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THE PROPERTY (Ha ) AND (S2) WITH THE
EXPONENTIAL REPRESENTATION O F

HOLOMORPHIC FUNCTION S

NGUYEN MINH HA AND NGUYEN VAN KHUE

Abstract	
The main aim of this paper is to prove that a nuclear Freche t
space E has the property (Hu) (resp . (S~)) if and only if every
holomorphic function on E (resp . on some dense subspace of E )
can be written in the exponencial form .

Let E be a locally convex space. We say that E has the property
(Hu) and write E E (Hu) if every holomorphic function f on E is o f
uniform type. This means that there exists a continuo.us- semi-norm p oil
E such that f can be factorized holomorphically through the canonical
map wp : E --~ Ep , where Ep denotes the- Banach space associated to p .
On the other hand, we recall that E is called a space having the property
(í) if for every neighbourhood U of C E E there exists a neighbourhood
V of 4 E E and d ~ o such that for every neighbourhood W of C E E
there exists C ~ o such that

II u IIV +d ~ c II u IIWIIu II U

for u E E*, the dual space of E, where

IIuII- = sup{ l u(x) 1 : x E K }

for every subset K of E.
The properties (Ha) and (ñ) were introduced and investigated by

Meise and Vogt in [5]. In the present paper we investigate the prop-
erty (Ha ) and (9) by the relation with the exponential representation o f
entire functions .
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1. The property (H,,) and the exponential representatio n
of entire functions

In this section we shall prove the following

Theorem. Let E be a Frechet space . Then E is nuclear and has th e
property (Hu ) if and only if every entire function on E with values in a
Banach space B can be written in the foren

(Exp) B f(x) _ ~_ k expuk(x )
k7l

where the series is absolutely convergent in the space H(E, B) of holo-
morphic functions on E with values in B equipped with the compact-ope n
topology.

Proof: First prove sufficiency of the theorem . Given f E H(E, B) with

B is a Banach space . Since E is a Frechet space we can find a continuou s

semi-norm p on E such that

E ~kII exp II ukIIP < oo ,
k� l

with
Ilull*p = sup{lu(x)I : p(x) < 1} .

Indeed, in the converse case let {II • ii p } is a fundamental system of semi-
norms on E. Then for every p we have

E

	

exp II ukIlp = 00 .

k>l

Hence for every p there exists kp such that

E IKkII exp IIukIIP > p.
k<k P

This inequality implies that for each k Ç kp there exists x~ with IIxPk IIp ç
1 such that

E Ik)i > p •
k<ky

Put
K=
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Then K is compact in E and

E IIekH exp ll u k ii K > p for every p > 1 .
k> 1

This is impossible, because

E IIkII exp I G 00 •

k� 1

Thus the form

El-1c expu k (x) for x E EP ,

	

iixll < 1
k> 1

defines a holomorphic function on UP , the open unit ball in EP which i s
Gateaux holomorphic on E/ Ker p .

Let x E EP. Put

W={(1—t)y+tx :tE(C\{0}, yEUP } .

Then W is a non-empty open set in EP . Hence there exists z E W n
E/ Ker p .

Let
z = (1 — to)yo +taxo

with yo E UP , to E C\{0} .
Then

x = z/to + ((1 — to) /to)y o

and hence

E lilk ll exp Iu k (x) l
k> 1

5 E IkII exv[I(1/to)I lur:(=)I + I(1— to)/to)I luk(u0)I1 5
k> 1

~ EI+exP 2 1( 1 — to)/ t o~ uk(YO)I] <
k> 1

Coo .

9 = E exp uk
k7l

Thus
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is a Gateaux holomorphic function on Ep . Since g is holomorphic on Up
by the Zorn Theorem [6], g is holomorphic on Ep . Obviously f = gwP
and hence f is of uniform type .

To prove the nuclearity of E for every continuous semi -norm p oil E

write the canonical map wp : E —> Ep in the form

Wa(x) = E eXP uk(x )
k> 1

in which

E IIklI eXP 1I'ukIIc < 00

k � l

for every compact set K in E .

Then
wP (X) = E 1kuk (x) for x E E

k> l

E IIII Ic oo for every compact set K c E.
k> 1

As aboye there exists a continuous semi-norm )3 > p on E such that

E Il~kll I ukIIá < cc .
k> 1

This means that the canonical map wp , p from

	

to Ep is nuclear . Hence

E is nuclear .

