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COMPACTNESS OF SUPPORT
OF SOLUTIONS FOR SOME CLASSES

OF NONLINEAR ELLIPTIC
AND PARABOLIC SYSTEM S

M . BoUCHEKI F

A. bstract

	

	
In this paper, we obtain some existence Theorems of nonnegativ e
solutions with compact support for homogeneous Dirichlet ellipti c
problems ; we extend also these results to parabolic systems .

Supersolution and comparison principies are our main ingredi-
ents .

1 . Introduction

This paper is concerned with the existence of nonnegative solutions
with compact support in X := Wó ' p (SZ ) n ( SZ ) x Wó'q ( SZ ) n (12) fo r
the following systems :

_Opu+alu~a-1u = f(x,u,v) in 9

(S) —L] q v + blvi a-1v = g(x, u, v) in 9

u=v =o

	

on 09,

and next

9at --- qpu + alui'u = f (x, u, v) in SZ x R+

át — A q v + blv = g(x, u, v) in SZ x R+

(1') u(x, t) = v(x, t) = o

	

on áQ x R+

u(., o) = uo( .)

	

in SZ

v(., o) = vo( .)

	

in SZ ,

where p ~ 1, q ~ 1, a, b, rx and fi are positive constants ; the operator
qpu, defined by qpu := div(1Vuip-2Vu), p ~ 1 is the well known "p-
Laplacian" ; f f and g are nonnegative Caratheodory functions and uo an d
vo are some given functions .
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During recent years, many papers are devoted to the study of reaction-
diffusion systems which arise very often in applications such as, mathe-
matical biology, chemical reactions and combustion theory . An excellent
overview of the subject is the survey of [1] .

Díaz and Herrero [4] and [51, study the case of a single equation of the
form :

_ppu --}- alul°` T1u = f in SZ
(Ea,,g)

u = g

	

on r7g ,

where a is a positive constant, f E L'(Q), g E W l,p (9) and glan E
L'(8Q), both with compact support . Then, a necessary and sufficient
condition for the existence of a solution u E W 1 ' p (1-2) n L°° (S?) of (Ea ,j )
with compact support is o < a C p — 1 . They obtain the same results
for the associated parabolic problem .

Here we generalize the aboye resuits to some elliptic and parabolic
systems and we used the iterative method based on the Compariso n
Principie for the problem (Ti ), taking in account the construction of sub -
super solution introduced in [111 .

Our paper is organized as follows :

1 . Introduction ; 2 . Preliminaries ; 3 . Elliptic systems and, 4 . Paraboli c
systems .

2. Preliminaries

We shall use the following notations :

For p 01, +oo[, p * is defined by p + p* = 1 .

For a> o,p> 1 ando CcxCp —1, set

a(p — a — 1) P
(2 .1)

	

K(a,p, a) :=
[pp_1(pa+N(p_a_1)) ]

Far T > o and Ro > o and Ri > o such that Ro C Ri for (i = 1, 2) .

Consider the following sets :

Do := B(Ro) ,

Di := B(RZAB ( Ro) ,

D? := B(RZ )' for i = 1,2 ;

S2 := S2 n B(max(Rl , R2 ) + 1) ,

QT := S2 x [O,T] and

ET :=

	

x [0,T]
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where B(R) :_ {x E /Ix I < R} and A' is the complement any set o f
the A .

Definitions .

I} A pair (ü, '13) -

	

í;) is said to be a weak sub-super solution for the
Dirichlet problem (S) if the following conditions are satisfied :

(ü,) ; (21, v} E v7 1, 73(Q) n L°° (SZ) x

x W 1, q (SZ) n L°°(g)
—Op%L + - f (x, ú, v) Ç 0 Ç

Ç -Opú+ f (x, ú ,v) in 9 dv E [,í ]
—qqí-) +—g(x, u, v) ç 0 ç

Ç + - g(x, u, v} in Q du E [ú, ú]

ú Çü in S~
vÇ

	

in Q

ú ÇOÇú on

icCOCv on 5Q .

