample) . A
special case of a Sawyer's result [Sa2] shows that (1) is in fact equivalent
to (u, v) E S(p), Le .

II(Mv-1/(P-1)1Q)1QIILú <_ SII1QIILP-1/(P-1) < oo for all cubes Q.

However for u = v, it is not obvious that (v, v) E A(p) implies (v, v) E
S(p) . This point was solved by Hunt-Kurtz-Neugebauer [Hu-Ku-Ne] .
More generally the two weight norm inequality

(2)

	

IIMsfIILú < CII f IILv 1 < p :5 q < co, 0 < s < n, [p-1 -q-1 ] < (s/n)

for the fractional maximal operator

(Msf)(x) = sup{IQI[
ñ-1

]IIf1QIIL1(dy) ; Q a cube with Q

	

x}

was characterized by Sawyer [Sa 2] by the condition (u, v) E S(s, p, q),
Le .

II(Msv
-1/(P-1)1Q)1 QIILu <_ SIIIQIILP-'/(P-1) < oo for all cubes Q.
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A necessary condition for (2) is (u, v) E A(s, p, q), Le .

(
M`+P-P

	

~Q~

f u\ 1/4

	

f
v-1/(p_

	

_

	

-1)
/

1

	

P < A for all cubes Q .
Q

	

M Q

Although (u, v) E A(s, p, q) is not suficient for (2), it is nevertheless a
more easily verifiable condition . So for da = v-1/(p-1 ) dx E A,,, (Le .
da E AT for some r > 1) Perez [Pe] (see also Sawyer [Sa l]) proved that
(u, v) E A(s, p, q) implies (2) .

In this paper we give an analogous result (see Theorem I) for weights
v such that do, E B � with [1 - (s/n)] < v, Le . :

v

I~Q~IQ
< C

	

IIQI I

	

for all cubes Q, Q' with Q' C Q;

here 1Q 1Q denotes fQ Q dx .

If do, E A,, then do, E Bó for some S > 0 Le .

a
¡El, < C ( E, ) for all cubes Q and all mesurable sets E with E C Q.

Q
-

But, as we will see, there are measures dp such that dp E Bó and dp,
A,,. First it is known [Ga-FY] that do, E A., implies da E D,,> Le .

12Ql, < DIQl, for all cubes Q, D = D(u) > 1 ;

2Q is the cube with the same center as Q but with lenghts expanded two
times . The condition do, E D,,. is equivalent to da E DE for some e >_ 1
(see Proposition VIII below), Le .

1tQ1, < Ctns 1Q 1 Q for all cubes Q and all t > 1 .

Also da E D,,, implies da E RD� for some v E]0,1] (see Proposition VIII
below), Le .

tnv IQ I Q < CltQi, for all cubes Q and all t > 1 .

The condition RD � is weaker than the doubling condition D,, (for exam-
ple if w(x) = eW then w dx E RD� for some v E]0, 1] but w dx ~ D.) .
Rente if do, E A. then do, E D,,. nRD� for some v E]0, 1] . But we can
have do, E D,,,, with da 1 A,,, (see [Wi] for an example) . As we will see
below, if do, E B� then da E RD� and conversely da E D,,, n RD� im-
plies do, E Bv . The condition do, E D,,,, n RD� is weaker than do, E A,,
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and it is more verifiable than da E B� . So if da E D,, then da E B� for
v small enough, while da does not automatically belong to A,,,, .

Contrary to the Perez's approach [Pe] (which consists to obtain (2)
from A(s, p, q) by exploiting properties of Calderon-Zygmund cubes) our
method lies on the same philosophy as the Hunt-Kurtz-Neugebauer [Hu-
Ku-Ne] results mentioned above . Using the condition da E B� we
directely derive the condition S (s, p, q) from A(s, p, q) . For applications,
the nature of our result leads to the following : "Let do, E D,,,, . For what
reals E, v (with E >_ 1 and v <_ 1) have we da E DE and do, E RD� ? Can
we choose E sufficiently small and v big?" .

