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NORMAL BASES FOR NON-ARCHIMEDEAN
SPACES OF CONTINUOQUS FUNCTIONS

ANN VERDOODT

Abstract

K is a complete non-archimedean valued field and A4 is a compact,
infinite, subset of K. C(M —~ K is the Banach space of continu-
ous functions from M to K, equipped with the supremum norm.
Let {prn(z)) be 2 sequence of polynomials, with degp, = n. We
give necessary and sufficient conditions for (p,{z)) to be a normal
basis for C(M — K)}. In the rest of the paper, K& contains (J, and
V, is the closure of the set {ag™|ln =0,1,2...} where o and g are
two units of Zp, g not a root of unity. We give necessary and suffi-
cient conditions for a sequence of polynomials (rn(z}) (degrn = n)
to be a normal basis for C(Vy — K). Furthermore, if we define

T z {zfa—1H=z/lag)—1}.. (I/(‘Wﬂ Yy—1)
{0}_1‘{'&} T =17 o= ifn>1,

and if (.} is a sequence in Ny, then we show that the sequence of

In
polynomials { :i } forms a normal basis for C{V, — K).

1. Introduction

The main aim of this paper is to find normal bases for spaces of con-
tinuous functions. Therefore we start by recalling some definitions and
some previous resulis.

Let K be a non-archimedean valued field and suppose that K is com-
plete for its valuation ).|. Take M C K compact, infinite, and let
C(M — K) be the Banach space of continuous functions from M to
K, equipped with the supremum norm.

Let E be a non-archimedean Banach space over a non-archimedean
valued field K. Let e), e2,... be a finite or infinite sequence of elements
of E. We say that this sequence is orthogonal if |lazey 4+ - -+ + agex| =
max{|lee;fl : i =1,...,k} for all k in N (or for all & that do not exceed
the length of the sequence) and for all @,..., 0 in K. I the sequence
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o
is infinite, it follows that Zaieil = max{|la;e;]| 1 ¢ = 1,2,...} for
all a;, ag,... in K for which limaje; = §. An orthogoal sequence
11— 0
e, €z, ... is called orthonormal if ||e;|| = 1 for all 4.

This leads us to the following definition:

If E is a non-archimedean Banach space over a non-archimcdean val-
ued field K, then a family {e;) of elements of E is a (ortho)normal basis
of E if the family (e;) is orthonormal and alsc a basis.

An egnivalent formulation is

If E is a non-archimedean Banach space over a non-archimedean val-
ued field K, then a family (e;)} of elements of E is a {orthojnormal basis
of E if each element z of F has a unique representation z = > ze; where

t
x; € X and x; — 0 if ¢ — oo, and if the norm of z 15 the supremum of
the norms of z,.
In [6, chapter 5, 5.27 and 5.33] we find the following theorem which is
due to Y. Amice:

Theorem 1.

Let K be a non-archimedean nalued fleld, complete with respect to its
norm |.|, and let M be o compact, infinite subset of K.

Let (uy) be an injective sequence in M.

Define po(3) = 1, pn(2) = (& = un_1)pa—1(2) for n > 1, aa(z) =
Fn(ﬁl

Priun)’

Then (gn{z)) forms a normal basis for C(M — K) if and only if
llgall = 1 (V).

If (gn(x)) forms a normal basis for C(M — K) and f is an element
of C(M — K), then

- Z angn(2) where 6, = pafu,) Z Cflw)
n=0

i=0 pn+1(ut)

We remark that there always exist sequences (g.(z}) such that [gs|| = 1
for all n.

We will call a sequence of polynomials {p,(x)} a polynomial sequence
if py, is exactly of degree n for all n.

After all these definitions, we now give a survey of the results in this
article.
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In Section 2 of this paper, K is a non-archimedean complete ficld, and
M is a compact, infinite subset of K. In Theorems 2 and 3 we will give
necessary and sufficient conditions for a polynomial sequence (p,{z)) to
be a normal basis for C(M — K).

In Sections 3, 4, 5 and 6 we consider the following situation: Z, is
the ring of p-adic integers, (, the field of p-adic numbers, and X is a
non-archimedean valued field, K containing §,, and we supppose that
K is complete for the valuation ||, which extends the p-adic valuation.
Let 2 and g be two units of Z;, ¢ not a root of unity. We define ¥ to be
the closure of the set {ag"|n = 0,1,2,...}. A description of the set V|
will be given in Section 3 (Lemmas 4 and 5}. In Section 4, Theorem 4,
we will give necessary and sufficient conditions for a polynomial sequence
{rn{z)) to be a normal basis for C(V, — K.

z x} _ (2/a-D(a/leq)=D)...(2/{ag" =) ¢ s 1

If we put {O} =1, n (@ -1} (g—1)

and if (7,) is a sequence in Np, then we show in Theorem & of Section

In
5 that {i} forms a normal basis for C(V; — @,). The proof we

give here is only valid when we work with a discrete valuation.

jﬂ
In Section 6, Theorem 6 we show that { Z } also forms a normal

basis for C(V; — K), where the valuation of K does not have to be
discrete, as was the case in the previous section.

To prove this, we need the results of Section 5.