Similar definitions can be found in Díaz-Hernández [3], Hernández [7] .

II} In the case of parabolic problem we consider only sub-super solu-
tions which do not depent on t . Such a pair (í~, v} - (fi, v} is sub-super
solutions of (P) if the following conditions are satisfied:

a) (C) ,
b) ü(x) Ç uo (x) Ç ü(x) in g,
c) «x} Ç vo (x) Ç v(x) in SZ .

In this paper we also use the following lemmas :

Lemma 1 . [2, Lemma 1 .61 Assume that p ~ 1 and 0 < oe C p - 1 .
Then the function u(r) = , where K = K(a, p, a) defined
by (2. 1), satisfies the following equation : 773 4- á (rN_h1 P_ 2 d2 I T

) +

aJu(r) J a-l u(r) = 0 .

Lemma 2. [10] Suppose µ and v are in ]f8 N . Then there exists C > 0
such that :

I- v) > Clµ

	

if p > 2

I

	

p, — l/)

	

i
f (lµl+l~l) -p

	

+ IUi

	

0

andl<p<2.
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Lemma 3 . [8] Let Y be a Banach space .

If u E L P(O,T;Y) and á E LP (O,T;Y)(1 < p < +oo) . Then alter an
eventual modification on a set of measure zero of (0, T), u is continuous

from [0, T] to Y .

Let Ro > 0 be given . We seek a sub-super solution of (S) and (P) in
the following way. Let (v,, v) = (0, 0) and (ú, v) be defined by : ú(x) =
G l (Ix l), v(x) = G 2 (Ixi) for x E 9 where :

—A lrp* + B l

	

if r < Ro

G l (r) = K l (R l — r) ~ if Ro < r < R1
0

	

ifr>R l ,
(2 .2)

—A Zr 9* + BZ

	

if r < Ro

G 2 (r) = KZ (R Z — r) 9-p -1 if Ro < r < RZ
0

	

if r > R 2 ;

with K1 := K(a,p, a) ; K2 := K(b, g,f3) (defined by (2 .1)}, Ai, Bi and

Ri (i = 1, 2) are some positive constants .

First we need that ic E e 1 ~SZ} (resp . v E C1 ( SZ) } which implies that the
positive constants A 1 , B 1 (resp . A 2 , B2 ) satisfy :

	

*	 	 p	

	

(2 .3)

	

__ A 1R1 + B 1 = K1Xr' ,

	

(2 .4)

	

A lp o
*R~*~-1 = K p p	 X1P ~~+̀1'1 —~ —1

	

,

	

—A2R q* + B2 =(2 .5)

	

~

	

2

A*Rq 1

	

2g

	

= K2

	

p
1

	

(2 .6)

	

1
o

	

_— 1

	

?q í3

where X i = Ri — Ro for i = 1, 2 . These constants will be completely
determined in each one of the following sections .

3 . Elliptic systems

We study the elliptic system (s), where

(fl 0 ) SZ is a regular open set in RN (not necessarly bounded) ; a > 0 ,
b > 0, p > 1, q > 1, o C cx C p— 1, 0 C i3 < g— 1 are given
numbers .

(7-() f (x, u, v) and g(x, u, v) are Caratheory functions, f (x, ., v) (resp .
g (x, u, .)) is a nondecreasing function for fixed v (resp . fixed u) .
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(7-12 ) The functions f (x, u, v) and g(x, u, v) satisfy :

0 < f(x,u,v) < curyvó+l + w(x)v'7 + (x) and

0 < g(x,u,v) < du7+1v 6 + O (x)u1 + g i (x) for u, v > 0 ,

where

c, d, 6, 'o, 'y and are nonnegative constants ;

w, ~, f1 and g 1 are nonnegative, bounded measurable function s
such that :

supp fi U suppgl U supp cp U supp ~ C B(Ro) for some Ro > 0 .

