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R-TREES AND
THE BIERI-NEUMANN-STREBEL INVARIANT

GILBERT LEVITT

Abstract

Let G be a finitely generated group. We give a new characteriza-
tion of its Bieri-Neumann-Strebel invariant £(G), in terms of geo-
metric abelian actions on R-trees. We provide a proof of Brown’s
characterization of £(G) by exceptional abelian actions of G, using
geometric methods.

Introduction.

In a 1987 paper at Inventiones [BNS], Bieri, Neumann and Strebel
associated an invariant ¥ = X(G) to any finitely generated group G.
This invariant may be viewed as a positively homogeneous open subset
of Hom(G,R) \ {0}. It contains information about finitely generated
normal subgroups of G with abelian quotient.

In the same issue of Inventiones [Br|, Brown introduced HNN-valua-
tions and related X to actions of G on R-trees. In particular a nonzero
homomorphism x : G — R is in £ N —X if and only if R is the only
R-tree admitting a minimal action of G with length function [x| (see
Theorem 3.2 below).

A few months earlier, also in Inventiones [Le 1], this author studied
singular closed differential one-forms on closed manifolds M™ (n > 3).
We defined complete forms by several equivalent geometric conditions;
in the simplest case, a form w is complete if and only if every path in M
is homotopic to a path + that is either transverse to w or tangent to w
(i.e. w(7'(t)) never vanishes or is identically 0).

We proved that any form cohomologous to a complete form is also
complete, so that completeness defines a subset U(M) in the De Rham
cohomology space H}J r(M,R) =~ Hom(m M,R). We also proved that
U(M) depends only on the group G = M, and in fact U(M) is nothing
but E(?T]M) n —'E(?I'lM)
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In this note we use (a generalization of) closed one-forms to give a
new characterization of £(G), this time in terms of geometric actions of
G on R-trees (Theorem 3.1). Assuming for simplicity that G is finitely
presented, we say that an action of G on an R-tree is geometric if it
comes from a measured foliation on a finite 2-complex K with m K =G
(see [LP] for a complete discussion). A consequence of Theorem 3.1 is:

Corollary. Let x : G — R be a nonzero homomorphism, with G
finitely generated.

(1) There ezists a geometric action of G on an R-tree with length
function £ = |x| if and only if x € LU =X

(2) The action of G on R by translations associated to x 1s geometric
if and only if x € ¥ N =1,

We also give a geometric proof of Brown’s theorem, by associating a
natural R-tree T+ (f) to any real-valued function f* defined on a path-
connected space (there is a similar construction in terms of romp-trees
in [BS, Chapter IIJ).

In Part 1 we define closed one-forms relative to a homomorphism ¥ :
G — R, and we reformulate the condition x € ¥ in terms of closed
one-forms. In Part 2 we recall known facts about abelian actions on
R-trees (see [CuMo], [Sh]). In Part 3 we prove both characterizations
of ¥ mentioned above.

Acknowledgements. This work was motivated by Skora’s remark
that actions of nonabelian free groups on R are not geometric. It benefit-
ted from conversations I had with R. Bieri during the Geometric methods
in group theory semester in Barcelona’s Centre de Recerca Matematica,
and in Frankfurt as part of the Procope program.

1. Closed one-forms.

Let x¥ : G — R be a homomorphism. A closed one-form relative to
x consists of a path-connected space X equipped with an action of G,
together with a continuous function f : X — R such that

f(9z) = f(z) + x(9)

for all z € X and g € G.

The closed one-form is geometric if G acts as a group of covering
transformations and the base X/G is (homeomorphic to) a finite CW-
complex. Note that this forces G to be finitely generated.

Example 1. Let G be the trivial group. Then any function on a
path-connected space defines a closed one-form.



TREES AND BIERI-NEUMAN-STREBEL INVARIANT 197

Example 2. Let w be a closed differential one-form on a closed man-
ifold M. Let x : m M — R be the homomorphism given by integrating
w along loops. Let p : X — M be the universal covering. Then any
f : X — R such that df = p*w defines a geometric closed one-form
relative to .

Example 3. Let I" be the Cayley graph of G relative to some fixed
generating system. Given a homomorphism x : G — R, view it as a func-
tion on the set of vertices of I', and extend it affinely and G-equivariantly
to a function f defined on the whole of I'. This defines a closed one-form
relative to x. It is geometric if and only if the generating system is finite.