S. Caenepeel ([3]) proved the following: Let (%) = ﬂiﬂ)—»;(,‘_—wl if
n 21, {) =1 (the binomial polynomials), then for each s € Ny, ((;)3}
forms a normal basis for C{Z, — Q,), and each function f in C(Z, —
;) can be written as a uniformly convergent series

re) =30 ()

n=0
where
n . /n s (s)
o =310} swel?,
k=0
and
ol =1
3
1 ald) = —1’””“(. m)
(1) m DR A R



406 A. VERDOODT

If (j.) is a sequence in Ny, then the sequence of polynomials ([f:)'?")
also forms a normal basis of C{Z, — Q,) (|4, p. 158]).

Now we can find an analogous result on the space C(V, — K): each
function f, element of C(V, — K, can be written as a uniformly con-

vergent series
- Eoof (s) g T ’
f(I) - _Gb‘n} {?’1}

and we can give an expression for the coefficients bﬁ[-f), which is analogous
to the expression in (1). This result can be found in Proposition 1 of
Section 6.

Acknowledgement. I want to thank Professor Van Hamme and
Professor Caenepeel for the advice and the help they gave me during the
preparation of this paper.

2. Normal bases for C(M — K)

In this section, K, is a non-archimedean valued field, complete with
respect to his norm ||, and M is a compact, infinite subset of X

Before we generalize Amice’s Theorem, we give a lemmma.

Lemma 1.
Let {u,) be an injective sequence in M, and let go{z) = 1, qu{z) =
{emvo)lo—un ) gy > 1, where flgo| = 1 for all n.

{tn—uo). . {un—=un_1}
If p(z) is a polynomial in k[z] of degree n, then there exists an index
1, 0 <1 < n, such that ||p|| = |p(us)]

Proof;

There exist coeflicients ¢; such that p(x) = 3 e;g;(z). Now suppose
3=0

that |p(u;)| < fp|| for all 4, 0 < ¢ < n. This will lead to a contradiction.

Suppoesing that |p(u:)| < |lp|| for all ¢, 0 < i < n, we will prove by
induetion that |e;| < ||p|| for 0 < i < n.
n

Now p(ug) = . chqj(uo) = ¢, 50 |co| < [|p||-
J:
T
Further, p(u1) = 3 ¢50:(u1) = o + €1, 80 [eg + a1} < ||p]|, and com-
i=0
bining this with the previous we find |e1] < ||p|-
Suppose we already have that || < ||p]| for 0 <1 < k& < n.
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Eo) k—1 k—1
Then plug) = chjqj(uk) = 3 ¢;q{uk) + ¢, 50 ‘ 2o cigilue) + o <
= =0 =0

lloll. Since |¢;| < |jp|| for 0 < ¢ < k& < n and since llg;|| =1, we find that
lex| < [lzll-
So we may conclude that |c;| < ||p|f| for 8 < i < n.

But then we have, since {g,(x)) forms a normal basis (Theorem 1},
ol = Joax {le:|} < [lpl| which is clearly a contradiction.

Since |p{u;)| < [Ipll, we may conclude that there exists an index ¢, 0 <
1 < n, such that ||| = [p(u;}]. M

Proceeding from the theorem of Amice, we can marke more normal
hases with the following theorem:

Theorem 2.
Let (g.(x}) be ¢ normal basis as found ¢n Theorem 1.

Define p,{z) = Zﬁcn.,jqj(:r), Cnii € K, Cnn # 0.
j:

Then (pn{z)) forms a normal basis for C(M — K) if and only if
lpnll = 1 and |eq.n| = 1 for all n.

Procf:

Suppose that the sequence {p,(z}) forms a normal basis for (M —
K.

It is clear that the norm of p, must equal one. Since (g,(z)) forms a
normal basis, this implies that [ea.| < 1.

13
There exist coefficients dn;; such that g, = 3 d;p;(z) and so we
=0

have 1 = ||ga]| = max {ldﬂ.3|} 80 |dnn| < 1.
0=jsn

T T J L3 ki
Further, ¢, = Zdn;jpj(x) = zdn;jzcj;i% = ZQL'zdn;jCj;i and
=0 =0 i=0 i=0 j=i
this implies dpnen, = 1.
Combining this with the fact that |dy..| < 1 and |enn) < 1, we con-
clude |dn.n] =1 and |cpn) = 1.
We now prove the other implication.
Let &k be an arbitrary element of N and let by, b1,..., b be arbitrary
elements of K. For the orthonormality of the sequence (p,(z}}, we have
to show

lbopo + - - - + bepi]l = Grélfék{"bipi“} = Ofélfgkﬂbtif
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If Grélaéck{[bnﬁ = 0 there is nothing to prove.
max = <n< = ; .
1f max (b} >0, then put 1 = {nl0 < n < bl bul = max (1s1})

There exists an N such that N = max{i € I}.

k
We have anpn(x) < Orglax{ibnpn(z}l} < |bnl, and so
nz bnpn| < Orzlax {|bn1}

Put Z: bnpf&(m) = gﬁbﬂpn("‘:) + =%+1bnpn(z) = f(x} + f(x), where

n=0

= < 'y - + 13 .
we have || f]| < o?fék{lb“l}’ Il < grgnf.%ck{lbﬁ” (strict inequality)

N N ! N N
fl@) = 3 bupn(3) = 3 _bn D enists(3) = S 45(2) S bty
n=0 n=0 j=0 3=0 n—j
N-1 N
=Y g;(z} D bucay; + an{z)byen,n.
i=0 n=j
We distinguish two cases:
N-1 N
> @ 2 bucnyl| < lbal.
=0 n=j
Since |gn{unonen x| = jba, it foliows that |f(un)| = lbn|, and so
nPr|| = |bN| = Orgn':?ék{lbnl}
N-1 N
2 5 2 bntnz|l = lowv]-
=0 wn=j
N-1 N
There exists an i, 0 < ¢ < N—1,such that [ 3 g;(w) 3 bncnij| = 0]
=0 a=j

{Lemma 1).