We seek solutions (u, v) E X satisfying (S) in the distributional sense.

First we give some conditions on a, /3, f and g which insure that {ú, v)

defined in (2.2) is a supersolution of (S) .

Proposition 1 . If (?-lo), (fl 1 ) and (7-12) are satisfied with y > a and
6 > /3, then, for sufficiently small nonnegative c, d, 11(,ofl c, and 1101100 ,

(0, 0) - (ú, v) is a sub-super solution for (S) in Q .

Proof: It is obvious that (0, 0) is a sub solution .

By the definition of a super solution, we have to prove that :

(3 .1)

	

-Dpú + a(ür - f (x, ïc, v) > 0 Vv E [o, v] in SZ .

In B (Ro),wehave :
-OP Ú = N( A ip* )p-1 -

Then, if we take :

(3 .2)

	

N(A1 P * )P-1 > cBiB2+i + IIOO B2 + ILflIk ,

ú satisfies (3 .1) in B(Ro) .

In B(R1)\B(Ro), ú is a solution of (&,o) by Lemma 1 [5], thus (3 .1 )
becomes :

á
Ki (Rx - r) P~-~ - cK~ K2+1 (R1 - r) P - 1 (R 2 .- Ro) ~ ~ ~ i > p ,

2

which is satisfied if we have :

y~a
g ( S + X )

cX P-a—z X q—p-1 C C2

	

- 1



232

	

M . BOUCHEKI F

and analogously for the other equation of (8), we obtain :

� j3

P(7+ 1 )

	

g(6 — 0)

dX
~-~-1 X g-A-1 c C'1

	

2

	

-

where :

:= C 1 (a, • +p ¡~r

	

ac

	

:= 1a ~r-~~-~ b q ~p~i x~.~ ar7 7 p 7 `17 7,6;

	

7t-}

	 a -y_

	

-(6+1 )
(p—a— 1 ) p	 p—~1

[2q_1(~q+N(q_~ _
(q~ -- 1) q

2pP- 1 (ap + N (p — cx — 1))

	

1) )

'- C1 (b7 a, q,p ; 6,'y ; O 7 a) ]

Xi :=Ri — Ro for i = 1,2 .

So (~,í) is a supersolution of (S) if (2 .3) to (2 .6), (3 .2) to (3 .4) are
satisfied .

hom (2.3) to (2 .6), (3 .2) is satisfied if:

(3 .5)
	 -r~	 q (b+ 1}

~ c C~~4 d1
Vr a—1

11
V
;

—/3—1 (1 + f1r5X~ 1 }yr1 + l~r71~ V 1 )6+Z +L~ ~

	

`

	

1 1

+ II IIK2 X2
-qp~1

( 1 + c5X2
1
)' + Ikf]. Iloo ]

where :

P
- 1

	

p
-1 ~

C3 := C3(p 7 a 7 Ro) . N K1

		

Ro 7
p

_
a

_ 1

y .F~~+ ~~

	

C4 := C4(a, b, p7 q ; a, 07~Y7 S) := K1

	

7

C := C R a• ac = -
	 p	 K1Ro5

	

5~ 07 7 p7 }

	

_ a _ 1

	

~
p

• ,~3 }C5 := C5 (Ro ; b, g 7 ,

:= K

	

p ,
á

a) and K2 := K

	

q, fi) (function K defined by (2 .1)} .~

	

7

	

72

	

2

We choose X1 and X2 1 such that : 1 +C5X1 1 Ç 2 and 1 +C5X2 1 Ç 2 ,
so (3 .5) is satisfied if:

	

(a+1)(p-I)

	

!¡-Y3X1 p —a 1

	

~ 3 IIf11~~ 7

	

(a+1)(90-1)

	

-~90	 	 g(6+1 }
(3 .6)

	

