R-TREES AND THE BIERI-NEUMANN-STREBEL INVARIANT

GILBERT LEVITT

Λ	bstract	
А	DSLFACL	

Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma(G)$, in terms of geometric abelian actions on \mathbf{R} -trees. We provide a proof of Brown's characterization of $\Sigma(G)$ by exceptional abelian actions of G, using geometric methods.

Introduction.

In a 1987 paper at Inventiones [BNS], Bieri, Neumann and Strebel associated an invariant $\Sigma = \Sigma(G)$ to any finitely generated group G. This invariant may be viewed as a positively homogeneous open subset of $\text{Hom}(G, \mathbf{R}) \setminus \{0\}$. It contains information about finitely generated normal subgroups of G with abelian quotient.

In the same issue of Inventiones [**Br**], Brown introduced HNN-valuations and related Σ to actions of G on **R**-trees. In particular a nonzero homomorphism $\chi:G\to \mathbf{R}$ is in $\Sigma\cap -\Sigma$ if and only if **R** is the only **R**-tree admitting a minimal action of G with length function $|\chi|$ (see Theorem 3.2 below).

A few months earlier, also in Inventiones [Le 1], this author studied singular closed differential one-forms on closed manifolds M^n ($n \geq 3$). We defined *complete* forms by several equivalent geometric conditions; in the simplest case, a form ω is complete if and only if every path in M is homotopic to a path γ that is either transverse to ω or tangent to ω (i.e. $\omega(\gamma'(t))$ never vanishes or is identically 0).

We proved that any form cohomologous to a complete form is also complete, so that completeness defines a subset U(M) in the De Rham cohomology space $H^1_{DR}(M,\mathbf{R}) \simeq \operatorname{Hom}(\pi_1 M,\mathbf{R})$. We also proved that U(M) depends only on the group $G = \pi_1 M$, and in fact U(M) is nothing but $\Sigma(\pi_1 M) \cap -\Sigma(\pi_1 M)$.

196 G. Levitt

In this note we use (a generalization of) closed one-forms to give a new characterization of $\Sigma(G)$, this time in terms of geometric actions of G on \mathbf{R} -trees (Theorem 3.1). Assuming for simplicity that G is finitely presented, we say that an action of G on an \mathbf{R} -tree is geometric if it comes from a measured foliation on a finite 2-complex K with $\pi_1K = G$ (see $[\mathbf{LP}]$ for a complete discussion). A consequence of Theorem 3.1 is:

Corollary. Let $\chi: G \to \mathbf{R}$ be a nonzero homomorphism, with G finitely generated.

- (1) There exists a geometric action of G on an \mathbf{R} -tree with length function $\ell = |\chi|$ if and only if $\chi \in \Sigma \cup -\Sigma$.
- (2) The action of G on \mathbb{R} by translations associated to χ is geometric if and only if $\chi \in \Sigma \cap -\Sigma$.

We also give a geometric proof of Brown's theorem, by associating a natural \mathbf{R} -tree $T^+(f)$ to any real-valued function f defined on a path-connected space (there is a similar construction in terms of *romp-trees* in [BS, Chapter II]).

In Part 1 we define closed one-forms relative to a homomorphism $\chi: G \to \mathbf{R}$, and we reformulate the condition $\chi \in \Sigma$ in terms of closed one-forms. In Part 2 we recall known facts about abelian actions on \mathbf{R} -trees (see [CuMo], [Sh]). In Part 3 we prove both characterizations of Σ mentioned above.

Acknowledgements. This work was motivated by Skora's remark that actions of nonabelian free groups on **R** are not geometric. It benefitted from conversations I had with R. Bieri during the *Geometric methods in group theory* semester in Barcelona's Centre de Recerca Matemàtica, and in Frankfurt as part of the Procope program.

1. Closed one-forms.

Let $\chi: G \to \mathbf{R}$ be a homomorphism. A closed one-form relative to χ consists of a path-connected space X equipped with an action of G, together with a continuous function $f: X \to \mathbf{R}$ such that

$$f(gx) = f(x) + \chi(g)$$

for all $x \in X$ and $g \in G$.