Then we bhave |f(w) = = |bn|, and so

N-1 N
{w:) 3 bty
j=0 n=j

= [by| = max {|bal}.

nPn 0<n<k

We conclude that the sequence {p,(z)}) is orthonormal.

By [6, p. 165, Lemma 5.1j and by Kaplansky's Theorem (see e.g. [6, p.
191, Theorem 5.28)) it follows that {p,{x)) forms a basis of C{M — K,
since the k linear span of the polynomials p,(z) contains K[z]. W
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Theorem 3.

Let {pn(z)) be a polynomial sequence in K|x], which forms a normal
basis for C(M — K), and let (ro(z)) be a polynomial sequence in K|z
such that ro(T) = 3 en;p;(x), eny; € K. Then the following are cquiv-

j=0

alent:

i) (ra{z)) forms a normal basis for C(M — K)
i) flrall = 1, |enn| =1
i) |enyl €1, lenm] = 1.

Proaof:
i) « ii} follows from Theorem 2, using the expression p,(z) =

> cnyigi(z), and ii) < iil} follows from the fact that (p,(z)) forms a
3=0

normal basis. B
3. The set V,

From now on, K is a non-archimedean valued field, K contains Qp, and
K is complete for the valuation |.|, which extends the p-adic valuation,

The aim now is to find normal bases for the space C(V, — K). There-
fore, we start by giving a description of the set V, (Lemmas 4 and 5
below).

Definition.

If b is an element of Z,, b = 1 {mod p)}, « an element of Z,, then we

put #* = lim b*. The mapping: Z, — Z; : £ — b* is continuous.
n—

For more details, we refer the reader to [4, Section 32).

Lemma 2.
Let a be an element of Z,, =1 (mod p™ ), a £ 1 (mod p"t1) v > 1.
If (p,?") 7& (23 1)1 ﬁ E Zp\{O} the’n

a” = (mod p™tords 8)

(1"6 ;.“é l(mod p‘r+l+ord,,6)_

Proof:

Let o = 1+ p", and let v = v + mp + ..., with ~ 5% 0, be the
Henseldevelopment of the p-adic integer v ([4, Section 3]).
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Then we have

P
of =1+ =Y (i) (" =14+pw" + (P
k=0

=1+ " ... (remark: r + 1 £ rp),

and so of =1 (mod p"*?), o # 1 (mod p"+2).
If we continue in this way, we find: ¢’ =1 (mod p"+%), o £ 1 (mod

pr+1+s)b

Now take ksuch that 2 <k <p- 1.

k

k .

K=l =) (;) (7)Y =1+ kv + .. ()"
3=0

k~ cannot be a multiple of p, since neither £ or «y is divisible by p.

Sc o =1 (mod p"), & £ 1 (mod p" ).

Let n be an element of Ny. If we combine the previcus results then we
find a® =1 (mod pr+ordpn), a™ §é 1 (mod pr+1+ordpn)‘

The lemma follows by continuity. B

Lemma 3.

Let o be an element of Zs, o = 3 (mod {). Define a natural number n
byo=1+24+2%, e=gp+e12+62%+... ,50=81 = - =6, 1 =1,
en = 0.

If 3 € Zo\{0}, ordo 5 =0 then

af = 1(mod 2}
af # 1(mod 4).

If3eZN{0}, ord S =k > 1 then

(1"6 = l(mod 2‘n+'2+()rd2 l@)
o # 1(mod 2rt3terd2 By

Proof:
o =3+4e Hence o® =1+ 23(1+&)(1 +2e¢).
Sincee =ep+e12+622 4+ . ... epg =81 = - =En_1 =1, £, = 0,

orda{1 + 2¢) = 0, we have o = 1 (mod 2713}, o # 1 (mod 2714},
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Then

2R (azjz" = 1(mod 2n+3+k)

# 1{mod 2*****) by Lemma 2 (k > 1).

So o?* =1 (mod 27+2+%), a2" £ 1 (mod 27+3+%) (k > 1}

In an analegous way as in the previous lemnma, we show

If s € Ng, ordz 5 = 0, then 0° = 1 {mod 2}, o # 1 {mod 4).

If s € Np, orda s = k > 1, then o = 1 {mod 2"+2To25) o = 1 (mod
2n+3+0rdg s)l

The lemma follows by continuity. B

In the following lemma, m is the smallest integer such that ¢™ = 1
{mod p). (Remark: 1 <m < p—1).

Lemma 4.

Let g =1 (mod p**), ¢™ # 1 (mod pFott).

If(p. ko) # (2,1), then V= U {z€Z,||z—ag"| <p o}

B<r<im—1

Proof:

We take the m balls {z € Z,| |z —a¢"| < p ™™}, 0<r <m — 1.

Every clemnent ag’(¢™)" (0 < r < m — 1, n € N) belongs to one of
these balls: |ag"(¢™)™ — ag™| = |ag"| |{g™)" — 1| < p~*@ (Lemma 2).