Example 4. Any abelian action of G on an R-tree T defines a closed
one-form f: T — R (see Part 2).

If f is a closed one-form on X, we denote X-. = f~!(c,+00) for
ceR.

Proposition 1.1. Let f : X — R be a geometric closed one-form
relative to a nonzero homomorphism x : G — R. For any c € R, the
set X5 has at least one component on which f is unbounded. This
component is unique if and only if x € £(G).

Proof: Since f is geometric, the group G acts on X as a group of
covering transformations. Let X’ = X/G’, where G’ is the commutator
subgroup of G. The function f induces f' : X’ — R. Let X, =
f'~(c,+00). By [BNS, Part 5], there exists a unique component A’ of
X% . on which f’ is unbounded, and x € £(G) if and only if the natural
map from m A’ to G’ is onto (compare [Le 1, Parts IV and V] and [Si]).
The proposition follows. W

2. Abelian actions on R-trees.

Suppose a finitely generated group G acts by isometries on an R-tree
T

The length function £ : G — R* is defined as 4(g) = infer d(z, g2).
The action is ¢rivial if there is a global fixed point (equivalently if £ = 0),
minimal if there is no proper invariant subtree. The action (or the
length function) is called abelian if £ is the absolute value of a nonzero
homomorphism x : G — R. Two minimal actions of G with the same
length function £ are equivariantly isometric, except maybe if £ is abelian.
Brown’s theorem (Theorem 3.2 below) is concerned with this “maybe”.

A nontrivial action is abelian if and only if there is a fixed end e. We
can then define a closed one-form on T, as follows. Given z € T, there is
a unique isometric embedding 4, : (—c0,0] — T such that i,(—o00) = e



198 G. LEVITT

and i,(0) = z. Fixing a basepoint m € T, we define f(z) as the only real
number such that i;(t) = in(t + f(z)) for |t| large enough (“Busemann
function”). Then f is a closed one-form on T, relative to some nonzero
homomorphism x : G — R satisfying £ = [x|. This homomorphism
measures how much elements of G push away from e.

An abelian action is called ezceptional if there is only one fixed end
e. We can then define x unambiguously, and we say that the action is
associated to x. If there are two fixed ends (i.e. if there is an invariant
line), we say that the action is associated to both x and —y.

3. Characterizations of Z.

Let f: X — R be continuous, with X path-connected. Assume f has
bounded variation in the following sense: given z,y € X, there exists a
path 7 : [0,1] — X from z to y such that f o~ has bounded variation.
The infimum of the total variation of f o« over all paths v from z to y
then defines a pseudometric d(z,y) on X.

We let T'(f) be the associated metric space: points of T'(f) are equiv-
alence classes for the relation d(z,y) = 0. Denote w : X — T(f) the
natural projection and A : T'(f) — R the map such that Aow = f.

If f is a closed one-form relative to some x : G — R, there is an
induced isometric action of G on T(f) with A(gz) = A(z) + x(g9). When
T(f) is an R-tree, the length function £ of this action satisfies £ > |x|
(since A does not increase distances).

Definition. Consider an abelian action of a finitely generated group
G on an R-tree T, associated to x : G — R. The action is geometric if
and only if there exists a geometric closed one-form f: X — R relative
to x such that T'(f) is G-equivariantly isometric to 7.

Theorem 3.1. Let x : G — R be a nontrivial homomorphism, with
G a finitely generated group. There exists a geometric abelian action of
G on an R-tree associated to x if and only if x € —X.

Proof:

Let f: X — R be a geometric closed one-form relative to x. Assume
that T(f) is an R-tree and the action of G on T'(f) is abelian, associated
to x. We show x € —X.

Fix g € G with x(g) < 0, and fix ¢ € X with, say, f(z) = 0. For A
large enough, the path component U of f~!(—A, A) containing = meets
every orbit for the action of G on X: this is because X/G is a finite
complex. We may also assume that A has been chosen so that gz € U.
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We then claim that any y € X with f(y) < —A belongs to the same
component of f~!(—o0o, A) as z. This will imply x € —% by Proposi-
tion 1.1.

