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RELATIVELY OPEN OPERATORS
AND THE UBIQUITOUS CONCEPT

R. W. Cross

Abstract

A linear operator T : D(T) C X — Y, when X and Y are normed
spaces, is called ubiquitously open (UO) if every infinite dimen-
sional subspace M of D(T) contains another such subspace N for
which T|N is open (in the relative sense). The following proper-
ties are shown to be equivalent: (i) T is UO, (ii) T is ubiquitously
almost open, (iii) no infinite dimensional restriction of T is in-
jective and precompact, (iv) either T is upper semi-Fredholm or
T has finite dimensional range, (v) for each infinite dimensional
subspace M of D(T'), we have dim(T'|M)~1(0) + A(T|M) > 0. In
case T is closed and X and Y are Banach spaces, T is UO if and
only if TM C TM for every linear subspace M of X.

1. Introduction

Relatively open operators, i.e. operators for which the image of the
unit ball contains a ball in the range of the operator, have certain
pathologies not shared by their injective components. For instance, they
are unstable under the addition of bounded finite rank operators (cf.
(L2, Example 11]), composition, and even under restriction. A new class
of operators which includes the relatively open operators with finite di-
mensional kernels, and more generally, F,-operators enjoys a stronger
property which we formulate in terms of the “ubiquitous” concept below.
This latter notion was introduced in [C1] where ubiquitous continuity,
precompactness and strict singularity were characterised. In the case of
a closed operator between Banach spaces, ubiquitous openess is equiva-
lent to inclusion TM C TM holding for every linear subspace M of the
domain of T' (Theorem 3.11).

Let X and Y be normed spaces and let L(X,Y) denote the class of
linear transformations T : D(T) C X — Y, where D(T) is the domain
of T. The null space and range of T' are denoted by N(T') and R(T)
respectively. Write Ux = {z € X : ||z|| < 1}, the open unit ball of X.
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We call the operator T open (or relatively open) if T(Up(r)) D AUgr(T)
for some A > 0. If there exists A > 0 such that T(Up(r)) D AUg(r) then
T is called almost open. We adopt the convention that all zero operators
are open and almost open, including the case where D(T') = (0).

The operator T is said to be partially open if there exists a finite
codimensional subspace E of D(T') (or equivalently, of X) for which T|E
is open.

The operator T is called ubiquitously open (UO) if each infinite dimen-
sional subspace M of D(T') contains another such subspace N for which
T|N is open. Likewise, T is called ubiquitously almost open (UAO) if
it has the corresponding property but with 7'|N almost open instead of
open. It will be seen that the UO and UAO properties are equivalent
(Theorem 3.1). It is clear that in the case of an injective operator the par-
tially open and UO properties coincide. Anoperator P: D(P) C X — X
is called a projection if P2 = P. Such an operator is open, and is UO if
and only if either N(P) or R(P) is finite dimensional (Theorem 3.3).

The operator T is called an F-operator if there exists a finite codi-
mensional subspace M of D(T') for which T|M has a continuous inverse.
For examples, properties and applications of Fy-operators see [C2], [C4],
[C5], [C6], [CT), [C8], [C9], [C10], [C11], [CL2], and [L2], [L3]. The-
orem 3.4 states that 7" is UQO if and only if either T is an F;-operator or
R(T) is finite dimensional.

We note some properties enjoyed by the UO operators (Corollary 3.7):
The product of two UO operators is UO whenever the product is defined.
In particular, if T is UO then so is any restriction of T'. If T' is UO and
F is any finite rank operator then T + F' is UO.

The following terminology and notation will be used. Continuous
everywhere defined operators are referred to as bounded. We write
a(T) = dim N(T), and B(T) = dimY/R(T). If E is a linear sub-
space of X then the operator Ja (or simply Jg) is the canonical in-
jective map of E into X. Thus Jg € L(E,X). We define the ad-
joint of T by T" = (TJp(r))’ where the right hand side is defined as
in [G, I1.2.2]. The minimum modulus v(T) of T is defined [K] by
YT) = sup{y : ||Tz| > ~d(z,N(T)) for all z € D(T)}. Clearly T
is open if and only if y(T) > 0. Corollary 3.6 exhibits a uniform bound-
edness property enjoyed by the minimum modulus.