Since V, is the closure of {ag"|n = 0,1,2,...} = {ag"(¢™)*0 < r <
m — 1, n € N}, we have that LY {zeZlle—ag|<p ™} DV,

ream—1

The m balls {x € Z,| |x—ag"| < p~*°} are pairwise disjoint: taker, 5 €
{0,1,...,m—1}, r £seg r > s then [a¢" — ag®} = |ag®||g"* —1| = 1.

We remark that it is impossible to take balls with a smaller radius:
lag™ — ag"q™| = lag"| 11 — g™| = p~Fo.

Let r be fixed: {z € Z,||z — ag"| < p~*o}.

We take the following p elements of V, : ag"{(¢g™)°, aqd"(@™)!,...,
ag" (g™ )"

Each of these elements belongs to {x € Z,||z — ag”| < p~™}:
lag"(g™)* — aq"| = lag"| [{¢™)* — 1] < p~* by Lemma 2 (0 <i <p-— 1).

Furthermore, if ¢, 5 € {0,1,...,p — 1},¢ # 34, say ¢ > j, then
lag"(¢™)" — aq"(g™ )] = lag"(¢™Y’|}(¢™)*7 — 1| = p~* by Lemma 2
sinced<s—3<p—1

So these p elements define p disjoint balls with radius p~(%+1) which
cover {z € Zy| |z — ag”| < p~Fe}.



412 A. VERDOODT

We take {z € Z,||z —aq(g™)}| € p~*e+D} 4 € {0,1,...,p— 1}, ¢
fixed. :

Take the p elements ag™(g™)**/?, 0<j<p— 1.

These elements belong to {z € Zy||z — ag"(¢™)}| < p~ ¥l
lag(¢™ )92 — ag” (g™ = lag™ (g™} | |(¢™)P — 1| < p~*e*V by Lemma
200<5p- 1)

Furthermore, if j, &k € {0,1,...,p — 1}, k # j, say k > j, then
lag™ (g™} +*2 — ag" (™) 7P| = |ag" (™) TP |(g™) I — 1 = pT Lot )
by Lemma 2 since 0 < k— 7 < p— 1. So these p elements define p
disjoint balls with radius p~%*°+2} which cover {z € Z,||z — ag"(¢™)*] <

—{kag+1}
P }-

We can continue this way.

Suppose we have {z € Z,| |z — ag (g™ )iotipt o inp® | < p(kodndl)y
10381550 €01, .2 — 1}, 0,81, .- -, in fixed

We take the p elements aqr(gm)z'o+z1p+€np“+z'u+1pnﬂ, 0 <ty <p-—1.

All these elements belong to {z € Zy| |z — ag (gm)lotipt o tinp”| <
p—(k0+‘!’l+l)}:

Iaqr(qm)io+3'1p+-"+iup"+in+1;D“+1 _ aq?‘(qM)in+'é1P+---+inp" |
+1

— |aq?‘(q?ﬂ)in+wj1p+.”+inpﬂ| |aqr(qm)in+1pﬂ _ 1| < p—{kg+n+1)_

Furthermore, if 7, k € {0,1,...,p — 1}, k # j, say k > 7, then

da4iap ki p™Hkpt T Jlotnpttiap"Hip"

lag"(¢™) - ag (g™
— |aqT(qm)io+ilp+---+iﬂp"+j:ﬂ"+l | I(qm}(k—j}p““ -1 = p—(ko+n+l)‘
So these p elements define p disjoint balls with radius p~%e+7+2)} which
cover {55‘ e Zpl ]E . aqr(qm)ig+i1p+---+i,,p”| < p—(ko+n+1)}_
Continuing this way, we find closed balls with radius tending to zero
and whose centers are elements of {ag"|n =0,1,2,...}, and these balls

; —ag’| < p~re}. Z -
cover 0<rgm—1{x € Zpllx — ag’| < p~F}. 8o Ugrgm_l{m € Zyl |z

ag'] < 3;—?0} is the closure of {ag®|n = 0,1,2,...}. But this means that
Vo= U {z€Zy|lz—ag|<p*} 0
Obrm~1

Lemma 5.

Let g =3 (mod 4).

ThenV, = {z € Zz| |z —a] < 2~WE U {z € Zo| |z —ag| < 2-V+3)},
where g = 14+24+2%, £ = eg+e12+6222+. .. ,ep=€1 = -=en_1= 1,
en =0.
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Proof:
Every element ag” belongs to {z € Zy||z — a] < 2—(N+3)} Uz ¢
Zo||z — ag] < 2—(N+3)}: |aqO+2k —a| = |a”q2k -1 < 9={N+3) 3nd

lag'*2* — aq| = |ag| l¢* — 1| < 27V+3) by Lemma 3 (k € N). Since ¥,
is the closure of {ag™|n = 0,1,2,...}, we have that {z € Zs||z — a| <
2~ NN U {2 € Zs| |z — ag] <27 V¥ 5 v,

The balls {z € Z,||z—a| < 27 ¥+3} and {2 € Zy| |2 —ag] < 27N+
are disjoint: |lag — a| = |a| | — 1) = 271,

We remark that it is impossible to take balls with a smaller radius:
lag® —a| = la| I¢* ~1] = 27 ¥** and |ag'*?~ag| = |ag| [g?—1| = 27(V+®)
(Lemma 3).

