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ON THE NUMBER OF
COINCIDENCES OF MORPHISMS BETWEEN
CLOSED RIEMANN SURFACES

YoLaNDa FUERTES aND GaBIiNO GONZALEZ-DiEz!

Abstract

We give a bound for the number of coincidences of two morphisms
between given compact Riemann surfaces (complete complex al-
pebraic curves). Our results generalize well known facts about the
number of fixed points of an automorphisrm,

Let M be a compact Riemann surface (complete complex algebraic
curve) of genus ¢ > 2, and 7 : M — M an automorphism different from
the identity, Then it is well known (see c.g. [F-K]} that 7 has at most
29 + 2 fixed points and that this bound is attained if and only if M is
hyperelliptic and 7 is the hyperelliptic involution.

With this in mind, we consider two distinct morphisms f; : M — M’
of degrees d; (i = 1,2) belween compact Riemann surlaces of genera g
and g’ > 2 respectively, and look at the number of coincidences, that is,
the number of ponts at which f; and fo agree.

The result we obtain (Theorem 2.9} is that fi and f» have at most
d1 +2¢'\/d1dy + d» coincidences, and that this number {suitably counted)
is attained if and only if M’ is hyperelliptic and f; and f; differ by com-
position with the hyperelliptic involution. When these morphisms are
isomorphisms, i.e. when d; = d; = 1, then, of course, the coincidences
are the fixed points of the automorphism r = fl_] @ fe: in this case our
result agrees with the classical one.

The proof uses a Lefschetz trace formula for the case of two morphisms,
which is a straightforward generalization of the standard one and, no
doubt, is well known to topologists. However, at least in the precise
form we need it here, we have not been able to locate it in the literature
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{although see [Eich], [Lef], [K-L]); so we devote a preliminary section
to cstablish it.

The main result is proved in Section 2; the work done there will allow
us to obtain, as a byproduct, the well known theorem of de Franchis
([Fra]} on morphisms between closed Riemann surfaces.

1. Lefschetz’s trace formula

A) In this section we first recall the basic facts in the proof of the stan-
dard Lefschetz formula for the number of fixed points of a self-mapping,
and then we show how to derive, in a similar way, the Lefschetz formula
for the number of coincidences of two different mappings.

Let A be a compact oricnted manifold of dimension n, let A C M x M
be the diagonal submanifold, and let na € HE (M x M) be its Poincar¢
dual. For any self-mapping f : M — M, the integral

un = [ (xiarn

is called the Lefschetz number of f.

The classical theorem of Lefschetz arises from evaluating this integral
in two different ways corresponding to two different representatives of
the de Rham cohomology class 9a.

On the one hand, one has na = Z(—l]pZﬂ';wf A miw! " ?, where
r i
{wP} and {w] P} arc basis for H (M) and Hj5 (M) Poincaré dual
to each other, and m; : M x M — M (i = 1,2) are the two natural
projections (see e.g. [B—T]}). This way the computation gives

(1.4) Ui =SS [ e nu

Z(——l)p trace flyn(ar)-

=1

On the other hand, the Poincaré dual of an orlented submanifold Z of
X can always be represented by a form $z, the Thom class, supported on
an arbitrarily small tubular neighbourhood T of 7 in X, diffeomorphic
to the normal bundle Nz of Z in X, with the property that the integral
of 2 along each fiber 7%,z € Z, s 1 (|B-T)). In the case of our diagonal
submanifold /A C M x M, one sees that (f x id)*®x is supported only
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near the fixed point set of f, and hence, at least in the case in which
f x id is transverse to A, we have (see [B-T], [G-H], [G-P])

(2.A) | uxiares= 3 <@,

flz)==x

where £(z} is the sign of the determinant of (D f, — Id). We recall that
f xid being transverse to A is equivalent to the matrix (D f; — I'd) being
non-singular {{G-P]).