Let Z(X) denote the collection of infinite dimensional subspaces of
X. The quantities A and 7 (cf. [S], [C2]) are defined as follows. If
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dim D(T') < oo then A(T) = 7(T') = 0. Otherwise
A(T)= sup inf ||T|N
) MeZ(D(T)) N€I(M) ITINI

7(T)=  sup inf HTmH
MeI(D(T)) mEM lm|

The operator T' is called strictly singular ([D], [C2], [C4]) if there is
no M € Z(D(T)) such that T'|M has a continuous inverse (this is a gen-
eralisation of Kato’s definition [K]). The operator T is strictly singular
if and only if A(T) = 0, if and only if 7(T) = 0 [C2, 3.4 and 3.10],
and partially continuous (i.e. continuous on some finite codimensional
subspace) if and only if A(T) < oo [C2, 4.3].

The quantity £(7") is defined by

§(T) = oT) + A(T).

Let Xr denote the space D(T') normed by ||zll; = |z|| + ||Tz| (z €
D(T)). The graph operator G (or simply G) is the canonical injection
of Xr into X.

2. Preliminary Propositions
We detail below some known results which are used in the sequel.

2.1. LetT be injective and everywhere defined on a Banach space. If T
is bounded and if T~! is continuous on a subspace of finite codimension,
then T is an isomorphism [C1, Theorem 10].

2.2. The operator T is strictly singular if and only if it is ubiquitously
precompact [C1, Theorem 14], if and only if A(T) = 0 ([C2, 3.4]; see
also [S, 3.2]).

2.3. Let E be a finite codimensional subspace of D(T). Then
A(T|E) = A(T) and 7(T|E) = 7(T) [C2, 2.1].

2.4. The operator T is an Fy-operator if and only if no infinite di-
mensional restriction of T is precompact [C2, 2.2].

2.5. The product of two Fy-operators is an Fy -operator whenever the
product is defined [C2, 2.13).

2.6. The operator T is open if and only if TGr is open (see e.g. [L1,
2.1]).

2.7. The operator T is almost open if and only if T' is open (see e.g.
[MS, 2.1]).
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3. Ubiquitously open operators

3.1. Theorem. The following statements are equivalent:
(i) T is ubiquitously open.
(ii) T is ubiquitously almost open.
(iii) For each M € ZI(D(T)) there exists N € I(M) such that
E&(T|N) > 0.
(iv) &(T|M) > 0 for each M € I(D(T)).
(v) For each linear subspace E of D(T) such that EN N(T) is finite
dimensional, T\E is an F.-operator.
(vi) No infinite dimensional injective restriction of T is a precompact
operator.
(vii) Each infinite dimensional restriction of T is partially open.
(viii) Some (every) finite codimensional restriction of T is ubiquitously
open.

Proof: We proceed through the following chain of implications: (i) =
(iv) = (i) = (i), () = (i) = (v) = (vi) = 1), (@) = (vii) = (i), ()
= (viii) = (i).

(i) = (iv): Assume (i) and let £(T'|M) = 0 for some M € Z(D(T)).
Then T'|M is both injective and strictly singular by 2.2 and consequently
for each N € Z(M) we have y(T|N) = 0, contradicting (i).

(iv) = (iii): Immediate.

(iii) = (i): Suppose T is not UO. Then there exists M € Z(D(T))
such that y(T|N) = 0 for N € Z(M). Now M N N(T) cannot have
finite codimension in M (for then T|M would have finite rank, giving
v¥(T|M) > 0). Hence by passing to an infinite dimensional subspace of M
if necessary, we may suppose that T|M is injective. Then o(T|M) =0
and T|M is strictly singular, i.e. A(T|M) = 0by 2.2. Hence {(T'|M) = 0.
But then for N € Z(M) we have £(T|N) = 0, contradicting (iii).

(i) = (ii): Immediate.

(i) = (v): Assume (ii). If D(T) is finite dimensional there is nothing
to prove. Accordingly let D(T') be infinite dimensional and let ENN(T)
be finite dirensional where E € Z(D(T)). Suppose that Tz ¢ Fy. Write
S = TJg; thus S € L(E,Y) and dim N(S) < oco. Since S ¢ F there
exists M € Z(E) such that S|M is a precompact operator by 2.4. By
assumption there exists N € Z(M) with S|N relatively almost open.
Then the adjoint (S|N)’ is relatively open by 2.7 and also compact (see
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e.g. [G, IIL.1.11]). Therefore (S|N) = (SJn)" has finite dimensional
range. But R((SJn)")L = N(SJn) is finite dimensional. Therefore

dim R((SJn)") = dim R((SJIn)") i+ = dim N((SJn)* =
dim(E/N(SJy)) = dim E/N(SJy) = o0,

a contradiction. Hence (ii) = (v).