From now on, we can prove the lemma in an analogous way as Lemma
4. &

We will need these lemmas in the sequel.

4. Normal bases for C(V, — K)

We want to give a thecorem analogous to Theorem 3, but with C{M —
K} replaced by C(V, — K).

Therefore, we need some notations.

We introduce the following:

)t = [nln —1]...[1], [0)f = 1, where [n] = 9;‘_;11 ifn>1.

[:] = il if n 2 b, [:} =0ifn <k
(z—a) ={z—a)(z—aq)...(z—ag*Vifn>1,(z—a)® =1

T _ @/e-1)(/(ag)-1) (z/(ag* -1 | z | _
{k } = @D e D itk 21, { 0 } =1

Lemma 6.

L [n] [n-1 |ln—1
o] =[]
o [n] . -

ii) el e polynomial in g.

iii) [ﬂ

Proof:
i) follows immediately from the definition, i1) and iii) follow from i}. ®
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The polynomials [:] are the Gauss-polynomials.

We will need the following properties of these symbols: Hz}
. i . x . . . 7L o
1, since [k} = {k}lfi‘ = ag", [k} < 1 for all n, k in N,

k ™
ag” | _ | E| _ and since { © » is continuous. g—x_—“",L) =”
k k k [l n

_gyi=)
(a— Drginr2an, so | =787 | = itg - 1)

[~]!
Definition.

If f:V, — K then we define the operator D, as follows:

flaz) — f(=)
D, f¥z) = siFr——r.
(Dof)(@) = 22—
The following properties are easily verified:
Diz* = [k]jk — 1]...[k — j + 1]z~ itk >j2>1,
Diz*k =0 if k < j
Die - ¥ =Wk-1]...[k-j+ e —p* Hk>j>1,
Di{z —y)» =0 if § > k.
Lemma 7. .
" = [:] a" ¥z — a)®).
&=0

Proof:
We know we can write = as " = 3. ap{z — a)®). Since D™ =

k=0
[nJz™~? and if we apply the operator D, k times and put z = g, we find
[R][r—1]...[n— k+ 1]a"* = ax[k]!{. =

Lemma 7 and it's proof can alse be found in 5, p. 121].

Lemma 8.
Take an injective sequence (uy) in V, and define
{(z—wp). .. (2 — Up_1)

Un — ‘u.{}) . (un — un_l)

Then (gn) forms o normal basis for C(V, — K) if and only if fjg.]| =1
for all n.

gn(z) = q forn =1, gelz) =1

Procf:
Put M =V, in Theorem 1. B
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Corollary.
({i}) forms a normal basis for C(V, — K).

Proof:
Put %, = ag™. B

Theorem 4.

415

Let (pn(x)) be a polynomial sequence in K|x) whick forms a normal
basis for C(V — K}, and let (ra(x)) be a polynomial sequence such that

Tn(x) Z@;jpj (z} = anjzxcnj!bnjeK Cnm # 0, bn:n # 0.

=0
Then the following are eguivalent:
i} (ralz)) forms a normal basis for C{V,; — K},
} "'rn” =1, Icn:ﬂ| =1
iii) |cn;j| <1, |epn| = 1
) [Irnfl =1, |bn;ﬂl = Wl_l)n!-

NEANY 1 _ 1
" M | < =D el = T o

Proof:

i) « ii) < iii} follows from Theorem 3, by putting A =

and iii) < v} follow from Lemma 7, by putting p,(z) =

Some examples.

1} Put po(x) = {q; }

V,, i) & iv)

j;}..

Then the sequence (p,{z)) forms a normal basis of C{V, — K):

apply iv).

2) If the polynomial sequence (p,(r)) forms a normal basizs of

C(Vy — K), then so does (pa(gz)): If py(z) = cha {J}

then p,(gz) = chj{ y }

Use cxample i) and apply iii).

3) If the sequence (p,(x)) forms a normal basis of C(V, — K, then
so does (pa(g*z)) where k is a fixed natural number: use Example

9).



416 A. VErRDOCDT

4) If the sequence {p,(z)) forms a normal basis of C{V, — K, then
so does (p,(g* ), where {k,) is a sequence in N: usc Example
3).

5) If the sequence (p,(z)) forms a normal basis of C(V; — K}, then
so does (r,(z)), where r,(z) = po(z) + (2} + - +prlz): apply
iii).

6) If the polynomial sequence (p.(z)) forms a normal basis of
C(Vy — K}, then so does {{g — 1) Dipn{z))nzj. J € N, j fixed:
apply iii).

To end this chapter, we give the valuation of |bp.,| = m

1
[(gm—1){gn~*=1}..{g—1)}|

If n is different from zero, then I[n]!(ql—l)"l =
and this leads us to the following lemma:

Lemma 9.
Take m > 1, m the smallest integer such thot ¢™ =1 (mod p).

i) Ifq™ =1 (modp’ ), g™ £1 (modp™™™ ) (r > 1}, and (p,7) # (2,1)
then

(¥ — 1" —1).. . (g — 1)| = p~ */™I|[k/ml1]

where [z] = max{k € Z|k < z}.
ity Ifg=3 {mod 4}, where

g=142+2%,
EZEg+€12+5222+---,50:€1 =-r=eny1=1,enxy=0
then
l(g" — 1)(¢" " —1}.. . (g— 1)
= 272k NE/2|(F [0} if k is even,

= QImkN—SRINID/20=NE/2|(() — 1) /20| if k is odd.