More generally, let us only assume that f has a finite number of fixed
points {not necessarily transverse to A). We recall that L,(f), the local
Lefschetz number of f at an isolated fixed point z, is defined to be the

degree of the map z —— % from the boundary of a small ball
— Z
around z to the unit sphere $771,
In this situation (see {G—P|) one can perturb f near the fixed points
to obtain a map f; : M — M enjoying the following properties
1} f: is homotopic to f;
1) f: agrees with f outside compact balls B(z) around each fixed

point z;
it} {(f: x I} is transversc to A,
iv) La(f) = > £(y).

1yeBlz)/ fily)=y}
Summing up, we obtain

(3.A)
L =Lifd= 3 )= 3 S e
fely)=y flzy=x  {yeB(z)|fly=y}
==z

B} The above considerations translate word for word to the case in
which one has two different mappings f; : M — M’ (i = 1,2) between
{in general, distinct} compact oriented manifolds of the same dimension.

Definition 1.1.

The Lefschetz number of two mappings f; : M — M'(i = 1,2) be-
tween two compact oriented manifolds of equal dimension is defined to
be

L{f1,f2) = /M(fl X f2)" 14,

where 7j, is the Poincaré dual of the diagonal submanifold A <€ M/ x M.
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Poincaré duality between HY o (M’) and Hp 77 (M’} allows us to make
the following

Definition 1.2.

Let f: M — A’ be a mapping between compact oriented manifolds
of the same dimension n. Then we shall denote by f, the linear map
fo i AR p(M) — H% o (M’) determined by the property

faon =/ vA o
M M

for any w' € Hp P (M').
Now, with the obvious notation, the analogue to (1.A) takes the fol-
lowing form

(AB) Ll = [ (hixfrme =3 (-1 Y | fiwlr n gy
’ p=1 i v

=> -1y /M, oo ffwf w7 = 3 (~1)P trace fo.off
P i P

the previous formula {1.A} being obtained by letting the second mapping
be the identity. Again the form {f; x f2}*®a is non zero only near the
coincidences of f; and fz. In case fi x fz is transverse to the submanifold
A C M' x M', which again means that the matrix (Df, ; — Dfe;) is
non-singular at any such point z, each of these points contributes to the
integral [, (f1 x f2}'®a with 1 according to whether the determinant
of (Dfiz — Dfaz) is positive or negative. Thus, the analogue to (2.A)
is

(2.B) L )= Y. elw),
{z/F{z)=Fz(x)}

where €(2) is the sign of the determinant of (Dfy . — Df2 ).

If f1, f2 satisfy the weaker condition of having a finite number of co-
incidences, then by perturbing f) in the way indicated above ([G-P]}).
we obtain a map f; enjoving the following properties

1} fi is homotopic to fi;

ii} fe agrees with fi outside compact balls B{z) around each of these
finite number of points;

i) {fe x fo) is transverse to 4;
iv) the integers Z e(y) agree with the local Lefschetz

{veB(z)/ f(yi=f20y)}
numbers Lo (f1, f2) (see Definition 1.3 below).
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We can now write
(3.B})

Lififo) = Lifuf2) = Y )= > S ey

fed=haly)  fz)=flz) {yeB()/fi(y)=f2(3)}

= Z La:(flrf2)'

Fr{z)=fz{z)

Summmarizing we have
Definition 1.3.

Let fi, f» be as in Definition 1.1 and let = be an isolated point of
coincidence, then the local Lefschetz number of fi, fy at z, L.(f1, f2).

fi(z) ~ falz)
/1)~ fe)

boundary of a small ball around z to the unil sphere $7~

is defined to be the degree of the map z +—— from the

Proposition 1.4.

Let f, - M — M’ (i =1,2) be two mappings befween compact ori-
ented manifolds of the same dimension n.

Let us assume that the set F' of coincidences is finite, then

L{fi, f2) = Z( 1P trace fi © fo. ooy = p_ Lolfi, f2):
p=1 xEF

Note 1.5.