In Section 1 we begin to state our main result (see Theorem I) . Then we
give growth conditions (see Proposition II) which are more useful than
those used in our result . In Section 2 with the usual weights u(x) =
xjO, v(x) = Ixla we recall how to realize the A(s, p, q) condition (see
Proposition IV) . In order to answer the above questions we reviewed
how Ap => D,, and Ap ==> RD� (see Proposition V), D,, =* RD� (see
Proposition VIII) . By those, we bring out precise values of E and v (see
Section 4) . Proofs of main results are in Section 3 .

1 . The main result

To include classical maximal functions, we work with the operator

(M'Df)(x) = sup {D(Q)IQI -1 Ilf1QII L1(dy) ; Q a cube with Q 9 x}

where ib is a map defined on the set of cubes, taking its values in ]0, oo[
and satisfying the following growth conditions H:

1) 'D(Q1) <_ C<D(Q2) for all cubes Q 1 , Q2 with Q1 C Q2 ; C =
C(4) > 0 .

2) There are Cl, C2 > 0, A, 77 E [0, 1[ such that

C1tnXq>(Q) < q>(tQ) < C2tno .Cp(Q) for all cubes Q and all t > 1 .

When D(Q) = 1 we obtain the Hardy-Littlewood maximal operator . The
fractional maximal operator M,(0 < s < n) is given by D(Q) = IQIs/n .
Maximal operators connected to the Bessel potential (see [Ke-Sa]) are

IQl l ~ndefined by d)(Q) = fo

	

W(s) ds ; and generally M<p arises in studies of
other potential operators (see [Ch-St-Wh]) .

Let 1 < p < q < oo and (u, v) be a pairwise of weights .

	

We write
(u, v) E S(,D, p, q) if for some constant S > 0

II(M'v -1/(p-1)1Q)IIr,'u' < S111Q11LP< co for all cubes Q.
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Also we write (u, v) E A(-D, p, q) holds for some A > 0 if

<PIQlQ 9

	

P
CM ~Q

u)

	

v-1/(P_

	

-I)/ 1
_

	

P
< A for all cubes Q.

In this paper we always adopt the convention 0 - oo = 0 . From condition
A(-D, p, q) and the Lebesgue theorem whenever u =,,~ 0, we see that it is
necessary to suppose

H3)

	

lim (`D(Q)~Ql9 p
QI

	

)
< c.

I--o
For instante H3) is satisfied if [p-1 -q-1 ] < X For -P(Q) = 1 H3) implies
q :5 p, and for <D(Q) = »s/' it means [p-1 - q-1 ] < (s/n) .

Let p > 0 and do, = Qdx be a weight
'
function . As in Section 0, we

write do, E BP if there is B = B(o,) > 0 such that
i

	

i
I la < B

	

IIQII

	

P
for all cubes Q, Q' with Q' C Q

Also for a weight function u, then da E B P (u) when
i

	

i P

I~Q~IQ

< B

	

I I~ I Iú )

	

for all cubes Q, Q' with Q' C Q; B = B (u, u) > 0 .

Now we can state our main result :

Theorem I.
Let 1 < p < q < oo and let 4D be a function which satisfies Hl)-2-3.
A) If (u, v) E S(-D, p, q) for a constant S > 0, then (u, v) E A(-P, p, q)

for the constant A = S .
B) If (u, v) E A(,D, p, q) for a constant A > 0, then (u, v) E S(~b,p, q)

whenever one of the following condition is satisfied :
i) da = v-1/ (P-1 ) dx E B � with 1 - \ <_ v
ii) da = v-1/(P-1) dx E B(P/q)(u) .

If B is the constant in the condition on da then the constant in S(D, p, q)
takes the form S = ABc(4), n) in case of i), and S = AB1/Pc(4) , n) in
case of ii), here c(,D, n) > 0 depends only on (D and n .