We remark that (see (4, Section 25.5]) |51 = p~9) with A(j) = :';;_311,

i t
=S =Y
=0 =0
Proof:
1) Suppose ¢™ = 1 (mod "}, g™ # 1 (mod p" 1), r > 1, (p,7) # (2,1).
First, take p % 2.¢5 — 1 = ¢™*° — 1 with 0 < 3 < m.
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Then (¢™)° = 1 (mod p™*° 7), (¢™)? # 1 (mod p"'+°7) (Lemma
2}, 50 (¢™) =1+ ap 7 ord, o = 0.

If 5 is different from zero, then ¢° = 3 with = Gy + Gip + ﬁng +...
with fo £ 0, o # 1,50 g™+ — 1 = (1 + ap™oI)g 1 = § +
afp o d — 1 and thus ¢™+° — 1 is a unit if s is different from zero.

Then
(¢" = = 1) (g = DI=1((g™V - 1)... (g™ — 1)
— p—(r+1:)rc1F ) cp {r+ordy 1)

=p 75t = o~ /).
If p is equal to 2 then m equals one and thus

|(qk _ 1)(qk—1 _ 1) o (Q‘ _ 1)| — 2—(r+ord,k) N '2—(r+ordp 1}
= 27k | = 27/ [ i1

ii) Suppose ¢ = 3 {mod 4). We use Lemma 3.
If k is even then |(g* — 1)(¢* 1 — 1)... (g — 1}]

— 2—k/22—(N+2+0rd2 k)z—(N+2+ord-3{k-2)) o 2—(N+2+0rd2 )
= 27 R/2gm(NH2RI2| L | — 2] . |2
= 272k NRIZ) (ko3|

and if k 15 odd |(¢F — 1){¢* "' = 1)... (g — 1)
— o~ {k+1}/29—(N+240rdy (k1)) g~ (N+2+orda(k~3))  o—(N+2+ords 2)
_ 2—(fc+1)/22_(w+2)(k—1)/22—(k—l)/zl((k — 1)/2)

= Q- NR=4k+N¥/2|( _ 1)/2)}| which proves the lemma. W

5. More bases for C{V, — Q,)

We want to make new normal bases, using the basis ({ i })

Now, if £ is a non-archimedean Banach space over a non-archimedean
valued field L, and E has a normal basis, then the norm of F satisfies the
following condition: for each element z of £ there exists v in L such that
the norm of z is equal to |v|. Y. Amice ([2, p. 82]} calls this condition
(N).
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So, if we want to make more normal bases for C{V, — Q,) we can use
the following result ({2, p. 82, Prop. 3.1.5]):

Let E be a Banach space over a non-archimedean valued field L. If
L has a discrete valuation and if F satisfies condition (V), then for a
family {e,) of E for which ||e,]] € 1 for all n the following are equivalent:

i) (en) is a normal basis of E, B

1) (ple,)) is a basis of the vector space .
where Fy = {z € E|lle}| < 1}, Eg = {z € El|lell < 1}, E = Ey/Ej and
p is the canonical projection of Eg on F.

Since the valuation of L has to be discrete, we use this result to find
normal bases for C{V, — Q,). We start with some lemmas.

Lemma 10.

iti] ¢ 3 kel —jtr—k)
=i [ e
k=0
Proof:

If » is zero or ¢ + 7 is strictly smaller then n, then the lemma surely
holds.

From now on we suppose i + j greater than n.

If 2 + 5 15 equal to n then ¢ ZJ is egual to one and

n [4 I | gmklmitn—ry = S~ LR kR = g
Z L[4 E L [ = e

the only term different from zero is the term where &k equals 4.
From now or we proceed by {double) induction.

i+i] _(i+j-1], n[i+j-1
[n]_[n—l ]+q[ " ](byLemmaﬁ}

s ,
_ ? i-1 g k(-Hn—k)
klln-k-1
E—0

n . .
b [;] [J - .}c] g K(=it14nk)
n —

(by the induction hypothesis)
, L : )
ol Pl —k(—jtn—k) J—1 J=1| nk
Bt D1 Ul ( PRSP R O £

IRSNE J —k{—jtn—k)
_kz_o[k] [n-«k]q {by Lemma 6). &

i
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Lemma 11.
Let " =1 (mod p* ), g™ £ 1 (mod p*o*1 ) with (p,kq) # (2,1).

&5 5
fz,ye V, |z —yl < p~hott) then {z} - {i} < 1/p, where

s€N, 0<n<mpt

Proof:
The lemma holds if s is equal to zero.
If g™ = 1 (mod p*o), ¢™ # 1 (mod p*+1) with (p, ko) # (2,1), we

then have V, = ery 1{3: € Zy| |z — ag’| <p~*} (Lemma 4).
PR —

So V4 is the union of m disjoint balls with radius p—*o

By the proof of Lemma 4, we have that 1, is the union of mp® disjoint
balls with radius p~( o+ and with centers ag"(¢™)*, 0 < r < m ~ 1,
0<k<ph

Take z, y € {ag’lj = 0,1,2,...} with |z — y| < p~{ke+)  Then,
by Lemmas 2 and 4, there exist natural numbers n, and ny such that
T =ag (¢g")" and y = aq-r(qm)ny with [n, —ny| < ¢ (ng, Ry € N).