In the formula (1.B) the linear maps f;, fo. arc composed in different
order. The change is valid because of the well known fact that for any
two matrices A, I7 the traces of A- B and B - A agree, whenever the two
products make sense.

Of the above sequence of traces, the first and the last ones are the
easiest to work out. Let us denote by d; the degree of the map f;; then
we have

Lemma 1.6.
i) frofa. i HY(M) — HO(M) is multiplication by dy
i) f7ofa, : HM(M) — H™(M) is multiplication by dy.

Proof: Let us denote by 1ps and wpy the standard generators of H2(A)
and H™({M), respectively. Then

f Fo.lng Awage =f Ips A fowng Z/ frwan =da
M M M

:/ dalpge A wpg
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This means that fo (1y) = dolapr. Similarly f,, fo.wm A lar =
IM whas N f:?lM’ =1= fM' wagr N Lpges which mcans that fg_wM = wdpgr.
From this, i) and ii) follow easily. H

Example 1.7.

If cither A or A4’ is the sphere $7, then L{fy, fo) = di + (—1)"ds.

In particular, unless d; = (—1)"t1dy, the set F' = {z/fi(z) = fo(z}} is
nonempty,

2. A bound for the number of coincidences

1. In what follows we will concentrate in the case in which the mani-
folds M and A’ are compact Riemann surfaces of genera g and ¢’, and
the mappings f; : M — M’ are holomorphic and non constant. In this
situation the Lefschetz formula of our previons section reads

L{fi, fa) = dy — trace f{ o fo | man) + %2

Moreover, it is well known that the first de Rham cohomology group
(with complex coefficients) splits into the direct sum of the vector space
of holomorphic 1-forms and its conjugate; namely

Hba(M,C) = T{M,2)  T(M, Q);
we have the following result

Lemma 2.1.

Let f : M — M’ be o holomorphic map between compact Riemann
surfaces, and lel f. - Hhp(M,C) — H} (M’ C) be the C-linear map
obtained by extending the R-linear mop f. introduced in the preceding
‘section; then we have

i) f(T(M, Q) C T(M',Q);
i) f.(T(M,Q)) c T(M' Q); in foct, for any holomorphic 1-form

W, f*f;' = f*w'

Proof: Let U' be an open set of M’ well covered by f. This means
that f~1(U') is the disjoint union of opensets U; (i = 1,... ,d = deg(f))
such that the restriction of f to each of them is an isomorphism.

Now, given a holomorphic form w on M, we assign to each such open
set U’ the form

d
Wiy =D (fio))w-
=1
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in this way we obtain a globally wel! defined holomerphic form o' on M’
{see [Spr, p. 276)).

We claim that o' = f,w. Indeed, for any 1-form 5 on M’ a standard
partition of unity argument shows that

/ w'/\n:/w/\f*n.
MY M

The rest of the statements in the lemma, follow from this fact. B

Notation. At this point it is convenient to ntroduce a change in our
notation. From now on, given a holomorphic map f; : Af — A4’, we shall
denote by f;. the restriction of the C-linear operator f;. of the lemma
above to T'{M, Q). Accordingly f* o fy, will always denote a C-linear
endomorphism of ['(M, Q).

With this notation we have

Corollary 2.2.
L{f1, f2) = di — (trace f{ o fo. + trace ff o fo.) + ds.

Remark 2.3.

When f; : M — M’ (i = 1,2) are isomorphisms, then we have
di =dz=1,and fofs, = (f; ' 0f1)"; thus, in this casc, our formula is
just the usual Lefschetz’s formula for the antororphism (f; ' o £1) (scc
[F-K]).