The closed one-form is *geometric* if G acts as a group of covering transformations and the base X/G is (homeomorphic to) a finite CW-complex. Note that this forces G to be finitely generated.

Example 1. Let G be the trivial group. Then any function on a path-connected space defines a closed one-form.

Example 2. Let ω be a closed differential one-form on a closed manifold M. Let $\chi: \pi_1 M \to \mathbf{R}$ be the homomorphism given by integrating ω along loops. Let $p: X \to M$ be the universal covering. Then any $f: X \to \mathbf{R}$ such that $df = p^*\omega$ defines a geometric closed one-form relative to χ .

Example 3. Let Γ be the Cayley graph of G relative to some fixed generating system. Given a homomorphism $\chi: G \to \mathbf{R}$, view it as a function on the set of vertices of Γ , and extend it affinely and G-equivariantly to a function f defined on the whole of Γ . This defines a closed one-form relative to χ . It is geometric if and only if the generating system is finite.

Example 4. Any abelian action of G on an \mathbb{R} -tree T defines a closed one-form $f: T \to \mathbb{R}$ (see Part 2).

If f is a closed one-form on X, we denote $X_{>c}=f^{-1}(c,+\infty)$ for $c\in\mathbf{R}$.

Proposition 1.1. Let $f: X \to \mathbf{R}$ be a geometric closed one-form relative to a nonzero homomorphism $\chi: G \to \mathbf{R}$. For any $c \in \mathbf{R}$, the set $X_{>c}$ has at least one component on which f is unbounded. This component is unique if and only if $\chi \in \Sigma(G)$.

Proof: Since f is geometric, the group G acts on X as a group of covering transformations. Let X' = X/G', where G' is the commutator subgroup of G. The function f induces $f': X' \to \mathbf{R}$. Let $X'_{>c} = f'^{-1}(c, +\infty)$. By [BNS, Part 5], there exists a unique component A' of $X'_{>c}$ on which f' is unbounded, and $\chi \in \Sigma(G)$ if and only if the natural map from $\pi_1 A'$ to G' is onto (compare [Le 1, Parts IV and V] and [Si]). The proposition follows. ■

2. Abelian actions on R-trees.

Suppose a finitely generated group G acts by isometries on an $\mathbf R$ -tree T.

The length function $\ell: G \to \mathbf{R}^+$ is defined as $\ell(g) = \inf_{x \in T} d(x, gx)$. The action is trivial if there is a global fixed point (equivalently if $\ell \equiv 0$), minimal if there is no proper invariant subtree. The action (or the length function) is called abelian if ℓ is the absolute value of a nonzero homomorphism $\chi: G \to \mathbf{R}$. Two minimal actions of G with the same length function ℓ are equivariantly isometric, except maybe if ℓ is abelian. Brown's theorem (Theorem 3.2 below) is concerned with this "maybe".

A nontrivial action is abelian if and only if there is a fixed end e. We can then define a closed one-form on T, as follows. Given $x \in T$, there is a unique isometric embedding $i_x : (-\infty, 0] \to T$ such that $i_x(-\infty) = e$

and $i_x(0) = x$. Fixing a basepoint $m \in T$, we define f(x) as the only real number such that $i_x(t) = i_m(t + f(x))$ for |t| large enough ("Busemann function"). Then f is a closed one-form on T, relative to some nonzero homomorphism $\chi: G \to \mathbf{R}$ satisfying $\ell = |\chi|$. This homomorphism measures how much elements of G push away from e.

An abelian action is called *exceptional* if there is only one fixed end e. We can then define χ unambiguously, and we say that the action is *associated* to χ . If there are two fixed ends (i.e. if there is an invariant line), we say that the action is associated to both χ and $-\chi$.

3. Characterizations of Σ .

Let $f: X \to \mathbf{R}$ be continuous, with X path-connected. Assume f has bounded variation in the following sense: given $x, y \in X$, there exists a path $\gamma: [0,1] \to X$ from x to y such that $f \circ \gamma$ has bounded variation. The infimum of the total variation of $f \circ \gamma$ over all paths γ from x to y then defines a pseudometric d(x,y) on X.