> 3 x 26+-r+1 cC4X1
p-'-1 X~2

	

7

1
(a+1) {p-1 )7'—a—1

	

> 3 x L II 7'~ ¡} II. 11 X 2~X q—7— 1¡Y3X

	

_

	

7i

	

'

(9o -1)(a +1 )

C3 X1
P—a—1
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p (7+1)

	

g( 6 +1 )

Let Z — Xr' = X2'-° -1 be large enough such that Z ~
(9,

a

++1)1p*

	

r	 ae +1 	 _-~-_ 1(IfiIIoo)

	

c such that c ç 3 x 2ry +s+1 c4 L (ry+1 )p * ~ + 1

	

and

11'P11 ~ < 3x 2:Kn Z (~+)1p*_~

Similarly for the other equation of (s), we take :
( b + 1 ) q*

	

'	 13 + 1

	

6

	

Z~ (1110100)
(Q+1) ,

d such that d Ç	
c	 	

~+1
- 1

~

Ik/OO ~
	 	 + 1

and	 	 ~	 ~ Z (6+ 1 ) g * – ~+1

	

3x 2ry+I+1 C' Z ( 6 + 1 ) q *

3x2 K l

For (3 .3) and (3.4), we take :

	

c C

	

.—2-y— 1

CC1Z
O—26— 1

d 6+ 1

So, consider Z large enough such that :

	

(
`7+ 1 )

	

(S+ I
2

	

(Gx+l)p*

	

2

	

y- 1 ) q *
(ii)

	

'

	

ii gl 11 003

	

3

and choose c, d,

	

and

	

small enough such that :

	 cr+ 1
o Ç c Ç Min

3 x

C3
2

6
+y+1C

Z(-r+1)p* _,+1 -1 , C1Z~+1
1

4

o c d c Min	
C3	

Z (~~1) g * s+1 ~1 ~ Z p ó+1
	 1

3x26+y+1 C4

	

a 1

	

y

	

C	 	 a+1 -6+-11IkoII0o 5	 3	
~ Z (-Y+1~~ *

3x2~K2

	

C3	 p +1

	

~
11011 . 5 3
	 ~ z ( 6+1)q *

x2~K2

Therefore, the existence of

	

v) in SZ is proved . ■

Theorem 1 . Suppose that the hypothesis of Proposition 1 are satis-
fied, that c, d, 1and ii 011,0 are nonnegative real nurnóers sufficiently
small . Then, there exists at least one nonnegative solution with compac t
support (u, v) of problem (8) .

(3 .8)

	

Z > Max
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Proof: We proceed in three steps .

i) Construction of an invariant set :

In view of applying Schauder 's Fixed Point Theorem, let us introduce
E -= Lp (9) x Lq (SZ) , K = [O, ü] x {o, and consider m 1 and m 2 such
that m 1 > a and m 2 > b .

Next we define the nonlinear operator T : (u, v) E K -4 (w, z) E E by :

--0►pw + m 1 lw1a-1w = (m 1 - a)u' + f (x, u, v) in ñ

(3.10)

	

-Opz + m2fzi-1z = (m2 - b)vO + g(x, u, v)

	

in S2

w - z - o

	

on o~SZ ,

Existence and uniqueness for solutions of (3 .10) are well-known by [8] and
[4], so that T is well defined. Moreover (w, z) is in Wo'P (S2) n L°° (S2) x
Wó' q (S2 ) n L°° ~ S2 } and is nonnegative by [3] . Now we extend w and z by
OoutofS2 .

ii) T(K) c K . Let (u,v) E K, we have :

(3 .11) - (Lw - OP Ú) +m i ( 1 w r
-1,w _ iue-l ic)

< (ml — a)(1ur- i u -

	

+ .f ( x , u, v ) — .Í(x , ú , v ) ,

multiplying (3 .11) by (w - ic)+ := max(w - ú, 0)} and integrating ove r
9, we obtain :

(1V,,,1p-z 7w - IVgp-2Vú)0(w - ú)+ dx +

+ml f(wI'w -

	

- ú)+dx <

(m l - a) Á (u" - (~)a)(w~)+dx+

+ Á( f(x, u, v) - f (x, ú, v)) (w - ú)+ dx < 0 .

