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COMPACTNESS OF SUPPORT
OF SOLUTIONS FOR SOME CLASSES
OF NONLINEAR ELLIPTIC
AND PARABOLIC SYSTEMS

M. BOUCHEKIF

Abstract

In this paper, we obtain some existence Theorems of nonnegative
solutions with compact support for homogeneous Dirichlet elliptic
problems; we extend also these results to parabolic systems.

Supersolution and comparison principles are our main ingredi-
ents.

1. Introduction

This paper is concerned with the existence of nonnegative solutions
with compact support in X := WP () N L®() x W,9(Q) N L=(Q) for
the following systems:

—Apu + alul*tu = f(z,u,v) inQ
(8)X —Agv+bjv|P~tv = g(z,u,v) inQ

u=v=0 on 912,
and next
& — Aju+alul*tu= f(z,u,v) inQxR*
& — A +b|f~lv =g(z,u,v) inQxRF
(P)S u(z,t) =v(z,t) =0 on 90 x R*
u(.,0) = ug(.) in Q
11(.,0] = UO(') in 2,

where p > 1, ¢ > 1, a, b, @ and 3 are positive constants; the operator
Apu, defined by Ayu := div(|Vu|P~2Vu), p > 1 is the well known “p-
Laplacian”; f and g are nonnegative Caratheodory functions and uy and
Vg are some given functions.
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During recent years, many papers are devoted to the study of reaction-
diffusion systems which arise very often in applications such as, mathe-
matical biology, chemical reactions and combustion theory. An excellent
overview of the subject is the survey of [1].

Diaz and Herrero [4] and [5], study the case of a single equation of the
form:

—Apu+alu|/*tu=f inQ

(Ea’f'g){ u=g on 992,

where a is a positive constant, f € L*®(Q), g € W'P(Q) and gjaq €
L*>(012), both with compact support. Then, a necessary and sufficient
condition for the existence of a solution u € W?(Q) N L= (Q) of (€, f,q)
with compact support is 0 < @ < p — 1. They obtain the same results
for the associated parabolic problem.

Here we generalize the above results to some elliptic and parabolic
systems and we used the iterative method based on the Comparison
Principle for the problem (P), taking in account the construction of sub-
super solution introduced in [11].

Our paper is organized as follows:

1. Introduction; 2. Preliminaries; 3. Elliptic systems and, 4. Parabolic
systems.

2. Preliminaries

We shall use the following notations:
For p €]1, +o0[, p* is defined by I-lJ + j% =1.
Fora>0,p>land0<a<p-1,set

alp—a—1)P G=e=D

(2.1) K(a,p,0) := pP~l(pa+ N(p—a—1))

For T > 0 and Ry > 0 and R; > 0 such that Ry < R; for (i = 1,2).
Consider the following sets:

Dy := B(Ryg),
D; := B(R;)\B(Ro),
D} := B(R;)¢ for i = 1,2;
Q := QN B(max(Ry, Rp) + 1),
Qr =1 x[0,T] and
Y= a9 x [O,T]
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where B(R) := {z € Q/|z| < R} and A° is the complement any set of
the A.

Definitions.

I) A pair (@, %) — (4, 0) is said to be a weak sub-super solution for the
Dirichlet problem (S) if the following conditions are satisfied:
( (@,7); (4,0) € WHP(Q) N L®(0) x
xWhe(Q) N L>(Q)

—Api + ala|* i — f(z,4,v) <0<

< =Apt + ald|*~a — f(z,4,v) in QVv € [5,D
—Ag0 + B3P — g(z,u,5) <0 <

< =0+ b9[P~ 1 — g(z,u,0) in QVu € [i,4)

U< in Q
o< g in Q2
1<0<q on 60
L <0< on 99,

Similar definitions can be found in Diaz-Herndndez (3], Hernandez [7).