Assume that E is nuclear and has the property (Ha) . Given f E
H(E, B), with B is a Banach space . By hypothesis there exists a contin-
uous semi-norm p on E and a holomorphic function g on Ep such that
f = gwp . Take a continuous semi-norm p on E such that T = wp ,p
is nuclear . Write

T(x) =

	

t~ui (x)ei
j� 1

a = E Iti l < oo and iluj il + lle i ll < 1 for j

	

1 .
j>1

Consider the Taylor expansion of g at 0 E E,

9(x) _ E Pn9(x )

and

with
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with

Pn,9(x ) = (1/2i) f

	

(9(tx)/t 1 ) dt .
l=r

Choose the two sequences {ek } and {ak } in C such that

z = YTk expc kz for z E C
k>l

Cr =

	

IlkI expriak ~ < oo for all r > O .

k> 1

Such sequence exist by [2] . Formally we have

(gT)(x) = g(Tx) = E Pn9 (Tx) = E Pn9 E tiu J ( x ) ei
n>0

	

n>0

	

j>1

andd

	

= E

	

E t,%1 . . tjn u3 x
(x) . . . ujn ( x ) Pngl

	

. . .,ejn) ~

	

= E

	

E

	

tj1 . . . tjn .Png (ej l , . .

	

n70

	

7 1

E exp akuil (x) . . . ~ k eXP akuin (x )
k>1

	

k> 1

= E E tj 1 . . . tj n .
n70

Png (ej1 , . . . , e jn } exp[ah ujx (x) + . . . + akn u jn (x)] .

It remains to check that the right hand side is absolutely convergent in
H(E, B) . For each r 7 o take s ~CT a.e . Since

I . . , ejn

	

(nn/n!sn) II g II ~
where

Il g llS = sup{Ilg ( x )II ~ Il x ll < s} ,
and without loss of generality by the nuclearity of E, we may assume
that g is bounded on every bounded set in BP , we have

E

	

E

	

I tiiIItjIIkjIftI-
n7o

1~ 1 , . , k,,, 7 1

• 1I

	

1 + . . . +l akn

Tannn/n!sn

	

< oo for ~~ x I C r.

e jn }

C
n� o
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The theorem is completely proved . ■

2. The property ~SZ} and
the exponential representation of entire functions

The relation between the property (II) and the exponential represen-
tation of entire functions is given by

Theorem 2.1 . Let E be a nuclear Frechet space having the approxi-
mation property . Then E has the property (S2) if and only if there exist s
a balanced convex compact set B in E such that

(i) E(B) is dense in E, where E(B) denotes the Banach space spann-
ed by B ,

(ii) every holomorphic function on (E(B),TE), where TE is the topol-
ogy of E(B) induced by the topology of E, can be written in th e
form

(Exp) : E k eXP u k

k> 1

in which the series is absolutely convergent in H(E(B), TE) .

Proof: Since every nuclear Frechet space having the property (ñ) has
also the property (Ha ) [5], and since every holomorphic function on
(E(B), TE) can be extended holomorphically to E [5], where B is a
balanced compact set in E as in [5], the necessity of the theorem is as
in Theorem 1.1 .

Conversely, by [5] it suffices to show that every holomorphic function
on (E(B), TE ) is holomorphic on E . As in Theorem 1.1 there exists a
continuous semi-norm p on E such that

E IkI ex PM ukMJflE(B) C °O •

k� 1

Since E(B) is dense in E, it follows that UP n E(B) is dense in UP , and
hence

E Ikt exp IukII c oo .
k7 1

Given x E E. As in Theorem 1 .1 put

W = {(1-t)y-tx :tEC\{O}, y E UP } .
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Then W is an non-empty open set in E and hence there exists z E
W f1 E(B) . Let

z = (1 — to)yo + tox with to E C\{0},

	

yo E UP .

Hence

E kI eXA I

	

I � E lekl eXP[Iuk(z)/ tol + I(to — l)l tol luk(yo)I] Ç
k>1

	

k> 1

� E K+exp21to — 1/tol k'k(YO)I] < oo .
k> 1

By the Zorn Theorem [6], it follows that f is holomorphic on E . Theorem
2 .1 is proved . ■

3. The property (Hu ) and (S1 )

Proposition 3 .1 . Let E be a Frechet-Schwartz space with the property
(Ha ) . Then every holomorphic function on E with values in a Banach
space is of uniform type .