From (7-t 1 ) and Lemma 2, we have (w - ú}+ = 0, hence 0 Ç w Ç ü .

The same is true for z, 0 Ç z Ç v, T(K) C K.

iii) T is completely continuous :

First we prove that T is compact, let (uj , vi ) be a bounded sequence in

K. By (7í2) f (x, uj , vi ) (resp . g (x, uj , vi )) is bounded in Lp* (S2 ) (resp .
Lq* (S2)} .

(3 .12)
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Multiplying the first equation in (3.10) by w, we obtain for wj :

J l Owj IP dx+

(3 .13)

	

ml f I w~ ~«+i
dx = (m l - a)

	

luila-lu iwi dx+

D¡

	

f
+ J f (x, v,j , vi)wj dx < C m l

[T
i I p dx ,

Hence (w) is bounded in W 1 ' p (S2 ) and it possesses a strongly convergent
subsequence in Lp (SZ ) . The same is true for zj in LQ (SZ ) .

Now we prove the continuity of T:
Suppose that (ui , vi ) -+ (u, v) in K . By the Dominated Convergence

Theorem, we have :
(3 .14 )
f(x,uj ,vj ) ~ f(x,7,.L,v) in LP * ( S 1) and Iui 1 uj -> Iul a-l u in Lp* (S2) .

Consider
(3 .15)

-(ApTi - Apw ) + m i(1 w il c- Iw i - l wr lw) =
= (ml -a) (l uj la-iuj _ (

-
f(x,u,v) in ñ

1 21J
3

= 2l1 = 0

	

Ori C2 .

Multiplying (3 .15) by (wj - w) and integrating over S2 we obtain :

(1vwilp-zOwi - IvwIP-2 vw)v(wi - w) dx+

+f ((f(x, uj ,v) - f(x,u,v))(w-w)dx .
i

It follows from (3.14) that the right-hand side of (3 .1G) tend to zero as
j tends to -f--QO .

From Lemma 2 and Holder's Inequality applied to the left-hand side
of (3.1s), we obtain :

J 1V(wi -w)~p dx+m
1J

1(w' -w)Ip dx ->O as j ->+oo .

(3 .16)
+m l J (iwi a-lw7 – I

	

- w) dx =

_ (ml - a)
J

(I u7l«-l
uj _

,u a-lu)(2lJj – 2U) CL~x+
S2
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A similar argument can be used for z . Since K is a convex, bounded and
closed subset of E, we can apply Schauder ' s Fixed Point Theorem and
obtain the existence of a fixed point for T, which gives the existence o f
at least one solution (u, v) of (S) such that o Ç u ç ic and o C v f) . ■

4. Parabolic systems

In this section, we consider p > 2, q > 2 and Ro > o such that :

supp (p U supp q/) U supp fi U supp g l U supp uo U supp vo c B(Ro) ;

where f1, g l , cp, ~ defined in (7-(2) .
We add the following hypothesis :

(7í 3 ) VM > 0, b'N > 0, 3K;mN > 0 i = 1,2 such that :

f ( x , u i, v i) — f (x, u2, va) C Kk ,rv((ui — uz) +(v i — v2)) ;

9 (x , u ix v i) — 9(x,u 2 o V2) � KI,N((ui — uz) + ( v i — v2) )
foro<u 2 Cul < MandO<v2 <vi <N.

Proposition 2. Assume that the hypothesis (No) and (Ni) are sat-
isfied and the numbers a, O, 'y and S are such that : 1 Ç a < p — 1 ,
1

	

< q — 1, y> a, ó> O. Then, for suff ciently small numbers
c, d, I and 1(Q, o) —

	

is a sub-super solution of (P) .