Choose an infinite path « : [0,400) — X such that v is a path
from z to gz in U and 7(t + n) = g"y(t) for n € N and ¢ € [0,1]. Since
x(g) < 0 this path is contained in f~(—o0, A4).

Given y € X with f(y) < —A, fix h € G such that hy € U, and
choose a path § from hy to  in U. Consider the infinite path p obtained
by applying A~! to §v: it starts at y and passes through A1z, h~1gz,
h~1g%z,.... It is contained in f~!(—o0, A) since f(y) < —A.

The image of v in T(f) contains all points g"n(z) (n € N), while the
image of p contains all points h='g"n(z) = (h~*gh)"r(h~'z). Now the
translation axes of g and h™!gh intersect in a half-line containing the
fixed end e (unless they are equal). Furthermore g and h~1gh both push
towards e since x(g) < 0. It follows that « and p are contained in the
same component of f~1(—o0, A), so that x € .

Conversely, suppose ¥ € —X. First assume that G is finitely presented.
Let M be a closed manifold with my M = G. Consider a geometric closed
one-form f : X — R as in Example 2 of Part 1. To fix ideas we may
assume that f is a Morse function.

Since X is simply connected (it is the universal covering of M), it is
known [GS] that T'(f) is an R-tree (see [Le 2, Corollary III.5]). Since
X € —X the function A : T(f) — R is bounded on every component of
A~} (—o00, ¢) but one. It follows that the action of G on T'(f) is abelian,
associated to x: letting A go to —oo defines an end e of T'(f) which is
invariant under the action.

Now let G be any finitely generated group. Using (i) <> (iii) in [BNS,
Proposition 2.1] we can find an epimorphism ¢ : H — G, with H finitely
presented, such that ¥’ = x o g belongs to —X(H). Apply the previous
construction to H and x'. Let Y be the normal covering of M with
group G and g: Y — R the map induced by f.

The length function of the action of H on the R-tree T'(f) is £ = [x|.
It vanishes on the kernel K of gq. It follows from [Le 2, corollary of

—

Theorem 2] that T'(g) = T(f)/K is an R-tree. The action of G on this
R-tree is abelian, associated to x. B

Theorem 3.2 (Brown). Let x : G — R be a nontrivial homomor-
phism, with G finitely generated. Then x € T if and only if there exists
no ezxceptional abelian action associated to x.

We start the proof with a general construction. Let f : X — R be
continuous, with X path connected. We construct an R-tree 77 (f) as
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follows. Given z,y € X, define

8(z,y) = flz) + f(y) - 2313!1) min f(7(t)),

te[0,1]

the supremum being over all paths 7 : [0,1] — X from z to y. This is a
pseudodistance on X and we let T+ (f) be the associated metric space.

Proposition 3.3. The space T*(f) is an R-tree. If p: T*(f) - R
is the map induced by f, all sets p~*(—o0,c) are path-connected, so that
T*(f) has a preferred end e = ™' (—00).

Proof:

We first prove that 71 (f) is an R-tree. By [AB, Theorem 3.17] it
suffices to show that 6 satisfies the 0-hyperbolicity inequality

8(z,y) + 6(2,t) < max{6(z, z) + 8(y,t),8(z,t) + 6(y, 2)}-

By linearity we need only worry about the terms §" = sup min fo~y. They
satisfy inequalities such as

§'(z,y) < min{max(§'(z, 2),6'(2,y)), max(&'(z, 1), ' (,¥))}
and we conclude by applying the inequality
min{max(a, ¢), max(b, d)}+min{max(a, b), mg.ﬁc(c, d)} < max(a+d, b+c),

valid for any four real numbers a, b, ¢, d.

Let 7+ be the projection from X to TF(f). Given z,y € X in
f~Y(—o0,c) with, say, f(y) < f(z), choose a path v : [0,1] — X from
z to y. If (p,q) is a maximal interval in (f o v)~*(f(z),+00), we have
(r* o 4)(p) = (7t o v)(q) and we can change 7+ o~y on (p,q) so that
it becomes constant on [p,g]. Doing this for all intervals (p,q) yields a
path from 7+ (z) to 7t (y) in g~ (—o0,c). W

If f is a closed one-form relative to x : G — R, the natural action of
G on T*+(f) fixes e. It is abelian, associated to x (note that this action
is nongeometric whenever x ¢ —X, by Theorem 3.1).