-Gl

[r +mn1 _ {m(ﬂm —ny) +r+mny]

n n

{r+mn1 3 [r+mny”_

Further,

T n

hE

e — ) | [T+ M0y | i (rimn )4k
k n—k |¢

k=0

(Lemma 10 if n; > n,)

[r+mny}
i m(nz_ny) r+mn'y q—k(—(r-i-mny)-}—n—k)
— n—k
{n>1).
. i g li—1
Smce{j}=H[j_1}(%>j>l)wehave [J ‘ |(3>0 j=1),

80 < 1/p by Lemma 2

m{ng — ny) [m{nz—ny)}
[0 < [

I PO i B
= [

t

since 1 <k <n <mp*and |ng —nyl < p~
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Then

rT+mng | [T +mny
n n

< max { || ™0 T | T M|k, n k)
1<k<n k n—k

Bt

Finally, if s is greater then one,

b

So < 1/p and this also holds if n is zero.

- E} y H r y s—1 " B3 y s—1—1
GE =G -GHR G () s
1=
The lemma follows by continuity.
Lemma 12.
Let g =3 (mod 4),
g=1+2+2%
€=Eo+612+6222+u.,£‘02512-“26‘;\;_1Zl,ENZO.
Ifz,y €V, |z —y| < p= W2 then {i} —{g} < 1/2, where

seN,0<n <2 (t > 1).

Proof:

The lemma holds if s is equal to zcro.

V, ={z € Zs||lz~a| <27+ U {x € Zy| |z — ag] < 273} by
Lemma 5.

By the proof of Lemmma 5, we have that ¥, is the union of 2* disjoint
balls with radius 27{¥+2+8) and with centers ag™, 0 < n < 2¢ (£ > 1).

Take x, ¥ € {ag’|j = 0,1,2,...} with |z — y| < 27N +2+t} Then,
by Lemmas 3 and 5 we must have that * = ag¢g™ and ¥ = ag™ with
[y — 1y} < 27% (ng, n, € N). Then
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Further,

Rt

— iy § Toy — Tiy Ty —k{—ny,+n—k}
I i | AT

1 Al - .
j] <[Blez0521),

Since [;] =4 [z:” (1> j > 1) we have

50 nz;ny < |[Re—rul] 9"—;:"1_1| < 1/2 by Lemma 3 since
1<k<n<? and [ng —nyf < 27%
Then
Fog |y gy — Ny Tiy —k{—n,+n—k) <
- ] [ e e
x ¥ . e
So I < 1/2 and this aisc holds if n is zero.
Finally, if 5 is greater then one,
r s y 5 z y 5—1 r 1 Y 5—1—4
G- UH IS G ) =

The lemma follows by continuity. B

Since C(V, — @) has a normal basis, its norm satisfies condition (N),
and so we can use [2, p. 82, Prop. 3.1.5] to prove the following:

Theorem 5.
Let (4.) be o sequence in Ny. Then the sequence of polynomials

({ * }h) forms a normal basis for C(V, — Q,).

f

Proof:
This proof is analogous to the proof of Theorem 1.1 in [3].

Jn
By [2, Proposition 3.1.5, p. 82] it suffices to prove that ({ i} )

forms a vectorial basis of C(V, — F,).
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We distinguish two cases,

If ¢™ = 1 (mod p*), ¢™ # 1 (mod p*+*) with (p, ko) # (2,1), define
C the space of the functions from ¥ to F;, constant on balls of the type
{z € Zy||lz — a] £ p~:*D} o € V. Since C(V, — Fp) = Ui»0Ch it

J"?-
suffices to prove that {i} jn < mp' | forms a basis of C;. By the

proof of Lemma 4, we can write V; as the union of mp* disjoint balls with
radius p~ % +%) and with centers ag”(g™)", 0 < r<m—1,0<n < p.
Let x; be the characteristic function of the ball with center ag'. Using
Lemma 11, we have

(=g e} -Erafu)

i=n

jn
hence the transition matrix from (x.|n < mp') to ({ i} [n < mp‘)

jﬂ
is triangular, so ({ i} |n < mp‘) forms a basis of C;.
I[fg=3(mod4),g=1+2+2%,c=cp+e12+622+...,60=6, =

=gn_1=1, exy =0, define C, the space of the functions from V; to
F; constant on balls of the type {z € Zs| |z — | < 2-F+2+8} o € V.

jﬂ
Since C(Vy — F2) = U1} it suffices to prove that { :, } |n < 2¢

forms a basis of C;. By the proof of Lemma 5, we can write V, as the
union of 2¢ disjoint balls with radius 27{¥+2%%) and with centers ag®,
0 < n < 2. Let x; be the characteristic function of the ball with center
agq®. Using Lemma 12 we have

W Tz_lxz(w){ } zfxz(x){"‘q} ,

J‘ﬂ
hence the transition matrix from {xn|n < 2*) to ({ :;} |n < 2‘) is

jﬂ
triangular, so ({ i} |n < 2‘) forms a basis of €. This proves the

theorem. B
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6. Extension to C{V, — K)

jﬂ
Let & be as in Chapters 3 and 4. We want to show that ({ :i} )

forms a normal basis for C(V; — K). To prove this, we need the results
from Scction 5. We remark that the valuation of K does not have to be
discrete, as was the case in Section 5.