Proposition II .
A) If da E B� for some v E]0, oo[, then da E RD � .

	

Conversely if
do, E D,,,, n RD� then do, E B � .

B) If do, E B(Plq)(u) n D., there are e E [1, oo[ and v E]0,1] such
that do, E RD� , du E DE and vq < ep . Conversely if do, E RD�
and du E DE for some e E [1, oo[ and v E]0,1] with ep < vq then
do, E B(P/q)(u) .
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Consequently, for the case of the fractional maximal operator, we can
state

Proposition III.
Let 1 < p <- q < oo, 0 <_ s < n, and [p-1 - q-1] <_ (s/n) .

	

Then
(u, v) E S(s, p, q) is equivalent to (u, v) E A(s, p, q) if one of the following
holds :

i) do, = v-1/(P-1 ) dx E D,,, n RD � with 1 - (s/n) <_ v
ii) do, = v-1/(P-1) dx E RD� ; du E D E with Ep < vq .

2. Applications and furthers results

Assume the condition A(s,p, q) holds for a constant A > 0 . It is also
equivalent to ask

IBI
~+4

	

P

	

IBI ~a

u) 1/e

	

II

	

s
v_

	

1/(P_1)/ 1
_

	

P
< A1 for all balls B

with A1 = Ac(s, n, p, q) .
Let B be the ball B(xo , R) = {y E Rn ; Ix - yI < R}.

If Ixo1 <_ 2R then B C B(0, 3R) and hence the first member of (3) is
majorized by the quantity

1/9

	

1_ P
c(s, n, p, q)RS+9 - P

	

~

	

u

	

_

	

v_1/(P-1)1 1
(Rn

Jly,<R )

	

(Rn
Jlyj<R

which can be easily computed mainly if u and v are radial functions.
If 2R < Ixol then (1/2)Ixol < Iy¡ < (3/2)Ixol for each y E B and hence

the first member of (3) is now majorized by

1/q
c(s, n, p, q)R8+, - P

	

sup

	

u(y))

	

sup

	

v(y)-1/(P-1)
(¡y¡-2'R (¡y¡-2jR

where j E hY* .

Also if each of functions u, v-1/(P-1) satisfies a growth condition as :

sup

	

w(x)
J
<

	

(~

	

w (y) dy)
(1/4)R9xi<4R Rn c1R<jy1<c2R
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and if [p-1 - q-1 <_ (s/n) then condition (u, v) E A(s, p, q) is equivalent
to

1~4

	

1_P
RS+9 - P

	

n

	

ul

	

CRn

	

v-1/(p-1)

/

	

< A2,
lyl<R flui<R

A2 = Ac(s, n, p, q) .

Taking u(x) = ixi a , v(x) = jxja we obtain

Proposition IV.
Assume

i) 1 <p< q < oo, 0 < s < n, [p-1 -q-1 ] < (s/n) ;
ii) -n < a < n(p - 1) ;
iii) ps - n < a;
iv) ~3 = (q/p) (n + a) - qs - n;

and define u(x) = ixiO, v(x) = jxja . Then (u, v) E A(s, p, q) .

The condition ii) is equivalent to v E Ap . Now we recall a known
result, yielding D, or RD � from the Ap condition .

Proposition V.
A) Let 1 < p < oo, and w E Ap for a constant A > 0 . Then w E Dp

i .e .

ItQlw < DtnplQjw for all cabes Q and all t > 1 ; here D = Ap.

B) Let 1 < r < co, and w E RH,1(r_1) ¡.e.

1 r

	

¡

-PQ-1 1 fQ
wfT~(r-1)11

	

< R
(fQ, JQ w)

for all cabes Q
j

	

,

then w E RD11r with the constant R .

If w E Ap then it is known ([Ga-Fr]) that w E RHl+P for some
p > 0 (which depends on n, p, w) and so w E RD � for some v E]0, 1[ .
Proposition V can be merely seen by the use of the Hdlder inequality.