Proof: From the definition of ic, for (II-b) it is sufficient to have :
P

(4 .1 )

Similarly for v ,

(4 .2)

IIuoIIo c xl xi- c - 1 .

	 q	
11 vo bo ç K2X2 -1-

1

~

	

where .~ 1 := K(a, p, a), K2 := K(b, q,

	

(defined by (2.1)) and Xi : _
Ri — Ro forz =1,2.

From the elliptic case (Proposition 1), (4 .1) and (4.2), we choose the
real numbers Z, c, d, bobo and 1 such that :

2

	

°` + ~Y+~XP *

	

2

	

ó+1 Xq *a+ ~
Z

	

Max

	

C,3 11f111.

	

11 g 111 .

1f uo11~ ~+~

	

I
K2

p C c C Min	 C3

	

Z	 IX +i * -- ~—1 C' Z~+~
3 x 26+-y+1c4

(-~+1) p

	

ry+~

	

, 1
~

o C d C Min	 C3	 Z( 5 + 1 ) q
3 X 2 5 'Cl4 7 c1Za

	 s~sl	 a.
+
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Then, the existence of (~, fv } as super solution of (7') in QT is proved . ■

Theorem 2 . Assume that (7-) and the hypothesis of Proposition 2
are satisfied . Then the problem (P) admits a nonnegative unique solutio n
in C(R+ , LZ (12))nL°°(0, T ; Wó'p (12 )) x C(R+ , L 2 (f))nL 00 (O, T; wó'4 (9) )
such that: 0 u(x,t) < ú(x) and 0 < v(x,t) < v(x) in 52 x IEB + .

Proof: Using an iterative method, we proceed in five steps .

Construction of sequence (un) (resp . (vn }} .

i) Determination of uo (resp . vo ) .

From [ñ, Theorem 4] uo (resp. vo) exists as solution of :

{

át — Apilo + 0uo 1a—iuo
= f(x , O, O) in QT := x [0,7' ]

uo(x, t) = 0

	

on ET := 512 x [O,T]

uo( ., O) = uo( .)

	

in 1-2' ,

resp .

	

W9v
_ Aqvo + 14_O I0-1v0 = 9(x , 0,0) in QT

ro (x, t) = o

	

on ET

( .,O) = vo~ .}

	

in 12 ,

such that : O Ç uo Çú (resp . . O <yo Ç ir)) .

ii} Suppose (un ) (resp . (va )) is defined as nonnegative function on
Sz x [Q, Ti (T ~ 0) with initial value uo (resp. vo) in 9, zero on ET and
0 Ç un ü(resp . 0 v 7Z ç v} also we define un+1 (resp . vn+1 ) a s
solution of the problem :

aunt+x ^
~~un 1 +aI un+1 I cx—1

urt+]. = f (x y un y vn ) in QT~

	

+

un+1 (x, t) -̀̀ o

	

on ÉT

un+1 ( ., 0) = uo( .) in (2 ,

resp .

av_a tn+x _ Aqvn+1 + bivn+ 1 I
0—lvn

+i = 9(x , un, vn)

vn+x (x , t) = 0

	

on ET

vn+1 ( .,0 ) = va( .)

	

in QT

in ñ .

un+1 (resp . vn+1 ) exists by [6, Theorem 4] such that : 0 Ç un+ 1
(rsp . 0 Ç vn+1

	

f1} .
C ú
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iii) Estimations of --un+1 , 8u n7t

	

-
	 +x (resp . vn+1,

avn+1
}a t

Consider :

aun+,(x,t )
at

	

—

	

+ a l un+ 1

un+1 (x, t) = o

un+1 ( ., o) = u0(• }

Multiplying by 8un+ x
at and integrating over QT, we get :

in QT

on ÉT

in ñ .