Broa: Write E = limproj En , where En are Banach spaces such that
E is dense in En for every n ~ 1 and the canonical maps cvn+l,n : En+l —+

En are compact . By hypothesis the canonical map

S : limind Hb (En) ---~ [H(E)]~,o r

where [H(E) l bor denotes the bornological space associated to H(E) and

H(E) far each n ~ 1 is the Frechet space of holomorphic functions on

En which are bounded on every bounded set in En , is a continuous bi -

jection. Since H(E) is complete, [H(E)] bOr is untrabornological . By the

open mapping theorem S is an isomorphism. Given f : E —> B a holo -

morphic function, where B is a Banach space . Consider the continuous

linear map f : B* H(E) associated to f . Then f : B* --} [H(E)lbor

is continuous . Since S is isomorphic, we can find no such that Im f Ç

Hb(Eno ) and f : B* --> Hb (Eno ) is continuous . This yields

sup{lu f(x} I : I l u ll ~ 1, IIxM
ç r} _

~
= sup{If (u)(x) : Iç 1, IIxM ç r} c o0

for allr~O .

Thus f induces a holomorphic function g : En() -W- B such that gwn p =

f . ■

Remark. Proposition 3.1 is a particular case of a recent result of

Galindo, Garcia and Maestre [3] .
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Theorem 3.2 . Let E be a nuclear Frechet space with the property (Q )
and F a Schwartz space with F E (Hu ) . Then E X F E (Hu ) .

We need the following

Lemma 3.3 . Let E be a nuclear Frechet space with the property (SZ )
and F a Banach space. Then every holomorphic function on F x E which
is bounded on every bounded set in F x E is of u,niform type .

Proof.• Lemma 3.3 will be proved as in [5] by use Lemmas 3 .1 and
3.2 in [5] . Indeed, choose p and b > 0 such that if f is bounded on
Bó x UP , where f is a holomorphic function on F x E as in the lemma
and Bó = {z E F : < S} . Since E E (S2), by Vogt [8] there exists a
balanced convex compact set K in E such that

II ,

	

5 II ' IIKII ' II p

for some q > p and d > O .

We can asume that E(K), Eq and Ep are Hilbert spaces . Write the
canonical map A from E(K) to Ep in the form

A(x) = E Ai(X i ej)E(K)Yi

,j7 1

where {ej } is a complete orthonormal system in E and {yj} a orthonor-
mal system in Ep and a = (ai ) E s . Let (p i denote the continuous linear
functional on Eq induced by vi . Then

Iail for j � 1 .

TakeoCeCSsuchthatfor ,u, =(e/j) wehave

xEE :x = I.j 1,j li < µj forj>1 C{xEEp ilxií <1};
j> 1

Put
M = {m

= for eachk > o and m E M put

fll-I= 1

Cbk .(z) =(1/27f2)n+1

!piI= i ¡pnI= n

9~TZ7ply1 + . .

,r~+1pm1 +1 . .

	 +pnyn ) dTd .

pñ
n +1

	

p 1

=(1/Am )(1/21ri)n+1

. . dp n

fT1 =1 fIlv il=7-1

	

l wn l =rn

f
(z,w1e1

+ . . +
wn

en
) dTdw . . . d2v,rk+1w1--1 . . . w

n
mn+1

	

1

	

n
1
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where g is the holomorphic function on B 6 x {y E Ep : llyil < 1} is
induced by f and

Am -- Ami
• • • n •1

For s, t > 0 put

B(s,t)=Bs x xEE :x =

By hypothesis

N(s,t) = sup{lf (w)l : w E B(s,t)} < o0

and hence

Sup{lak,m(z)l : IzII < S} < MS,t)p,m f.G mt
lm i

with

1mI=mi++m .

Letr~= 1 / 1+d,v =-y= r7/2, fi =1--y . Givens~0. Take o- > o,such
that o- ryé3 > s .

Since A E s, the sequence (À/1i) = (j a.7/E) E 1 1 and hence

R = sup{iAliµ k 1 : k > 1} < oo .

Put t = (2Rr) lh . Then as in [5] we have

E

	

rsup I
G

mEM k>0

	

zEBs

	

j> 1

� E E rI mi ((5 la ) kN ( oAl lu mcl mI r(1A I m Y(M(s/E) k /mm )Q =
mEM k> 0

= N(Q, tr'MQ E(3/U-ry Ea ) k H (1 — Iñk/2RF.Gk) —1 G 00
/c>0

	

k> 1

where
N = sup{lf (w)l : w E B 6 x Up } .