Proposition VI.
Let 1 < r < co, ,y E lié and w(x) = ixl'y . If -n < min(-y,-yr) then

w E RHr and so w E RDl-(j1,) .

From Propositions III-IV-VI we get

R = R(w) > 0
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Proposition VII .
Assume

i) 1<p<q<oo,0<s<n,
ü) -n < a < s(p - 1) ;
üi) ps - n < a;
iv) ,(3 = (q/p» + a) - qs - n;

-1 - q-1 ] :5 (s/n) ;

and define u(x) = IxIQ, v(x) = ixia . Then there is c > 0 such that

¡¡Msf IIL' <_ ellf II Lv for all nonnegative functions f.

Finally we end with the fact that the D,, condition implies DE or RD�
(for some E and v) .

Proposition VIII .
A) Let w E D,,. : i .e . 12Qj w < DlQlw for all cubes Q, D = D(w) > 1 .

Then w E DE : i .e . ItQlw < Dtn, IQl w for all cubes Q and all
t > 1, with E = ln D

In 2-
In particular if 2n <_ D then E >_ 1 .

B) Let w E DE with a constant D > 1 .
Then w E RD � : i .e . tnV I Qlw < 2n'DItQjw for all cubes Q and

all t > 1, where v = v(E, D, n) = In 2~

	

2-D2 -1

In particular if 2 < 12n'D2 then v < 1 .

Let 0 > 0, then 0 >_ E if and only if D <_ 2ne and 0 <_ v if and only if
12nED2 <

L2~J
. From this proposition we see that if w dx E D,, with

a doubling constant D = D(w) > 1 then w E RD� with v = v(D, n) _
In21 In

	

D~-1 ] where c = 4 + iñ2 .
Part A can be easily obtained by induction . The next part was proved

by Strdmberg and Torchinsky [St-To], but here we include the proof
since we need the precise value of v .

3 . Proofs of the main results

For each cube Qo we define the local maximal function

,Qof)(x) = sup {'D(Q)IQI -1 IlflQIIL 1 (dy) ; Q B x, Q C Qo}

The proof of Theorem 1 is based on the following lemmas
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Lemma 1 .
There is C = C(n, d) > 0 such that for each cube Q0 and for each

function f locally integrable whose support is contained in Q0

(M4>,Qo f) (x) < (Mqf)(x) < C(Mp,Q. f) (x) for all x E Qo .

Lemma 2 .
Suppose (u, v)A(D, p, q) and dQ satisfying one of i)-ii) as in part B

of Theorem 1 .

	

Let Qo

	

be a cube with 0

	

<

	

I QOI a

	

<

	

oo .

	

Then
IoiPsUPZEQO (Mp,Q. 1Qoo,)(z) < AIQolú_° < oo .

Lemma 3 .
With the same hypothesis as in Lemma 2, one can find a subcube Q1

of QO such that (Mb,Qo1QoQ)(z) < 4 ( ~2(Q ~) IQ, I,) for all z E Qo .IQ11

We postpone the proofs below, and we first show how Theorem I is
derived from these lemmas .
Proof of Theorem I.
Since

I
( ,(Q0

QOI)
I`wOla) 1Qo(') < (M~,Qo 1QoQ) (') 1Qo(')

it is clear that if (u, v) E S(~b, p, q) for a constant S > 0, then (u, v) E
A(~b, p, q) with the constant A = S.