We let T(f) be the associated metric space: points of T(f) are equivalence classes for the relation d(x,y)=0. Denote $\pi:X\to T(f)$ the natural projection and $\lambda:T(f)\to\mathbf{R}$ the map such that $\lambda\circ\pi=f$.

If f is a closed one-form relative to some $\chi: G \to \mathbf{R}$, there is an induced isometric action of G on T(f) with $\lambda(gx) = \lambda(x) + \chi(g)$. When T(f) is an \mathbf{R} -tree, the length function ℓ of this action satisfies $\ell \geq |\chi|$ (since λ does not increase distances).

Definition. Consider an abelian action of a finitely generated group G on an \mathbf{R} -tree T, associated to $\chi: G \to \mathbf{R}$. The action is *geometric* if and only if there exists a geometric closed one-form $f: X \to \mathbf{R}$ relative to χ such that T(f) is G-equivariantly isometric to T.

Theorem 3.1. Let $\chi: G \to \mathbf{R}$ be a nontrivial homomorphism, with G a finitely generated group. There exists a geometric abelian action of G on an \mathbf{R} -tree associated to χ if and only if $\chi \in -\Sigma$.

Proof:

Let $f: X \to \mathbf{R}$ be a geometric closed one-form relative to χ . Assume that T(f) is an \mathbf{R} -tree and the action of G on T(f) is abelian, associated to χ . We show $\chi \in -\Sigma$.

Fix $g \in G$ with $\chi(g) < 0$, and fix $x \in X$ with, say, f(x) = 0. For A large enough, the path component U of $f^{-1}(-A, A)$ containing x meets every orbit for the action of G on X: this is because X/G is a finite complex. We may also assume that A has been chosen so that $gx \in U$.

We then claim that any $y \in X$ with $f(y) \leq -A$ belongs to the same component of $f^{-1}(-\infty, A)$ as x. This will imply $\chi \in -\Sigma$ by Proposition 1.1.

Choose an infinite path $\gamma:[0,+\infty)\to X$ such that $\gamma_{[0,1]}$ is a path from x to gx in U and $\gamma(t+n)=g^n\gamma(t)$ for $n\in\mathbb{N}$ and $t\in[0,1]$. Since $\chi(g)<0$ this path is contained in $f^{-1}(-\infty,A)$.

Given $y \in X$ with $f(y) \leq -A$, fix $h \in G$ such that $hy \in U$, and choose a path δ from hy to x in U. Consider the infinite path ρ obtained by applying h^{-1} to $\delta \gamma$: it starts at y and passes through $h^{-1}x$, $h^{-1}gx$, $h^{-1}g^2x$,.... It is contained in $f^{-1}(-\infty, A)$ since $f(y) \leq -A$.

The image of γ in T(f) contains all points $g^n\pi(x)$ $(n \in \mathbb{N})$, while the image of ρ contains all points $h^{-1}g^n\pi(x) = (h^{-1}gh)^n\pi(h^{-1}x)$. Now the translation axes of g and $h^{-1}gh$ intersect in a half-line containing the fixed end e (unless they are equal). Furthermore g and $h^{-1}gh$ both push towards e since $\chi(g) < 0$. It follows that γ and ρ are contained in the same component of $f^{-1}(-\infty, A)$, so that $\chi \in \Sigma$.

Conversely, suppose $\chi \in -\Sigma$. First assume that G is finitely presented. Let M be a closed manifold with $\pi_1 M = G$. Consider a geometric closed one-form $f: X \to \mathbf{R}$ as in Example 2 of Part 1. To fix ideas we may assume that f is a Morse function.

Since X is simply connected (it is the universal covering of M), it is known [GS] that T(f) is an \mathbf{R} -tree (see [Le 2, Corollary III.5]). Since $\chi \in -\Sigma$ the function $\lambda : T(f) \to \mathbf{R}$ is bounded on every component of $\lambda^{-1}(-\infty,c)$ but one. It follows that the action of G on T(f) is abelian, associated to χ : letting λ go to $-\infty$ defines an end e of T(f) which is invariant under the action.