As in [5] this implies the serie s

Z E ak,m(z ) n (x )m i
mEM k � O

	

j?l .

Iei i

	

tµi for j > 1

3»
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converges normanly on all sets

BS x {xEEg : IIxII Cr},

	

s, r ~o .

Hence it defines a holomorphic function h on F x Eq such that

f (z, x) = h(z, wq (x)} for (z,x) E F x E .

The lemma is proved . ■

Now we can prove Theorem 3 .2 as follows .

Given f E H(F x E) . (i) First show that there exists a neighbourhood
U for 0 E E such that f is bounded on B x U for every bounded set B
in F. In the converse case for each p there exists a bounded set Kp in F
such that f is not bounded on Kp x Up . Choose Ei ~ o such that

K=convEi Ki
j> 1

is bounded. Consider the holomorphic function g = f 1F(K) x E. Since
every bounded set in F(K) is bounded in F, it follows that g is bounded
on every bounded set in F(K) x E. Lemma 3 .3 implies there exists a
neighbourhood U of 0 E E such that g is bounded on B x U for every
bounded set B in F . This is impossible .

(u) Consider the function f : E —> H(F) associated to f . Then f i s
holomorphic and by (i) it is bounded at 0 E E. Then as in [5] or as in
Lemma 3 .3 we can find p such that f can be factorized holomorphically
through the canonical map wp from E to Ep . Take q ~ p such that
wq,P : Eq —> Ep is nuclear . Write

wq,p (z) = E uj ( z ) e i
i? 1

with

a = E Il uiII Il e ~ II G oo .
j>1

Consider the Taylor expansion of f at O E E in the variable z E E

f(z, x) =

	

f (2' ; x )
n ? O

where

pn .Í( ,z ; x) = (1/2i)f( .f(tz,x)/t l )C~t
l= r
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for (z,x) EExF.

We have

f `wg',p`zly x) — >Pnf E

	

(uj(z)ej ;x ~
n7o

	

j71

= E E -Pn .f (eh 	 x )u jl (z) . uj n (z) .
n>o j i , . . .,jn7 1

Moreover

E sn E

	

hin II Il Pnf

	

=

n>0

= E sn E H uid ll eil I I
vr. �0

	

71~ . . .~7n> 1

lPnf(eji 1i1 e1 ii, . .

	

.)II K

~ E(sman/pmn! IIfIIBxK< oo
n> 0

for all p > aes and all compact set K in F, where

IIfIIBpXK =sup{i f(z,x)i ; Ilzli G p, x E K }

and

1 = sup{i Pnf(ejia . , ejn, x)li x E K} .

Let B = {z E Eq : iizll = 1} . Consider the function

f :C xF~1°°(B) withFxF ,

given by

f(t,x)

	

E tn E Pnf(ej x

	

x )uJi (z) . . . ?Lj n (z )
n>o

	

zEB

For Bach N E N put

E

	

Pnf(ejz , . . ., ejn , x )ujx (z) . ujrz l z l
j1, . . .,jn7 1 zE BnCN
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Since for every k > 1, the functions

Sn , k(t, x) _ E tn

	

E

	

pnf (ej ,, . . . , ejn ,x)uj i lz1 . . . ujn (z )
nÇN jx+ . . . +j,nÇ k

are holomorphic on F with values in 1°°(B) and

Sn , k —}SN as k —> oo

uniformly on every compact set in F, we infer that SN is holomorphic
for N > 1 . On the other hand, since SN —} f uniformly on compact set
in F, it follows that f is holomorphic . By Proposition 3 .1 there exists a
continuous semi-norm p on F and a holomorphic function on F with
values in 1°° (D) such that

f(t,x) = g(t, wP(x)) for (t,x) E C x F .

We may assume that is bounded on every bounded set in C x F, because
F is Schwartz . Then

sup{i f(z,x)l : ij zjj < s, p(x)

	

s} =

=sup{if (tz, x)I

	

s, z E B, p(x) < s} =

E tn E Pnf (eil y . . . ,

	

x) • ui, (z) . . . ujn (z )
n>0

	

j1, . . .,jn

: Iti

	

s, z E B, p(x) 5 s =

=sup{ii f(t,x) II : Itl

	

s, p(x) c s} =

= SuP{ II9(t> x) II : Iti Ç s, p(x) < s} c o0

for all .s ~ O .
Consequently f is of uniform type .
The theorem is proved . ■
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