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THE PROPERTY (H,) AND ({)) WITH THE
EXPONENTIAL REPRESENTATION OF
HOLOMORPHIC FUNCTIONS

NGUYEN MINH HA AND NGUYEN VAN KHUE

Abstract

The main aim of this paper is to prove that a nuclear Frechet
space E has the property (Hy) (resp. (§1)) if and only if every
holomorphic function on E (resp. on some dense subspace of E)
can be written in the exponential form.

Let E be a locally convex space. We say that F has the property
(H,) and write E € (H,) if every holomorphic function f on E is of
uniform type. This means that there exists a continuous semi-norm p on
E such that f can be factorized holomorphically through the canonical
map w, : B — E,, where E, denotes the Banach space associated to p.
On the other hand, we recall that F is called a space having the property
(Q) if for every neighbourhood U of O € E there exists a neighbourhood
V of O € E and d > 0 such that for every neighbourhood W of O € E

there exists C > 0 such that
llull3 ¢ < Cllullfy )l
for u € E*, the dual space of E, where
lull% = sup{ju(z)| : = € K}

for every subset K of E.

The properties (H,) and () were introduced and investigated by
Meise and Vogt in [5]. In the present paper we investigate the prop-
erty (H,) and (Q) by the relation with the exponential representation of
entire functions.
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1. The property (H,) and the exponential representation
of entire functions

In this section we shall prove the following

Theorem. Let E be a Frechet space. Then E is nuclear and has the
property (H,) if and only if every entire function on E with values in a
Banach space B can be written in the form

(Exp)pf(z) =) &k expux(z)

k>1

where the series is absolutely convergent in the space H(E, B) of holo-
morphic functions on E with values in B equipped with the compact-open

topology.

Proof: First prove sufficiency of the theorem. Given f € H(FE, B) with
B is a Banach space. Since F is a Frechet space we can find a continuous
semi-norm p on E such that

> €kl expllukll; < oo,

k>1
with
llully = sup{u(z)| : p(z) < 1}.

Indeed, in the converse case let {|| - ||} is a fundamental system of semi-
norms on E. Then for every p we have

3 llgkll exp lluxl; = oo

k>1

Hence for every p there exists k, such that

Y lgkll explluklly > p.

k<kp
This inequality implies that for each k < k;, there exists z} with ||z}, <
1 such that

> Ikl exp ux(a})] > p.

k<kp

Put
K:{:c%,...,x}n,...,z’f,...,mip,...}U{O}.
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Then K is compact in F and
> liékllexp [lukllk > p for every p > 1.
k>1
This is impossible, because
> lléxllexp [luxlli < oo

k>1

Thus the form

Z{k expuk(z) for z € E,, lz]l <1
k>1

defines a holomorphic function on U, the open unit ball in E, which is
Gateaux holomorphic on E/ Ker p.

Let z € E,. Put
W={(1-tly+te:tcC\{0},yeU,}.

Then W is a non-empty open set in E,. Hence there exists z € W N
E/Ker p.
Let
z=(1~to)yo + toTo

with yo € Up, tp € C\{O}

Then
T = z/to + ((1 — to)/t0)yo
and hence
D lléxllexp lur(z)| <
k>1
<) €kl expll(1/20)] [u(2)| + (1 = to)/to)| [ux (o)l <
k>1
<Y 11k lllexp(2/ Ito])lur(2)] + exp 2|(1 — to) /to] |uk (vo)) <
k>1
<00.
Thus

9= Erexpug

k>1
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is a Gateaux holomorphic function on E,. Since g is holomorphic on U,
by the Zorn Theorem [6], g is holomorphic on E,. Obviously f = gw,
and hence f is of uniform type.

To prove the nuclearity of E for every continuous semi-norm p on E
write the canonical map w, : E — E, in the form

wp(z) =D &k expui(z)

k>1

in which
3 ikl exp fluklli < oo
k>1
for every compact set K in E.
Then
wp(z) = kauk(m) forze E
k>1
and
Z |k |l llurll 3 < oo for every compact set K C E.
k>1

As above there exists a continuous semi-norm 3 > p on E such that

> gkl lull < oo

k>1

This means that the canonical map wg,, from Eg to E, is nuclear. Hence
E is nuclear.