IT) In the case of parabolic problem we consider only sub-super solu-
tions which do not depent on ¢. Such a pair (@,d) — (@, ) is sub-super
solutions of (P) if the following conditions are satisfied:

a) (C),
b) (z) < ug(z) < i@(z) in Q,
c) 9(z) < vo(z) < 9(z) in Q.

In this paper we also use the following lemmas:

Lemma 1. (2, Lemma 1.6] Assume thatp > 1 and 0 < o < p — 1.
Then the function u(r) = Krﬁ_:h, where K = K(a,p,a) defined
by (2.1), satisfies the following equation: —wf—ldr(rN 1|"“|"*2"!"“} -
alu(r)|*~tu(r) =

Lemma 2. [10] Suppose u and v are in RY. Then there exists C > 0
such that:

(ulP2p = WP-20)(p—v) > Clu—vfP  ifp>2

(ulP=2p = WP~2) (- v) > Cleslss if jul + vl # 0
and 1 <p<2.
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Lemma 3. (8] LetY be a Banach space.
Ifu€ LP(0,T;Y) and $% € LP(0,T;Y)(1 < p < +00). Then after an
eventual modification on a set of measure zero of (0,T), u is continuous

from [0,T) to Y.

Let Ry > 0 be given. We seek a sub-super solution of (S) and (P) in
the following way. Let (@,7) = (0,0) and (4@,?) be defined by: i(z) =
G1(|z)), ¥(z) = G2(|z]) for = € Q where:

—Air? + By ifr < Rg
Gi(r)=¢ Ky(Ry—r)v=—1 Ry <r<R

0 ifr > R,
(2.2) .
—Asr? + By ifr < Ry
Gz(?") = KZ(RQ - T‘)‘?—%—L if Rg<r< R,
0 if r > Ry;

with K; := K(a,p,a); K2 := K(b,q,0) (defined by (2.1)), A;, B; and
R;(i = 1,2) are some positive constants.

First we need that @& € C*(Q) (resp. ¥ € C'(£2)) which implies that the
positive constants A;, B; (resp. Az, By) satisfy:

. —F
(23) —~ARE + By = Ky XP o7
- -a:tl
2.4 Aip"RE T = K — B X
(2.4) 1p" Ry L —a-11 )
(2.5) —A3RT 4 By = Ko X3P,
+1
2. AR = Ky — 1 x5
( 6) 2q R[l 2q _ ‘B _ l 2 )

where X; = R; — Ry for i = 1,2. These constants will be completely
determined in each one of the following sections.

3. Elliptic systems
We study the elliptic system (S), where

(Ho) Q is a regular open set in RY (not necessarly bounded); a > 0,
b>0,p>1,¢g>1,0<a<p-1,0< B < g-—1 are given
numbers.

(H1) f(x,u,v) and g(z,u,v) are Caratheory functions, f(z,.,v) (resp.
g(z,u,.)) is a nondecreasing function for fixed v (resp. fixed u).
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(Hz2) The functions f(z,u,v) and g(z,u,v) satisfy:

0 < flz,u,v) < cwv®*! + p(z)v" + fi(z) and
0 < g(z,u,v) < du"° + P(z)u® + g1 (z) for u, v >0,

where
¢, d, 6, n, v and £ are nonnegative constants;

©, ¥, f1 and g, are nonnegative, bounded measurable functions
such that:

supp f1 U supp g1 U suppy Usuppy C B(Rg) for some Ry > 0.

We seek solutions (u,v) € X satisfying (S) in the distributional sense.

First we give some conditions on a, (3, f and g which insure that (i, ?)
defined in (2.2) is a supersolution of (S).

Proposition 1. If (Hg), (H1) and (H2) are satisfied with v > a and
6 > B, then, for sufficiently small nonnegative ¢, d, ||¢|lec and ||¥||oco,
(0,0) — (@, 1) is a sub-super solution for (S) in Q.

Proof: Tt is obvious that (0,0) is a sub solution.
By the definition of a super solution, we have to prove that:

(3.1) —Ayi + a(@)* — f(z,4,0) >0 Vo€ [0,9] in Q.