Theorem 6. .

Let (j,) be a sequence in Ng. Then ({ i }J“) forms a normal basis
Jor C(V; — K.

Proof:

It is clear that =1.

3

We now prove the orthogonality of the sequence. Let n be in

j"\
N, ag,...,2p in K. We prove { } +0n{z} =
sy et
. x x
It is clear that ||og { 0 } -+ o, { n} Ofg%lﬂa |}

Put M = Jnax {[at|} N =min{i[6 <¢ < n and |o;] = M}. Then

wN oy Jo Ny in
Y el

since

Nyt N oyJin-1 aa™ in
Qo{a% } —|—<w—{—ﬂ'N_1{j\?q_1} }{M) }QN{ J?V }

Jo Jn
i)l

Finally, we prove that the sequence forms a basis.

M. So = max {|a;|}.

0<1.<
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By [6, p. 165, Lerama 5.1] and by Kaplansky’s Theorem (see c.g.
(6, p. 191, Theorem 5.28|), it suffices to prove that the k lincar span

jn
of the polynomials ({z} ) contains K[z]. Since each {E} is an
a: j“
element of Q,(z] and {n} forms a normal basis of C(V, — Q)

{Theorem 5), we can write {i} as a uniformly convergent expansion

=20 .
{ i } = 3 ongal(z)™. Soif ap, a1, ..., oy are elements of K then there
=0

: U)o e U 2 PRy A
exists coefficients &i/™’ in K such that > oy (= 3 dy "
=0 n=0
where the right-hand-side is uniformly convergent.

Let p be an element of K[z]. By the previous remark there exist

. N x oo () 7 In
coefficients cif™) such that plz) =30 { n } = 3 ein { n} . So the
=0 n=0

& linear span of the polynomials ({ :; }Jn) contains K[z]. This finishes
the proof. B

If f is an element of C{V, — K, there exist coefficients (bﬁf“)) such
that f(z) = i}bﬁf“) {i}h where the series on the righi-hand-side is

uniformly convergent. In some cases it is possible to give an expression
for the coefficients:

Proposition 1.

Let s be in Ny. Then each conlinuous function f 1 V, — K can be
written as a uniformly convergent sertes

s = 22 {7} with 171 = matl

where
(2) B = Y (—1ynF m Flag®)BY,
k=0
() _ () _ et | o m ] m =
and By’ =1, Bm’ = > (-1 [jl...jr]’[jl--'j*]

(jln---:jr)
Y di=mi1<ji<m
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Proof:
The proof is equal to the proof of Corollary 1.2 in [3].

fl = m;a,ac{|b£f)|} follows from the fact that ({ i } ) forms a normal

20 8 k s
basis. If f{z} = Zb&f){x} then f(ag®) an" [ } , and so

) = fa), 8 = flag zbm[n] if &> 1.

If k is equal to zero, the formulas certainly hold.
We proceed by induction. Suppose the formulas hold for 0 < 7 < N.

N &
(3] _ N3l . {3) AT —+ l
b= fla ) - o [N

=0

— flag ) - Z[N “}Z{ } (—1)"* f(ag")B2,

a=0
NN

= flag" )~ > (—1)"* f(ad")

k=0n=k

Z (_1},,4,"_;:{ n-—k r[nr{N+lr
jl"'j‘r‘ k T

Z:=1ji=n—k

N N
= flag"™) + "> flagh)

k=0n=k

_ el [ﬁ@4—1“ ’
- Z( K (wr...Urjr[k]f[ml—n]!)

DUtjr+1=N+1_n

N 5
= flag™ )+ 3 [N; 1] F(og®)
k=0
N+1—kr

Z (- hl--d‘rﬂ

ST i =Ntk

a=1

N1 N N+1]° N+l-k
= flag )+Z[ k ] Hlag "0
=0

N+1 N-‘,—l 5
=Z{ 5 ] flag®)(—)M R
k=0
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which proves the proposition. B

Proposition 2.

n £
For each s € Ny, the sequence of polynomials (((x_[s])!( )) ) form a

basis of C(Vy — K). Fach continuous function f : Vg — K can be
written as a uniformly convergent series

(n}y #
flz) = gc@(‘ ) wath 11 = maxde e - 1))

where Cgf) — bgf)/((q _ l)nqn(ﬂ.—l)ﬂan)s_

Proof:
This follows from the fact that &0 { ﬁ } (g—1ngrn /2,

fnl!

If we put s equal to one in Propesition 2, we find Jackson's interpole-
tion formula for continuous functions from V, to K {[5]). B

An example.
We have

ﬁ(()S} — ﬁgs) =1
A =2 —1=(g+1)°—1
() = 312 - 23 + 1= (P + g+ 1)@+ 1) - 2P + g+ 1)° +1

¢ = el - e+ EEET o

=@+ +g+ 1) +a+ 1) (g+1)
=3@+ e+ 1Y (@@ +g+ 1)+ (@ + 1% + ¢+ 1)°
+2(¢* +¢? +g+1)° -1

and after some calculations we find

{f}={f}z—q(q+1){2}2+(q2+q+1)(q+1)2q2{g}

: 2
—qs(q3+q2+q+1)(q2+q+1)(q4+3q3+3q2+3q+1){2} +...

2

which gives us a uniformly convergent series.
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