Conversely let (u, v) E A(D, p, q) for a constant A > 0, and let Qo be
a cube . If IQOI, = 0 then it is trivial to have (u, v) E S(-P, p, q) . Also
(since 0 - oo = 0) if IQOI, = oo then (u, v) E S(-P, p, q) because in this
case IQ0Iu = 0 . So we can assume 0 < IQo1a < oo . From Lemmms 1 and
3 we first have

II(M111Q.Q)1Q.IILu < CH(MP,Qo1QoU)1Q.IILu

< 4C ( IQI
)
IQ1Ia) I`wOlu/4,

C = C(n, P)

Now Suppose dQ = v-1/(P-1 ) dx E B� with 1 - A < v . Then we get

IQii -1 IQ1I- ~(QO)

	

~
II(Mlh1Q.Q)1Q.IILu ~ C(1, n)

~ IQOI ~

	

~ IQOIo ~ ~

	

IQOI

	

IQOIo
/

I`w'OIu
/4

ñ-1+v
< C(1, n)B ( IQOI

	

('(Q
IIQOI ) IQOIa

/
I`v%OIu

/4

< C(~D, n)BAIQOIo/P = C(-P, n)BAII1QJILP. .
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Now suppose du = v-1"P-1 ) dx E B(P/q) (u). Then we obtain

ll(MD1Q.O')1QoIILu G 4C
C,'Ql1)IQ1la/

IQllu/9
(IQ

o

lu

) 1/4

< 4CA

	

IQllo l
1/P

	

IQolu

	

1/q
IQOIo/P

C ¡Qol~ l

	

C 1Q11u
< 4CAB 1 /P111Q .IIL; .

Proof of Lemma 1 :

Let Qo be a cube and let f be a function whose support is contained
in Qo . Firstly it is clear that

For the converse we use the growth properties H)1-2 of 4) . Let Q be
a cube which contains x, with x E Qo . We suppose that Qo does not
contain Q (otherwise there is nothing to prove) . We distinguish two
cases .

1) For IQoI :5 IQI :

Let Q1 be a cube with the same center as Qo but with the lengths
31Q1 1/' . Since ri < 1 we first have

It results that

(Mq>,Q. f) (x) < (Mq, f) (x) for all x .

ID(Q) _IQol 4>(Qi)

IQI - IQI ¡Qol

< C(ib,n)

	

_IQoI

	

1-~ ~(Q0)

IQI ¡Qol

< C(oP, n) ~D(Qo)

¡Qol

<D(Q)
ll(f1Qo) 1QIIL1 :5 C( b n) "(Q0)

lIf1Q.IIL1
IQI

	

¡Qol
< C(P,n)(Mp,Qof)(x) .
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2)ForIQl<¡Qol :
One can find a cube Q2 C Qo such that IQI = 1Q21, Q n Qo

Q C 3Q2 . Hence we get

q>
QI

)
ll(fleo)1QIIL1 -'c~ Ip(QQ2

)
IIf1Q,IIL1

< C(4>, n) '>
IQ
(Q
2
2
1
) Il,f 1Q2 IILl

G C(4>, n) (Mp,Qo .f ) (x)

Proof of Lemma 2:
Let z E Qo and Q a subcube of Qo such that Q D z. Using one of

hypothesis in part B of Theorem I we have to show

(~)

	

(,(Q) ~Qlo

	

< AIQ2C
`w

	

IQolu~4

This implies : supZEQo (Mq>,Q o 1Q.u)(z) G oo . And so to obtain ($) it suf-

fices to consider (>QQ) IQI,) IQolllq and to estímate this with AIQolo1p
as we have done in the proof of Theorem I .

Proof of Lemma 3:
Since sup.,EQo(MD,Qo1Qou)(z) G oo there is one y E Qo such that

and so

(Mq>,Qo 1Qou)(x) < 2(Mq>,Qo1Qoo,)(y) for all x E Qo .

Again, there is a subcube Ql of Qo which contains y such that

sup (Mq>,Qo 1Qoo,)(z) C 4
('Q I)

IQlw) .
zEQo

Proof of Proposition II:
Part A
Let do, E B� for some v E]0, oo[ Le .