In B(Ry), we have:
~A,i = N(A1p*)P~L.

Then, if we take:
(3:2) N(A1p*)*~! 2 eBYBI*! + [[9lloo B + || filloos

4 satisfies (3.1) in B(Ry).
In B(R1)\B(Ro),  is a solution of (€2,0,0) by Lemma 1 [5], thus (3.1)
becomes:

SKE(Ry — )75 — cK]K§* By — )75 (Ry — Ro) 731 20,

which is satisfied if we have:

) it
(33 ply—ea) S+1
X X < o
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and analogously for the other equation of (S), we obtain:

6=>p
(34) p(y+1)  a(6-8
Xmp—u—l X;_y_z_l S Ci
where:
Cl —C](Gq P, G 715 [0} ﬁ) —ap a— 1bq_—_(%¥%x

[ (p—o—1p ]‘“_ (9-B 1) Ry
2pP~Yop+ N(p—a—1)) [QQQ—I(ﬁq +N(g-p8-1)) '
Ci := Ci(b,q; ¢,p; 6,7; B, ),

Xi :=R§—Rn fOI‘iIl,?.

So (4,9) is a supersolution of (S) if (2.3) to (2.6), (3.2) to (3.4) are
satisfied.

From (2.3) to (2.6), (3.2) is satisfied if:
(3.5)
(p=1)(a+1) +p
C3Xy 7o 20X ‘X“J‘T:%(l +Cs X7 (1+Cs X5 1)+ +
1y 7T
+ ol K7 X577 (14 C5X531)" + | filoos

where:

a—1
C4 = Cf;(a, b; D, q; 0::?8:7) 6) = K?Kg+1‘

p—1 "7
C3 = 03(10;0; RD) =N (Kl p_—'__) R[?lu

p—1
= Rp;o;p;0) = ———K
05 C5( Uaa:pva) p—a— 1 1R03
Cy := Cs(Ro; b; 4; ),
b
K=K (2 D, ) and K2:=K(§,q, ﬁ) (function K defined by (2.1)).

We choose X; and X5 > 1 such that: 1+CsX; ! < 2and 1+C{X; " < 2,
so (3.5) is satisfied if:

(ee+1)(p—1)
—m—1
C3X, * = 3| filloo,
(a+1)(p—1) 1P q(6+1)
(3.6) C3X, 7°77 >3 x 20T eC X T X5,
a4li{p—1

C3X, 77°77 >3x 2“||{p||c,of("7){"”E‘1
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ply+1) q(6+1)
Let Z = X7™*' = XJ§ " be large enough such that Z >
(—an
atl vy
(C%"fl"m) ot , € S‘L‘lch that C S 5“—75}'?:1—0:2(14_1)?- T+ 1 a.Tld

“(p”m < ﬁ-j‘-{?z{wﬂw E‘L
Similarly for the other equation of (S), we take:
3 %)ﬁ: Cy o5
z 2 (Zlillo) , d such that d < gz Fery 2@ 0w T
and [[]}o0 < rLerr
For (3.3) and (3.4), we take:

(3.7)

=28—=1

c < CIZ“_QII_I_
d<Clz5%r,

So, consider Z large enough such that:
is J o 2 w9 G
68 zzMax((ZAle) " (Glale) T ),

and choose ¢, d, ||¢]|co and [[#]lco small enough such that:

. 03 = -1 o= 211—1
OSCSMln(mZ‘Y‘FS? C]_ T+ ))
. C;'; Al b1 852621
0.5 Min g5 gy 2 T 02 A ),
(3.9)
” “ _C'_._Z("r+1]p ﬂ_f
Pllee = 35 oKy ‘
Cs
0o < —-—ZW
¥l < 5 Sexe

Therefore, the existence of (1, ) in € is proved. B

Theorem 1. Suppose that the hypothesis of Proposition 1 are satis-
fied, that ¢, d, ||¢||cc and ||¥]leo are nonnegative real numbers sufficiently
small. Then, there exists ot least one nonnegative solution with compact
support (u,v) of problem (S).
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Proof: We proceed in three steps.

i) Construction of an invariant set:

In view of applying Schauder’s Fixed Point Theorem, let us introduce
E = L*(Q) x L), K = [0,4] x [0,9] and consider m; and mg such
that m; > a and mq > b.