Now let G be any finitely generated group. Using (i) \Leftrightarrow (iii) in [BNS, Proposition 2.1] we can find an epimorphism $q: H \to G$, with H finitely presented, such that $\chi' = \chi \circ q$ belongs to $-\Sigma(H)$. Apply the previous construction to H and χ' . Let Y be the normal covering of M with group G and $g: Y \to \mathbf{R}$ the map induced by f.

The length function of the action of H on the **R**-tree T(f) is $\ell = |\chi'|$. It vanishes on the kernel K of q. It follows from [Le 2, corollary of Theorem 2] that $T(g) = \widehat{T(f)}/K$ is an **R**-tree. The action of G on this **R**-tree is abelian, associated to χ .

Theorem 3.2 (Brown). Let $\chi: G \to \mathbf{R}$ be a nontrivial homomorphism, with G finitely generated. Then $\chi \in \Sigma$ if and only if there exists no exceptional abelian action associated to χ .

We start the proof with a general construction. Let $f: X \to \mathbf{R}$ be continuous, with X path connected. We construct an \mathbf{R} -tree $T^+(f)$ as

follows. Given $x, y \in X$, define

$$\delta(x,y) = f(x) + f(y) - 2 \sup_{\gamma} \min_{t \in [0,1]} f(\gamma(t)),$$

the supremum being over all paths $\gamma:[0,1]\to X$ from x to y. This is a pseudodistance on X and we let $T^+(f)$ be the associated metric space.

Proposition 3.3. The space $T^+(f)$ is an \mathbf{R} -tree. If $\mu: T^+(f) \to \mathbf{R}$ is the map induced by f, all sets $\mu^{-1}(-\infty,c)$ are path-connected, so that $T^+(f)$ has a preferred end $e = \mu^{-1}(-\infty)$.

Proof:

We first prove that $T^+(f)$ is an **R**-tree. By [**AB**, Theorem 3.17] it suffices to show that δ satisfies the 0-hyperbolicity inequality

$$\delta(x,y) + \delta(z,t) \le \max\{\delta(x,z) + \delta(y,t), \delta(x,t) + \delta(y,z)\}.$$

By linearity we need only worry about the terms $\delta' = \sup \min f \circ \gamma$. They satisfy inequalities such as

$$\delta'(x,y) \leq \min\{\max(\delta'(x,z),\delta'(z,y)),\max(\delta'(x,t),\delta'(t,y))\}$$

and we conclude by applying the inequality

$$\min\{\max(a,c),\max(b,d)\}+\min\{\max(a,b),\max(c,d)\}\leq \max(a+d,b+c),$$

valid for any four real numbers a, b, c, d.

Let π^+ be the projection from X to $T^+(f)$. Given $x,y \in X$ in $f^{-1}(-\infty,c)$ with, say, $f(y) \leq f(x)$, choose a path $\gamma:[0,1] \to X$ from x to y. If (p,q) is a maximal interval in $(f \circ \gamma)^{-1}(f(x), +\infty)$, we have $(\pi^+ \circ \gamma)(p) = (\pi^+ \circ \gamma)(q)$ and we can change $\pi^+ \circ \gamma$ on (p,q) so that it becomes constant on [p,q]. Doing this for all intervals (p,q) yields a path from $\pi^+(x)$ to $\pi^+(y)$ in $\mu^{-1}(-\infty,c)$.

If f is a closed one-form relative to $\chi: G \to \mathbf{R}$, the natural action of G on $T^+(f)$ fixes e. It is abelian, associated to χ (note that this action is nongeometric whenever $\chi \notin -\Sigma$, by Theorem 3.1).

To prove Theorem 3.2, we fix a finite generating system S for G with $\chi(s) > 0$ for every $s \in S$ and we consider the corresponding Cayley graph Γ .

First assume $\chi \notin \Sigma$. Let $f: \Gamma \to \mathbf{R}$ be as in Example 3 of Part 1. We claim that the abelian action of G on $T^+(f)$ is exceptional.