,Qo 1QOO,)(y) < 2 (
I'(Ql)

IQll°)
IQII

v

IQoly < B (IIQQ011)

	

for all cubes Qo, Ql with Ql C Q

C Q2 and
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Let Q be a cube and t > 1. Taking Q1 = Q and Q0 = tQ we obtain

which means du E RD� .
Converserly let do, E RD� for a constant R > 0. Also if do, E D,,,, then

for Q1 C Q0 we Nave

that is

that is

IQ11o < R
('Qllly

IQ21a
Q01

where Q2 has the same center as Q1 and IQ21 = IQol

< (1Q11)'13Q,,j,
IQO I

tnv IQI" < RItQIQ, where R=B

< RD
¡Q11

I
IQ0.1,

( Q01)

where D depends on the constant which is in the doubling condition for
da. So it appears that du E B� with the constant B = RD .
Part B
Let da E B(p/q) (u), Le .

pl4

IQlIa < B

(

IQJI.)

	

for all cubes Q0, Q1 with Q1 C Q0 .

Suppose also do, E D, . Let Q be a cube and t >_ 1. Taking Q1 = Q
and Q0 = tQ and using the fact that do, E D,, for some E' >_ 1 (see
Proposition VIII) we obtain

1 D_1 < IQI' < B

	

IQIu
\ p~q

tn 7̀	ItQI,-

	

( ItQI

	

J

1

u

I tQIuu <
(DB)qIíptne'q/p1QI u

which means du E DE with E = E'(glp) > l . Also since u dx E RD � , for
some v' E]0, 1] (see Proposition VIII) we get

~9

IItQ1ll

	

1 )p

<
B CRtnv

tnv'p/glQIo < B(R)pIgItQ1a
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which means du E RDv with v = v'(p/q) < l. On other hand we must
have for all t > 1

1 < DB(R)plgtn[E'_v'(plg)1

hence 0 < E' - v'(p/q), or vq < Ep .

Conversely let du E RDv, du E DE for some e E [1, oo[ and v E]0,1]
with Ep < vq . For all cubes Q1, Q0 with Q1 C Q0 we have

IQila (1QOlu)p/q
<
RD

(pl1)v-E(p1q)

IQOI,

	

IQi lu

	

IQOI
< RD

which implies du E B(p/q)(u) for constant B = (RD)(g/p) .

4. Proofs of further results

Proof ofProposition IV:
Let R > 0 . The condition ii) implies that v and v-1/(p-1 ) are locally

integrable functions and

-1/(p-1) dy =

	

¡y¡-a/(p-1) dy �, Rn-[a/(p-1)]
fiyl<R

	

livi<R

From iii) and iv) we have ,Q = (q/p)(n + a) - qs - n > -n, and so

fiyi<R
u dy =

fly

	

I yI
Qdy ^' R[(n+a)(glp)-qs] ([(n + a)(glp) - qs] > o) .

Since [p-1 - q-1 ] < (s/n) we only have to estimate

1/q

	

1-p
R

	

9

	

p

	

Rn f

	

u

	

Rn J

	

v- l(p_

	

1)

	

(see Section 2) .
(<R ) (ly1<R

Using the two equivalentes aboev this last quantity is equivalent to

R[s+(n/q)-(n/p)1 (R[(n+a)(q/p)-qs-n])1/q (R[-a/(p-1)])1-pl =

= R[s+(n/q)-(n/p)+(n/p)+(a/p)-s-(n/q)-(a/p)] = 1 .

Proof of Proposition VI.
Let -n < min(-y, yr), and let B be the ball B(xo, R) .
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1) If 1xo1 < 2R then B C B(0, 3R) and B(0, R) C 3B . Hence

and since -n < "y then, by Propositions IV-V, w dx E D,,,, and it follows

2) If 2R < jxoj then (1/2)jxo1 < ¡y¡ < (3/2)jxo1 for each y E B and it
results

(C(n)
~

	

N
~~B1 IB wrll

<

	

Rn Jlyl<3Rly_

	

7rdy

	

R r

( 1
~Bl fB wl

	

D(y) (~B~ JsB
w)
l

> D'(-y) (c(n) f

	

¡y¡' dy l
R lyl<R

- Ry .