Assume that E is nuclear and has the property (H,). Given f €
H(E, B), with B is a Banach space. By hypothesis there exists a contin-
uous semi-norm p on E and a holomorphic function g on E, such that
f = gw,. Take a continuous semi-norm 8 > p on E such that T = wg,,

is nuclear. Write
T(z) = thuj(m)ej
izl
with

a=_lt;| < coand |lu;l| + [le;|| < 1 for j > 1.
i1

Consider the Taylor expansion of g at O € E,

9(z) =Y Pag(2)

n=0
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with
P.g(z) = (1/2m’)/ (g(tz)/t™*1) dt.
|t|=r
Choose the two sequences {£x} and {ax} in C such that
z= kaexpakz for ze C
k>1

and
Cr = Z |éx| expr|ak| < oo for all 7 > 0.
k>1

Such sequence exist by [2]. Formally we have

(4T)(@) = 9(T2) = 3 Pug(T2) = 3" Pag | Y tjus(ae; | =

n>0 n>0 =1

=D D ta- b, (0) ., (@) Pagles- - e5) =

n20371,....dn21

=Z Z tjl---tj“Png(ejp---)ejn)

n20 g1, tin 21

Y &eexparu;(z) | .. | Y Exexposuy, (z) | =

E>1 k>1

5 SHD SRR

n20 4 . in21
ki, k=1

- Png(ejy,---,€j,) explak, uj, () + - - - + ag, uj, (z)].
It remains to check that the right hand side is absolutely convergent in
H(E, B). For each r > 0 take s > C, a.e. Since
| Prg(ejy,---se5,)ll < (n"/nls™)lglls
where
liglls = sup{llg()]| : llz|| < s},

and without loss of generality by the nuclearity of E, we may assume
that g is bounded on every bounded set in E,, we have

)RS DR N PP N 7N PO T3

n20 4y, a2l
k1ynkn>1

: "Png(ej"n . --:ejn)" eXpT[[akl[+ i |akn|] <

< | Do cramnt/nis™ | |lglls < oo for |l <.
n=0
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The theorem is completely proved. ®

2. The property (Q) and
the exponential representation of entire functions

The relation between the property (fl) and the exponential represen-
tation of entire functions is given by

Theorem 2.1. Let E be a nuclear Frechet space having the approzi-
mation property. Then E has the property (Q) if and only if there exists
a balanced convexr compact set B in E such that

(i) E(B) is dense in E, where E(B) denotes the Banach space spann-
ed by B,

(it) every holomorphic function on (E(B),Tg), where Tg is the topol-
ogy of E(B) induced by the topology of E, can be written in the
form

(Exp) : Z &k expug

k>1

in which the series is absolutely convergent in H(E(B), 7g).

Proof: Since every nuclear Frechet space having the property () has
also the property (H,) [5], and since every holomorphic function on
(E(B), 7g) can be extended holomorphically to E [5], where B is a
balanced compact set in E as in [5], the necessity of the theorem is as
in Theorem 1.1.

Conversely, by [5] it suffices to show that every holomorphic function
on (E(B), 7g) is holomorphic on E. As in Theorem 1.1 there exists a
continuous semi-norm p on E such that

> Ikl exp l|uxllfy nps) < oo
k>1

Since E(B) is dense in E, it follows that U, N E(B) is dense in U,, and
hence

> léxlexp [luxlly;, < oo.

k>1

Given ¢ € E. As in Theorem 1.1 put

W ={(1-t)y—tz:teC\{0},y€U,).
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Then W is an non-empty open set in £ and hence there exists z €
W N E(B). Let

z=(1-to)yo + tox with ¢t € C\{0}, yo € U,

Hence

Y léklexplur(@)l < D 16k| expllur(2)/tol + [(to — 1)/to| lur(y0)l] <

k>1 k>1

<> [kl exp 2lu(2) /to] + exp 2|to — 1/to| |ux(¥o)l] < oo
k>1

By the Zorn Theorem [6], it follows that f is holomorphic on E. Theorem
2.1 is proved. W

3. The property (H,) and (Q)

Proposition 3.1. Let E be a Frechet-Schwartz space with the property
(Hy). Then every holomorphic function on E with values in a Banach
space is of uniform type.