2. It is well known that the vector space T M, §}) carries a hermitian
structure given by

< v, w >=é/v/\w.
We have the following result

Proposition 2.4.

i) fi o fo. and f3 o fi, are adjoint of each other.
i) f*o f. is self adjoint.
1il) There is an orthogonal basis 8 = {wy,... ,we} of T(M,Q) with
respect to which f3 o fa, and f3 o fi, o f} o fo. are represented by
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the following diagonal g X g matrices of ronk ¢'

d ¢ ... 0 0 ... 0
0 4 . )
* . O
Mplfsofa)=1 p 0 dy © 0
th 0 0O a
0 0 0 G
dydy g 0o o0 ... 0
0 did, ) ) )
. . : 0 :
Mp(fsohi.ofiofod=1 o .. 0 ddp 0 ... 0
0 0 0 0
0 0 0 0
Proof: We have < ff o fo,v,w > = i fff o v h@w =

i fenfyofhi,w=<u, [;ofi,w> which proves i) and ii).

In order to prove iii) we make the observation that the action of f, o f*
on (M’ ) is just multiplication by d = deg(f); this can be deduced
gither from the explicit construction of f.w carried out in the proof of
lemma 2.1, or from the definition given in Section 1. Indeed, for any two
forms v',w’ € T(M',Q), we have < foo f*v/,w' >=if fio f*v' Anw =
iffrVYAPW s A= df YV AW =<dr W >

This obscrvation shows that f3 o fi, o fy o fo. = di1f3 o f2,, and
therefore it is cnough to prove the statement concerning f3 o fo . Now,
since f§ o fa_ is self adjoint, there is an orthogonal basis  with respect
to which its matrix is disgonal. Clearly this matrix has rank at most g,
but on the other hand the observation above alsc shows that the forms
in f3(0(M7, Q) are all eigenvectors of £ o fz, with eigenvalue dz. This
completes the proof. B
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Corollary 2.5.

We have the bound L{f, f2) < d1 + 2¢'/didz + da. Equality holds if
and only if the matriz of fy o fo. with respect to the basis 3 above is

(~Va@& 0 .. 0 0 .0
0 —Vdd S :
: SR :
o 0 —vdids 0 ... 0
G & 0 0
G G g ... @

Proof: Let A = {ay;} be the matrix of f} o f, with respect to the
orthogonal basis above. Then, by part i) of the Proposition, 4 will be
the matrix of f7 ¢ fi_; thus, by part iii) we have

didg O ... 0 0 ... 0
0 dido : : :
, : g :
A-A=1] o 0 didy O 0
0 0 0 o
0 0 © 0

This means that

dids, fk<g

g8
2o
;'a"‘l { 0, ifk>g.

From here we deduce that |are| < /dids and that equality occurs if
g
and only if Z laix|® = |ark|® = dida. This ends the proof. @
=1

3. By Section 1, our inequality in Corollary 2.5 can be written as
Lfufa)= >,  Le(fifa)
F{Py=f2(F)
< dy +2¢'v/dida + da.

Now we give a convenient description of the local Lefschetz numbers

Lp(fi, f2).
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Definition 2.6.
Let P € M be a coincidence of f; and fb; and let

fi(z) = falz) = ckz® + aon ™+ G #0

be the Taylor expansion of fi — fa with respect to small parametric discs
D of P and D’ of f;(P). We define the multiplicity of f1, fo at P to be

mp{f1, f2) = k.

Proposition 2.7.
Let P € M be a coincidence of fi and fz; then

Lp(f1, f2) = mp(f1, f2)-
Proaf: Lp(f1, f2) is by definition the degree of the map

ze 3D +— fl(Z) — fz(z) — Ckzk + Ck+1zk+1 4o
If1(2) — fal2)] — lewz® + cppr2Fti 4+ |

Now, if D is sufficiently small, the family of maps

cp2® + tleg 2+ )

Fyz) =
#2) ek z® + t{cperzt! + o

k
i CpZ ,
gives a homotopy between our initial map and the map z — |_ch“| which
[ 4594

clearly has degree k. B

Because of this proposition, in the rest of the paper we will refer to the
global Lefschetz number L{ f1, f2) as the number of coincidences counted
with multiplicities (or approprictely counted}.

In any case, this number is always greater than or equal to the actual
number of coincidences, so we have.