a_
un+1 = f (x , un~ vn)

LT
¡

	

áun+i(x , t) 2

JQT ~

	

at
aun+ 1(x' t dx dt+

at +

iun+l
IIa-~

	

aun
+1	 (x' t) dx dt

1

	

un+ 1

	

(~t+a
QT

=

	

f (x, un , vn} 531' 1 	 (x't) dx dt ,
QT

	

at

then

J

(a+1 (xt) 2

t

	

) dx dt +
J~ I

QT

+
a + 1 f ~un+i(x,T)I'+i dx < cJ uñv_~n,+l dx dt+

z

	

Q T

+

	

v~ au
s+l (x ' t)

dx dt + ¡ fl(x) 011'1-1 ( x ' t) dx dt+fQT ~(x)at

	

JQT

	

a t

	 a

+ P ~sz I +
,Á SZ luo( x)r

1 dx .

Using Young ' s Inequality, we Nave :

(4 .$)

	

C(T )
at

	

L 2 (QT )
(4 .4)

	

lIn+1IlL00(O,T ;j47'()) < c(T)

(4.5)

	

11LL.n+111L-co,r)

	

c(T) ,

where C(T) is a positive constant .
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From (4.3), (4 .4) and (4.5), there exists a subsequence which converges
to u in the sense of weak * topology in L°° (o, T; Wó'P (ñ)}, which con -

verges also to u weakly in Lp (0, T ; Wó ' p (S2)) and	 ~ t
aun+1

converges weakly

to át in L2 (0T ) .

By the argument of monotonicity [8], qpun converges weakly to qpu

in Lp* (0,T ; Wo 1'p* (SZ)} . Since un -> u a.e. and vn -> v a.e ., then
we have by Convergence Dominated Theorem : uñ+1 vñ+1 converges to

uyv 6 +1 .

Hence (u, v) is solution of (7') in OT such that :

0 < u(x,t) G ú(x) and 0 v(x,t) G v(x) .

We extend u by 0 and v by 0 out of S2 x [0, T] (VT > 0) .

v) Uniqueness : Suppose that there exists (u l , U2) and (v i , v 2 ) two
solutions of problem (P), we have :

mulat
u2) — (u1 — OPU2) + a(24 — u2 ) _ .f ( x > u i, v i) — f ( x , u2, v2) ,

multiplying by (u i — u2 ) , we obtain by using the monotonicity of operato r
—Op and (N3) :

1 a
— (u 1 — U2) 2 (X, t) dx dt Ç KB,B 2 (u 1 ---- u2)

2 (x, t) dx dt+
2ct

f

	

~

+ KB1,B2 ~ `u1 -- U2) (VI - v2 )(x, t) dx dt
~

Similarly :

1 a
-2

T9i (v1 — y2) 2 (x,t)dxdt < K$1,82 s
_ (v 1 - v2 ) 2 (x, t) dx dt+

+ KB1,B2 f(ui — ~.L2 ) (v 1 — v2) (x, t) dx dt ,

where the constants KB1,B2 and KI1,B2 are positive constant ; where B 1
and B2 are defined in (2 .2) .

By Holder's Inequality, we get :

1 a
-2 [II(ui --- u2 )(x , t) l I L2 (ñ ) + f - v 2 )(x , t)f I L2 (~} ] c

C [II(u 1

	

¡¡xst)IIL
,
(s~) + f2

	

- v2)
¡
~xa

	

I f
— u2~lt}{{L2(S2)] ,

where C is a positive constant .
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Then from Gronwall's Lemma, we obtain : ul = U2 and vi = V2 .

Ifp ~ 1\+2 or p = N, W 1 ' P (S2) c—> L 2 (9) and as u E L°°(0, T ; Wó'p (SZ) }

and E L 2 (QT ) then from Lemma 3 we have u E C (R+ , L2 ( SZ ) } and
similarly for v E COII+ , L2 (Q)} . ■
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