Proof: Write E = limproj E,,, where E,, are Banach spaces such that
Eisdense in E, for every n > 1 and the canonical maps wn1,n : Eny1 —
E,, are compact. By hypothesis the canonical map

S : limind Hy(Ep) — [H(E)]or

where [H(E)]por denotes the bornological space associated to H(E) and
Hy(E,) for each n > 1 is the Frechet space of holomorphic functions on
E,, which are bounded on every bounded set in E,, is a continuous bi-
jection. Since H(E) is complete, [H(E)]yor is untrabornological. By the
open mapping theorem S is an isomorphism. Given f : E — B a holo-
morphic function, where B is a Banach space. Consider the continuous
linear map f : B* — H(E) associated to f. Then f : B* — [H(E)lbor
is continuous. Since S is isomorphic, we can find ng such that Im f -
Hy(En,) and f : B* — Hy(E,,) is continuous. This yields

sup{luf(z)| : flull < 1, ||zl <7} =
=sup{|f(u)() : llull < 1, llz]| <7} <00

for all » > 0.

Thus f induces a holomorphic function g : E,, — B such that gw,, =
f.on

Remark. Proposition 3.1 is a particular case of a recent result of
Galindo, Garcia and Maestre [3].
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Theorem 3.2. Let E be a nuclear Frechet space with the property ()
and F a Schwartz space with F € (H,). Then E x F € (H,,).

We need the following

Lemma 3.3. Let E be a nuclear Frechet space with the property ()
and F a Banach space. Then every holomorphic function on F x E which
is bounded on every bounded set in F x E is of uniform type.

Proof: Lemma 3.3 will be proved as in [5] by use Lemmas 3.1 and
3.2 in [5]. Indeed, choose p and § > 0 such that if f is bounded on
Bs x Uy, where f is a holomorphic function on F' x E as in the lemma
and Bs = {z € F : ||z < 6}. Since E € (2), by Vogt [8] there exists a
balanced convex compact set K in E such that

- < I Wkl - 115

for some ¢ > pand d > 0.

We can assume that E(K), E, and E, are Hilbert spaces. Write the
canonical map A from E(K) to E, in the form

A(z) =) As(zle;) Biyys
i>1
where {e;} is a complete orthonormal system in E and {y;} a orthonor-

mal system in E, and A = (};) € s. Let p; denote the continuous linear
functional on E; induced by y;. Then

llps 7+ < [Ny for 5 > 1.
Take 0 < £ < § such that for u = (g/7) we have

{xEE:x:Z&_fyj:Kﬂ < p; for j > 1} C{z € E,:|z| <1}.
izl
Put
M={m=(mi,...,mn,0,...)}
for each £k > 0 and m € M put

ak,m(2) =(1/2m3)"*1 / /
I7|1=1 J|p1|=p1 lon|=pn

9(Tz,p1y1 + - + pnin)
Tk+1p1im +1 L p?n‘l']

—(1/\™)(1/2mi n+1 sra
( / }( / ﬂ.z) |Ti=1 -/l;-iJll:“l /|'-Uﬂ|=fn
flz,wier + - + wpey)

,rk+1,w;?’11+1 o wnmﬂ+l

drdp; ...dpy

drdw ...dws,
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where g is the holomorphic function on Bs x {y € Ep : ||y|| < 1} is
induced by f and
AT = AT LA

For s, t > 0 put

B(s,t) = B, x {3': €E:z= Zgjej, |&;] < tu; for j > 1}.

321
By hypothesis
N(s,t) = sup{|f(w)| : w € B(s,t)} < o0
and hence
sup{lak,m(2)] : llz]l < s} < N(s,8)/A"pm¢™

with
Im| =m1+---+mp.

Letn=1/14d,v=v=1/2,3=1—+. Given s > 0. Take o > 0, such
that o7e? > s.
Since A € s, the sequence (XY /p;) = (jAY/e) € I* and hence

R =sup{|\{|u;' 1 k> 1} < oo

Put ¢ = (2Rr)/”. Then as in [5] we have

> > ™ sup Jakm(2) [T lesll*m; <
z€B,

meM k>0 i>1

< 32 S rmI(s/o) N (o, )N (M (s/e)* ) =

meM k>0
= N(o,t)"M* [Z(s/a’*eﬁ)k] H(l — |XY/2Ruk) ! < 00
k>0 k>1

where
N = sup{|f(w)| : w € Bs x Up}.