Corollary 2.8,
) #{P e M/H(P) = fo(P)} < di +129'vd1d2 +dz.
i) #{P € M/fi(P) = fo(P)} < j,—‘_—l(zg' +2) =

—1
2g+2+4(9, —1)
g -1
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Proof: We only have to observe that ii} follows from i}, since by means

of the Riemann-Hurwitz formula, d; < g";l [ |
g

We observe that when f1, f» are isomorphisms then we have d) = da =
1, g = ¢'; and our bounds all equal 29 + 2 = 24’ + 2, as it should be.

4. We now address the question of whether our bound is sharp.

By Corollary .2.5., the number of coincidences L{fi, f2) attains this
bound if and only if for the first ¢’ forms wy,... ,wy of the orthogonal
basis 3, we have

fiofowy=daw; and f{ofow=—vdidows, i=1,...,9};

which implies that

f{(fzowi):_\/%f;(fz.wi)s 1:13 :gIr

and hence that
£7 f d] P ' i
FW) =7 £W), forallw e T(M',Q).
4

It follows that the inclusions f! : C(M') < C(Af) hetween the func-
tion fields of M’ and M induced by the maps f, (2 = 1,2) agree on the
subfield K C C{M'} generated by quotients of 1-forms on M.

Let us now assume that ¢ > 2; then, if M’ is not hyperelliptic we
have K = C{M’) and, by the well known equivalence between compact
Riemann surfaces and their function fields, it follows that f; = f, which
is in contradiction with fy o fo w; = ~/dida w;.

If on the other hand M’ is hyperelliptic, then K = C(x) is the subfield
of degree 2 generated by the hyperelliptic function z : M’ — P! and
we see that in this case either f; = fo (which again is impossible), or
fa=Jo f1, where J is the hyperelliptic involution of M’ (see [F-K]).

Summarizing we have proved the following result

Theorem 2.9.

Let f, : M — M' (i = 1,2) be two morphisms between compact
Riemann surfoces of genera g ond ¢’ respectively, and let L{fi, f2) denote
the number of coincidences appropriately counied. We have

i} L{f1, fo) < di +2¢'Vdydp + do.

i) In case g' > 2, this bound is attoined if and only if M’ is hyper-
elliptic and fo = J o f;, where J denotes the hyperelliptic involution of
M.
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3. Final remarks and examples

Example 3.1.

Let us take as M the Fermat Riemann surface of algebraic equation
7?7 + %" = 1, and as A’ the hyperelliptic surface of equation y? =
1 — z%": we have a map

FiM - M
{z,y) — (2,9")

Let us denote by oy; the automorphism of M given by oy(z,y) =
(&'z,£1y), where £ = exp (’“’cl), and by f;; the morphism fi; = fooyy.

n

In this case, we can make evervthing explicit. We have

- deg(fi;) = n.
Cg=(n-1)2n-1)
-g=n-—1.

_x_l (withl<rsandr+s5<2n—1)

- The differentials z"'y*~ ' —

afford a basis for I'(M, Q).
- The nonzero eigenvalues of f* o f;;, are g/~ +) 0 <k <n - 2;

the corresponding eigenvectors being z* —.
Y

n—2
- L{f, fr'.j) =n - nZ(—})i"(g—i(kH) + g:‘(k+1)) +n
k=0

=2 — (~1Pn(~1 - £")

4n; t # 0 even, j even.

0; 1 # 0 even, j odd.
=4{ 2n; i # Qodd.

n?; i =0, j odd.

2n{2 —n); ¢=0, j even.

In any case L{f, fij) <n+2(n — 1)n + n = 2n?, which is the bound
obtained in Theorem 2.9; and the bound is attained by L(f, fo;), j odd.
We see that fo,(z,y) = (z, —y"); thus fo; = Jof, in complete agreement
with our theorem.