Next we define the nonlinear operator T : (u,v) € K — (w,2) € E by:

~Apw +my|w|®tw = (my — a)u® + f(z,u,v) inQ
(3.10) —Dpz +ma|2[f~1z = (mg — b)vP + g(z,u,v)  inQ

w=z=0 on 99,

Existence and uniqueness for solutions of (3.10) are well-known by [8] and
4], so that T is well defined. Moreover (w, 2) is in Wy?(£2) N L=(Q) x
Wyd(£2) N L*(R2) and is nonnegative by [3]. Now we extend w and z by
0 out of .

ii) T(K) C K. Let (u,v) € K, we have:

(3.11) = (Apw — Ay + my (Jw|* w — @) 14) <

< (ma = a)(lul* " u — [@]°7a) + f(z,u,v) - f(z,%,0),

multiplying (3.11) by (w — 4)+ := max(w — 4,0)) and integrating over
2, we obtain:

f (IVulP2Vw — |VaP2Va)V(w — 1) 4 dz+
Q

+my [(|w|°‘_1w — ale1a) (w — 8) 4 dx <
(3.12) 2
< (m1 — ) L (u® — (@)%)(w — 04 dz+

+/ﬁ(f(x:usv) - f{xs ﬂgv))(w - ﬂ)+ dz <0.

From (H;) and Lemma 2, we have (w — @)+ = 0, hence 0 < w < 4.
The same is true for z, 0 < 2 < ¢, T(K) C K.

iii) T is completely continuous:

First we prove that T is compact, let (u;,v;) be a bounded sequence in
K. By (Hg) f(z,u;,v;) (resp. g(x,uj,v;)) is bounded in L?" () (resp.
LT (Q)).
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Multiplying the first equation in (3.10) by w, we obtain for w;:

f (VP dot
Q

(3.13) m [ﬁ w;[** da = (mq — a)[ﬁlﬂﬂa_lﬂjwj dz+

+/_ fz,uj,v)w; dz < O(ﬂh[ iwaflpdw)p’
Q 114

Hence (w;) is bounded in W1?(£2) and it possesses a strongly convergent
subsequence in LP(€2). The same is true for z; in L?(2).

Now we prove the continuity of T":

Suppose that (u;,v;) — (u,v) in K. By the Dominated Convergence
Theorem, we have:
(3.14)
flz,uj,v;) = f(z,u,v) in LP" (Q) and |u;|* u; — |u|* uin LP (D).

Consider
(3.15)
—(Apwj = Apw) + ma (Jw;|* T w; — [w]*tw) =

= (m1 — a)(fu|* "o = [u|* ) + f(z,u5,5) — f(2,u,0) nQ

wj=w=0 on 9.

Multiplying (3.15) by (w; — w) and integrating over { we obtain:
/_(|ij|”_2ij — |Vw|P~?Vw)V(w; — w) dz+
o
amy [ (sl w; =l ) (w; - w) da =
(3.16) @
= (m =) [ (sl s, — [l u)(w; —w) dot
+ [ e05,09) = f@,0,0)w; —w) do.

It follows from (3.14) that the right-hand side of (3.16) tend to zero as

j tends to +oo.