As in [5] this implies the series

oY am(@ [[wi@™

mEM k>0 §>1
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converges normanly on all sets
Bs x {z € Eg: ||z|| < r}, s, 7>0.

Hence it defines a holomorphic function h on F' x E, such that
f(z,z) = h(z,wq(z)) for (z,z) € F x E.

The lemma is proved. &

Now we can prove Theorem 3.2 as follows.

Given f € H(F x E). (i) First show that there exists a neighbourhood
U for O € E such that f is bounded on B x U for every bounded set B
in F. In the converse case for each p there exists a bounded set K, in F
such that f is not bounded on K, x U,. Choose ¢; | 0 such that

K =conv U &5 K;
izl

is bounded. Consider the holomorphic function ¢ = f|F(K) x E. Since
every bounded set in F(K) is bounded in F), it follows that g is bounded
on every bounded set in F(K) x E. Lemma 3.3 implies there exists a
neighbourhood U of O € E such that g is bounded on B x U for every
bounded set B in F'. This is impossible.

(ii) Consider the function f : E — H(F) associated to f. Then f is
holomorphic and by (i) it is bounded at O € E. Then as in [5] or as in
Lemma 3.3 we can find p such that f can be factorized holomorphically
through the canonical map w, from E to E,. Take ¢ > p such that
wg,p : By — E, is nuclear. Write

wqp(2) = Zuj(z)ej
i=1
with

a=3" llu lles| < oo.

j21
Consider the Taylor expansion of f at O € E in the variable z € E

f(z2) =D Pof(z2)

n=0

where

amm=WMJ (f(tz,2) /£ dt

|f.|———1‘
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for (z,z) € Ex F.

‘We have
flwep(2),2) =D _Puf | D uj(2)ejiz | =
n=0 j>1
=3 Y Prgles, €0 (2) - w5, (2).
RZUjls---.jn21
Moreover

S5 ST Ml Mg NP f (g €5ase )l =

n20  Ji,nin2l

=35 > gl lles - llus,li lesa

n>0 Jisennin=1

| Paf(€jy/lles,lls- - - s €insllesalls - - MK <

> shamn™/p™nl | | fllB,xx < %

n>0
for all p > aes and all compact set K in F, where
IfllB,xx = sup{|f(z,2)[; |2l| < p, z € K}
and
1 Paf(esss--s€jns-- )l = sup{|Pnf(es,.-- €5, 2); € K}
Let B={z € E, : ||z|| = 1}. Consider the function
f:Cx F—1%°(B) with F=C x F,

given by

47

f(t,z) = {Zt“ Z P.f(ejs--.1€j.,% )ujl(z)...ujﬂ(z)} .
z€B

n=0 Ji,e :jn>1

For each N € N put

N(t,x]:{Zt“ Z Pnf(ejl,..‘,ejﬂ,x)ujl(z)...ujﬂ{z)} .
n<N  jiein21 -
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Since for every k > 1, the functions

Sni(t,z) = Z t Z Pof(ejy, .-y €j,,2)uj(2) ... uj,(2)

nE<N  ji+-+jn<k
are holomorphic on F' with values in 1°°(B) and
Spk— Sy ask— o
uniformly on every compact set in F, we infer that Sy is holomorphic
for N > 1. On the other hand, since Sy — f uniformly on compact set
in F', it follows that f is holomorphic. By Proposition 3.1 there exists a

continuous semi-norm p on F' and a holomorphic function § on F with
values in 1°°(B) such that

f(t,z) = §(t,w,(z)) for (t,z) € C x F.

We may assume that § is bounded on every bounded set in C x F', because
F is Schwartz. Then

sup{[f(z,2)| : ll2]| < s, p(z) < s} =
=sup{|f(tz,z)|: [t| < s, z € B, p(z) < 3} =

=sup Zt” z Pof(ej, e, z) - uj(2)...u5,(2)| :

n20  ji,.,0n21
:]t|sS,zeB,p(z)ss}:

=sup{[|f(t,z)||: |t| < s, p(z) < 5} =
=sup{[lg(t,2)|l : |t| < s, p(z) < s} < 00

for all s > 0.
Consequently f is of uniform type.
The theorem is proved. &
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