We also note that L(f, fg;), J even, is negative as soon as n > 2; this
is becausc in this case fp; is just f.
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Remark 3.2.
There is a more direct approach to estimate #{P/ f;(P) = f(P)}.
Let ¢ be a meromorphic function on Af’, then we can write

#{P/NH{P) = fo(P)} < #{P/po /i(P} - po f2( P) = 0}
<deg{po fi —po fo}
< deg(yp o f1) + deg(p o f2)
= deg()(d; + d3).

This computation makes sense whenever y is such that go f) and wo fy
are distinct; in order to guarantee that this property is satisfied, we must
allow ¢ to have degrce g’ + 1. (We recall that, by the Riemann-Roch
theorem, for any P’ € M’ there exists a function of degree ¢’ + 1 that
takes the value oo only at the point 1))

This gives us the bound (¢’ + 1){dy + d3), which is satisfactory for
the automorphism case (d; = dy = 1) where we cbtain the correct num-
ber 2g + 2. However, in the general case this bound exceeds ouxs by
g'(Vd, — Vdz)*.

Remark 3.3.

We note that the morphisms between the surfaces M and M’ cannot
be replaced simply by continuous (surjective) maps®. Already when M =
M’ one has a family of homeomorphisms £, : M — M whose action
on the first homology group is represented, with respect to a canonical
basis, by the family of 2g x 2¢g matrices

n o ... 0 1 0 ... 0
g0 n : 0 :
SR
A - _01 5 0 g 8 o 1
0 -1
: 0
0 0 -1 0 0

this is because A, is symplectic.

The corresponding family of Lefschetz numbers is L(f,) = 2 + 2gn,
which is not bounded with g.

Remark 3.4. {de Franchis theorem).

The work done in Section 2 also allows us to obtain the following result
of de Franchis.

1We are grateful to C. Earle for bringing this question to our attention.
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Theorem:.
Let M, M’ have genus > 2; then

i) The number of possible maps f; : M — M’ is finite.
i) The number of possible targets M’ for fited M is finite.

We describe the proof briefly; it naturally falls into two parts:

1) First, one proves that the linear endomorphism f o f;
(resp. f! o f1., fi kept fixed) of T'(A,(}) determines f; up to post-
composition with an automorphism of M’ (resp. determines f; com-
pletely).

2) Then, one shows that there can only be finitely many such linear
endomorphisms.

The proof of statement 1) is contained in the discussion of Section
2.4 that precedes Theorem 2.9. Indeed, if ff o fi, = f] o f;, (resp.
fiof. = f] o fi,) then the induced inclusions between function fields
o f  C{M") — C(M) would have the same image (resp. would
coincide). Therefore, from the well known equivalence between Riemann
surfaces and their function fields, we deduce that f; and f; differ by post-
composition with an automorphism of M’ (resp. f; and f; agree). Again,
the case in which M’ is hypcrelliptic will have to be treated separately.

In order to prove 2), we work with the cohomology group with integer
coefficients H'{M, Z); this way we represent ffof,, =T} (zesp. ffof1, =
Ty1) by a matrix with integer entries. Then, we use Proposition 2.4.iii)
to obtain that its Euclidean norm || T; ||2 := trace (T -T3) is 2d2g’ (resp.
2d;d;g’}, where T stands for the adjoint of the operator T'. From this,
we deduce that there is a finite number of operators T (resp. T).

In conclusion, the Aniteness. of the operators T; {resp. T;,) proves part
it} (resp. part i}} of de Franchis theorem.

It should be said that this proof is very similar to that of H. Martens
(Ma]) (see aiso [Ta], [F—S]}. The only difference is that in our proof
jacobians do not appear; instead we let function fields play the main role.

Added on Proof.

We have recently learnt (W. Fulton, “Intersection theory”, Springer-
Verlag, 1984, p. 312) thai the bound given in cur Theorem 2.9.i) can
also be obtained by means of the intersection theory of algebraic surfaccs.
Not so (as far as we can sec), the identification of the case in which this
bound is attained (Thecrem 2.9.1).
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