From Lemma 2 and Holder’s Inequality applied to the left-hand side
of (3.16), we obtain:

ﬁ|V{wj-—w)|”dx+m1[ (wj —w)|Pdz — 0 as j — +oo.
0 o)
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A similar argument can be used for z. Since K is a convex, bounded and
closed subset of E, we can apply Schauder’s Fixed Point Theorem and
obtain the existence of a fixed point for T', which gives the existence of
at least one solution (u,v) of (S§) suchthat 0 <u <t and0<v<?. B

4. Parabolic systems

In this section, we consider p > 2, ¢ > 2 and Ry > 0 such that:
supp ¢ U supp 4 U supp f1 U supp g1 U supp uo Usuppvg C B(Ro);
where f1, g1, ¢, ¥ defined in (H,).
We add the following hypothesis:

(Hz) ¥M >0, YN >0, 3K}, x > 0i = 1,2 such that:
fla,ur,0) = f(z,u2,v2) < Kjy (1 = uz) + (1 — v2));
9(z,u1,01) — g(, ua,v2) < Kig n((w1 — uz) + (v1 — v2))

for0<us <uy <Mand0<wvy <v; <N.

Proposition 2. Assume that the hypothesis (Ho) and (H1) are sat-
isfied and the numbers o, B, v and 6 are such that: 1 < a < p—1,
1<pB<qg-—1,v>a, é6 > 8. Then, for sufficiently small numbers
¢, d, ||¢loo and ||¥]co, (0,0) — (@, ) is a sub-super solution of (P).

Proof: From the definition of 4, for (II-b) it is sufficient to have:

(4.1) l[uolloo < K1 X777
Similarly for 9,
(4.2) [|[vo]loo < Kg)(‘“g‘1

where K, := K(a,p, ), K2 := K(b,q,3) (defined by (2.1)) and X; :=
R; — Ry fori=1,2.
From the elliptic case (Proposition 1), (4.1) and (4.2), we choose the
real numbers Z, ¢, d, ||¢|lcc and ||¥]|ee such that:
41

2 T xp' 9 %9’
Z>M =N =] =TS =] ’
> Max ((ZlAle) (Gl )
+1 6+1
Juoll )™ (ol ) **
K ’ Ky ’

. Chy atl a—2y-1
0 < ¢ < Min (mZ?ﬁ%lip '7 Cd ¥+1 ,

. ' 25 1
0<d< Min (WZ 5+liq= C Z 5 )
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Then, the existence of (@, ) as super solution of (P) in Qr is proved. B

Theorem 2. Assume that (Hz) and the hypothesis of Proposition 2
are satisfied. Then the problem (P) admits a nonnegative unique solution
in C(RY, L2(R))NL>(0, T; Wy P (2)) xC(R*, L2(Q))NL*(0, T; Wy ()
such that: 0 < u(z,t) < i(z) and 0 < v(z,t) < 9(z) in Q x RT.

Proof: Using an iterative method, we proceed in five steps.
Construction of sequence (u,,) (resp. (v,))-

i) Determination of u, (resp. vg).
From [6, Theorem 4] u, (resp. v,) exists as solution of:

Bu

Z0 — Apug + alug|*tuy = £(2,0,0) in Qr :=Q x [0,7)
ug(z,t) =0 on £r := 80 x [0,T]
ug(-,0) = uo(.) in Q,

resp.
B~ Doy + blugl 1y = 9(2,0,0) in Qr
yo(z,t) =0 on Sp
vo(.,0) = vo(.) in Qa
such that: 0 <wuy <4 (resp. 0 < v, < D).

ii) Suppose (u,,) (resp. (v,)) is defined as nonnegative function on
Q2 x [0,T] (T > 0) with initial value ug (resp. vp) in Q, zero on £7 and
0 <u, < (resp. 0 <y, <9) also we define u,,, (resp. v,.,) as
solution of the problem:

du

S~ Ap g + alUnt1 | ungr = f(2,u,,0,) in Qr

Upy1(2,8) =0 on I

g1 (+0) = t0(.) in 0,
resp.

du N ~

"ﬁf_ A g¥n+1 + blﬂn+1| —11—!—1 - g(:"p -—-?’liy.n} mn QT

n+1( 0) = vo() in Q.