Let u_1 and u_2 be vertices of Γ belonging to distinct components U_1, U_2 of some $f^{-1}(c, +\infty)$. Fix $s \in S$. The whole ray $u_i, u_i s, u_i s^2, \ldots, u_i s^n, \ldots$ is contained in U_i . Writing $u_i s^n = (u_i s u_i^{-1})^n u_i$ we see that $u_1 s u_1^{-1}$ and $u_2 s u_2^{-1}$ do not have the same translation axis in $T^+(f)$. This means that the action is exceptional.

Now assume $\chi \in \Sigma$. Let T be an **R**-tree with a minimal abelian action associated to χ . We show that the action is not exceptional.

Choose $x \in T$ belonging to the translation axis of every $s \in S$. Consider a G-equivariant map $\varphi : \Gamma \to T$, affine on each edge, sending 1 to x. It is surjective because the action is minimal.

Define $f: T \to \mathbf{R}$ as in Part 2. The choice of x implies that $g = f \circ \varphi$ is monotonous on each edge of Γ . It follows that g is unbounded on every component of $g^{-1}(c, +\infty)$, so that $g^{-1}(c, +\infty)$ is connected for every $c \in \mathbf{R}$ by Proposition 1.1. Projecting to T we see that every $f^{-1}(c, +\infty)$ is connected: the action is not exceptional.

Combining Theorems 3.1 and 3.2 we get:

Corollary. Let $\chi: G \to \mathbf{R}$ be a nonzero homomorphism, with G finitely generated.

- (1) If $\chi \in \Sigma \cap -\Sigma$, the action of G on **R** by translations is the only minimal action with length function $\ell = |\chi|$. It is geometric.
- (2) If $\chi \in \Sigma$ but $\chi \notin -\Sigma$, there exist geometric exceptional abelian actions associated to $-\chi$. The only minimal action associated to χ is the action on \mathbf{R} , it is not geometric.
- (3) If χ ∉ Σ ∪ −Σ, there exist both exceptional abelian actions associated to χ and exceptional actions associated to −χ. No action with length function |χ| is geometric.

Combining with Theorem B.1 from [BNS] we obtain:

Corollary. Let G be finitely generated. The following conditions are equivalent:

- (1) Every nontrivial action of G on \mathbf{R} by translations is geometric.
- (2) The commutator subgroup G' is finitely generated.

References

[AB] R. ALPERIN, H. BASS, Length functions of group actions on Λ-trees, in "Combinatorial group theory and topology," S. M. Gersten, J. R. Stallings, ed., Ann. Math. Studies 111, Princeton Univ. Press, 1987.

- [BNS] R. BIERI, W. D. NEUMANN, R. STREBEL, A geometric invariant of discrete groups, *Invent. Math.* **90** (1987), 451–477.
- [BS] R. BIERI, R. STREBEL, "Geometric invariants for discrete groups," W. de Gruyter, Monograph to appear.
- [Br] K. S. Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, *Invent. Math.* 90 (1987), 479–504.
- [CuMo] M. Culler, J. W. Morgan, Group actions on R-trees, Proc. Lond. Math. Soc. 55 (1987), 571–604.
- [GS] H. GILLET, P. B. SHALEN, Dendrology of groups in low Q-ranks, Jour. Diff. Geom. 32 (1990), 605–712.
- [Le 1] G. LEVITT, 1-formes fermées singulières et groupe fondamental, Inv. Math. 88 (1987), 635–667.
- [Le 2] G. LEVITT, Constructing free actions on R-trees, Duke Math. Jour. 69 (1993), 615–633.
- [LP] G. LEVITT, F. PAULIN, Geometric actions on trees, preprint.
- [Sh] P. B. SHALEN, Dendrology and its applications, in "Group theory from a geometrical viewpoint," (E. Ghys, A. Haefliger, A. Verjovsky, eds.), World Scientific, 1991.
- [Si] J. C. SIKORAV, Homologie de Novikov associée à une classe de cohomologie réelle de degré un, in "Thèse d'état," Orsay, 1987.

Laboratoire de Topologie et Géométrie URA CNRS 1408 Université Toulouse III 31062 Toulouse Cedex FRANCE

e-mail: levitt@cict.fr

Rebut el 10 de Setembre de 1993