To prove Theorem 3.2, we fix a finite generating system S for G with
x(s) > 0 for every s € S and we consider the corresponding Cayley graph
I.

First assume x ¢ £. Let f: ' — R be as in Example 3 of Part 1. We
claim that the abelian action of G on T (f) is exceptional.
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Let u; and u3 be vertices of I belonging to distinct components Uy, Us
of some f~1(¢c,+00). Fix s € S. The whole ray u;, u;s, uis?, ..., u;s™, . ..
is contained in U;. Writing u;s™ = (u,-sui'l)"ui we see that ulsul_l and
USUy ! do not have the same translation axis in T+ (f)- This means that
the action is exceptional.

Now assume x € . Let T be an R-tree with a minimal abelian action
associated to x. We show that the action is not exceptional.

Choose z € T belonging to the translation axis of every s € S. Con-
sider a G-equivariant map ¢ : I' — T, affine on each edge, sending 1 to
z. It is surjective because the action is minimal. _

Define f : T — R as in Part 2. The choice of z implies that g = foyp is
monotonous on each edge of I'. It follows that g is unbounded on every
component of g~!(c,+00), so that 9~ (e, +00) is connected for every
¢ € R by Proposition 1.1. Projecting to T we see that every f~1(c, +00)
is connected: the action is not exceptional. B

Combining Theorems 3.1 and 3.2 we get:

Corollary. Let x : G — R be a nonzero homomorphism, with G
finitely generated.

(1) If x € £N—X, the action of G on R by translations is the only
minimal action with length function £ = |x|. It is geometric.

(2) If x € X but x ¢ —X, there exist geometric exceptional abelian
actions assoctated to —x. The only minimal action associated to
X s the action on R, it is not geometric.

(3) If x ¢ Z U —X, there ezist both exceptional abelian actions asso-
ciated to x and exceptional actions associated to —x. No action
with length function |x| is geometric.

Combining with Theorem B.1 from [BNS] we obtain:

Corollary. Let G be finitely generated. The following conditions are
equivalent:

(1) Every nontrivial action of G on R by translations is geometric.
(2) The commutator subgroup G’ is finitely generated.

References

[AB] R. ALPERIN, H. Bass, Length functions of group actions on
A-trees, in “Combinatorial group theory and topology,” S. M. Ger-
sten, J. R. Stallings, ed., Ann. Math. Studies 111, Princeton Univ.
Press, 1987.



202 G. LEviTT

[BNS|] R. Bierl, W. D. NEUMANN, R. STREBEL, A geometric invari-
ant of discrete groups, Invent. Math. 90 (1987), 451-477.

[BS] R. BIERI, R. STREBEL, “Geometric invariants for discrete
groups,” W. de Gruyter, Monograph to appear.

[Br] K. S. BROWN, Trees, valuations, and the Bieri-Neumann-Strebel
invariant, Invent. Math. 90 (1987), 479-504.

[CuMo] M. CULLER, J. W. MORGAN, Group actions on R-trees, Proc.
Lond. Math. Soc. 55 (1987), 571-604.

[GS] H. GILLET, P. B. SHALEN, Dendrology of groups in low Q-ranks,
Jour. Diff. Geom. 32 (1990), 605-712,

[Le 1) G. LEVITT, 1-formes fermées singuli¢res et groupe fondamental,
Inv. Math. 88 (1987), 635-667.

[Le 2] G. LeviTT, Constructing free actions on R-trees, Duke Math.
Jour. 69 (1993), 615-633.

[LP] G. LEviTT, F. PAULIN, Geometric actions on trees, preprint.

[Sh] P. B. SHALEN, Dendrology and its applications, in “Group theory
from a geometrical viewpoint,” (E. Ghys, A. Haefliger, A. Verjovsky,
eds.), World Scientific, 1991.

[Si] J. C. Sixorav, Homologie de Novikov associée & une classe de
cohomologie réelle de degré un, in “Thése d’état,” Orsay, 1987.

Laboratoire de Topologie et Géométrie
URA CNRS 1408

Université Toulouse II1

31062 Toulouse Cedex

FRANCE

e-mail: levitt@cict.fr

Rebut el 10 de Setembre de 1993