2

Upyp (resp. v,4,) exists by [6, Theorem 4] such that: 0 < u, ., <
(rsp. 0 <w,,., <9).
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Bu

A . du, Vo
iii) Estimations of Unt1s — L (resp. YUn41s atﬂ)'

ot

Consider:

O,y (21) - .=
Bt — Aply iy +altn 4 |* llén+1 = f(z,up,v,) inQr
En+l(I: t) =0 on ET

Upy1(-+0) = ug(.) in Q.

Multiplying by "” and integrating over Qr, we get:

at_f'n+1(xs t) 2 agn-i-l (x: t
/_T (_Bt— ];T &p_@n+1 ot dz dt+

o ,t
+“[. ll‘nﬂla_lﬂnﬂ—%@)dﬂﬁdt =
Qr
t
= f(.'L' un!—n}Lal:t(x"l dIdt,
Qr

then

¢ 2
/‘ (%ét@) dxdt+£/.1vun+1(I:T)|pdm+
. Q
/ [t 412 :r)|“+‘dw“f i dedy
t
+/- p(2)u] n+1ﬂ"? Ot (&:1) dt+/ Al )6%“[ D i ar
Qr

1
_ P - a+1
+pL|Vug(x)| da:+a+1/ﬁ|ug(a:)] dz.

Using Young’s Inequality, we have:

(4.3) M < C(T)
ot 12(Or)

(4.4) [ s1ll oo o, wre iy < C(T)

(4.5) Nﬂn+1||[,w(c§,«-} < C(T),

where C(T') is a positive constant.
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From (4.3), (4.4) and (4.5), there exists a subsequence which converges
to u in the sense of weak * topology in L*(0, T W,'P(£2)), which con-
verges also to u weakly in LP(0, T; WP (€2)) and _““ converges weakly
to 2% in L%(Qr).

By the argument of monotonicity (8], Apu,, converges weakly to Apu
in LP"(0,T; Wﬂ_l‘p' (Q)). Since u, — u ae. and v, — v a.e., then

we have by Convergence Dominated Theorem: Hv”l converges to
u'}rU5+1_

Hence (u,v) is solution of (P) in Qr such that:
0 < u(z,t) < 4(z) and 0 < v(z,t) < B(z).
We extend u by 0 and v by 0 out of Q x [0,T] (VT > 0).

v) Uniqueness: Suppose that there exists (uj,u2) and (v1,v2) two
solutions of problem (P), we have:
. 3('{‘.&1 - ‘LG2)
ot

multiplying by (u; —uz), we obtain by using the monotonicity of operator
—A, and (H3):

— (Apur — Dpuz) + aluf — ug) = f(z,u1,v1) — f(x,u2,v2),

;;/(m 2)2(m,t] dzdt < Kél‘&/:(ul _ t‘,.2)2(‘1:’@ dz di+
9}

+Kp, b, /ﬁ(ul —uz)(v1 — v2)(, t) de dt.

Similarly:
18

35 |-~ vl @) dodt < K3, 5, [ (01— w0)*(zt) dade+
Q Q

+ K3,.5, / (u1 = u2)(v1 — v2)(z, ) dz dt,
)

where the constants Kj 5, and K B,.B, are positive constant; where By
and By are defined in (2. 2)
By Holder’s Inequality, we get:

19

5 gl = w2) @, B)lIZ2q) + (w1 — va) (@, )2 ) <

< Cfl[(ur — u2)(=, t)"LZ(Q) + [[(v1 — v2)(=, t)“ 2(9)]

where C is a positive constant.
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Then from Gronwall’s Lemma, we obtain: u; = us and v; = vs.

Ifp > 2 orp= N, W'?(Q) — L*(Q) and as u € L=(0,T; Wy?())
and % € L*(Qr) then from Lemma 3 we have u € C(R*, L?(Q)) and
similarly for v € C(R*, L%(Q2)). m
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