IB
1

	

( 1
I
f

w") - (2'R)-Y" with j E N*, and

	

7
fB w)

- (2jR)-Y .

In all cases, since w dx E D,,., we get

( vil 1,
wT

)
T < D(n, y)

(FQ1 f,
w) for all cubes Q

and hence w dx E RH,.

Proof of Proposition VII:
Let u(x) = v-11(p-1)(x) = ~xi- faAp-1 )1 . Note that du E Ap and so

do, E D,,,, (see Proposition V) . If ce _< 0, then -n < y = -al(p -1) < -yr
for all r > 1 . Choose r > 1 with (n/s) <_ r then from Proposition VI:
do, E D, >,> f1 RD1_(11,) with [1 - (s/n)] <_ v = [1 - (1/r)] . To obtain
the same conclusion for a > 0, we Choose r > 1 such that (n/s) <_ r <
[n(p - 1)/a], and so -n < yr < y .

Finally using Propositions IV-III and the Sawyer theorem [Sa2 ] then

~IMs fIIL<l < chi f II LP for all functions f .

Proof of part B ofProposition VIII:
We need the following lemmas whose proofs will be given below .

Lemma 4.
Let w dx E DE for some E E [l, oo[ and with a constant D = D(w) > 1 .

Then 1 ZQIw < 6nsD IQ\ (2Q) Iw for each cabe Q.



Lemma 5 .
Let w dx E DE for some E E [l, oo[ and with a constant D = D(w) > 1.

ThenI 2Q Iw < QIQ Iw for each cube Q, with ,Q = 112-DD2 1 , and so
/3 E]0,1[ .

and
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The part B can be derived from Lemma 5. Indeed if Q is a cube then

IQIw ~ ~3m l2
,m, QIw for each m E N* .

Let t > 1 . There is k = k(t) E N* such that 2k-1 < t <_ 2k (so
[(1nt)/(ln2)] < k) . It results

IQIw < ~3kl2kQIw
< 2nfDO"ItQI.
= 2n'De[(lno)/1n2]intitQIw

< 2naDe[(ln0)/1n2]1ntltQlw
(ln (j)/ ln 2

= 2nED [1]

	

ItQIw

In 1
tnvIQIw < 2nsDItQIw with v= In 2n'

If 2 < 12n'D2 we get

(12nE D2 +2n) < (2n-1 12nED2 +2n-1 12n'-D2) = 2n12nED2

or 12nED2 < 2n(12nED2 - 1) which implies -1 < 2n and so v = in2 < 1 .

Proof of Lemma 4:
In the proof of the Theorem I we have already used the following

geometric argument:
"Let Q1, Q2 two cubes such that Q1nQ2 7~ 0 and IQli[1/n] < IQ2I[1/n]

then Q1 C 3Q2 ." Let Q be a cube and Qo a subcube of (Q\(2 -1Q)) with
lenghts (1/4)IQI[ 1/n ] and let Q1 = (2-1Q) . Then (2 -1 Q) n 2Qo 7~ 0
and I2-1Q)I[1/n] < I2Q0I[1/n] . Using this argument we obtain (2-1 Q) C
3(2Qo) = 6Qo and then

2Q I6Qolw
w
< 6nE DI Qoiw

< 6nED
~Q\ (2Q) w
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Proof of Lemma 5 :
Let Q be a cube . By hypothesis

2`¡QlwGD 1Q ,

	

D=D(w)>1.
~2 w

So using Lemma 4 we get

2-nelQlw < 6nED2
~Q\ (2Q) ~w

VED2
11QIW - 2Q wJ

It results that

with
~

1
2Q C'3IQlw

w

6nED2 -2-ne _ 12nED2_

	

1
, and so

	

E]0,1[ .6neD2 12neD2
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