(v) = (vi): Assume (v) and let T|M be injective where M € Z(D(T)).
Then T is an F';-operator. Therefore T|M is not precompact.

(vi) = (i): Suppose T is not UO. Then by the equivalence (i) =
(iv) above, there exists M = Z(D(T)) such that T'|M is injective and
strictly singular. In that case there exists N = Z(M) for which T|N is
precompact by 2.2, contradicting (vi).

(i) = (vii): Assume (i). Let M be any linear complement of N(T') in
D(T); thus D(T) = M + N(T') where M N N(T) = 0. Then T)s is an
F-operator (by (i) = (v)). Hence then exist linear subspaces F and F
of M such that M = E + F, where F is finite dimensional and (T'|E)™?
‘is continuous.

It only remains to verify that T'|E + N(T') is relatively open. We have

V(T|E + N(T)) = sup{7 : | T(e + n)|| = vd(e + n, N(T))
forallee E,n e N(T)}
= sup{y : |Te|| > vd(e, N(T')) for all e € E}
=sup{y : [|Te|| > v|le|| forall e € E}
—~(T|E) >0

as required.

(vii) = (i): Suppose that T is not UO. Then there exists N € Z(D(T))
for which T is injective and precompact (by (vi) = (i) above) clearly
contradicting (vii).

(i) = (viil): Both statements are immediate.

(viii) = (i): It is clearly sufficient to prove the first statement. We
may clearly suppose that D(T) is infinite dimensional. Let E be a finite
codimensional subspace of D(T) for which T is UO. Let M € Z(D(T)).
Then A(T|M) = A(T|ENM) by 2.3 and a(T|M) > «(T|ENM). Con-
sequently £(T'|M) > &(T|E N M). Hence T is UO is by the equivalence
(i) = (iv). =
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3.2. Corollary. Let 3(T) < co. Then the following statements are
equivalent:

(i) T is almost open.
(ii) T" is ubiquitously open.
(i) T" is a ¢+ -operator.

Proof: We have 3(T) = a(T") < oo. Now T is almost open if and only
if T' is open (2.7) if and only if T” is a ¢-operator (see e.g. G, IV.1.6]),
if and only if 7" is ubiquitously open (by Theorem 3.1). B

3.3. Theorem. Let P be a linear projection. Then P has an infinite
dimensional injective precompact restriction if and only if both N(P) and
R(P) are infinite dimensional.

Proof: Let M be an infinite dimensional subspace of D(P) for which
P|M is injective and precompact. If dim N(P) < oo then R(P) has
finite codimension in D(P) and hence MNR(P) is an infinite dimensional
subspace upon which P is both an isomorphism and precompact, which is
impossible. Therefore dim N(P) = co. On the other hand if dim R(P) <
co then P does not have an infinite dimensional injective restriction, a
contradiction. Hence necessity follows.

Conversely suppose that both N(P) and R(P) are infinite dimen-
sional. Choose a linearly independent sequence (a,) in R(P) such that
llanll — 0. Next construct a sequence (b,) in N(P) such that |[b,| =1
and |b, — bl > 1 (n # k) (for example, by the Gramm-Schmidt con-
struction). Write z, = a, + b, and E = sp{z,}. Then P|E is injective;
indeed e = Toyz;, Pe = 0 = Xa; Pr; = Yaya; = 0 = e = 0 by the
linear independence of {a;}. Furthermore PX, = a, — 0 and (z,) has
no Cauchy subsequence since ||z, — zk| > ||bn — bl — [lan — ak]l > 3
eventually. Therefore P|FE is not an Fy—operator by [C4, 21] and hence

has an infinite dimensional precompact restriction [G, IIL.1.9].

3.4. Theorem. The following are equivalent:

(1) T is ubiquitously open.
(i) FEither T is an Fy-operator or R(T) is finite dimensional.

Proof: For simplicity of notation let D(T) = X. Assume (i) and
suppose in the first instance that T is continuous. Write X = N(T)+ E
where N(T)NE = {0}, S = (T|E)™* and P = ST. Then P is a
projection with N(P) = N(T) and R(P) = E. Let M € Z(X). By
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hypothesis there exists N € Z(M) for which v(T'|N) > 0. We have

ISTnl o . ¥(S)ITn
neN |[n+ N(T|N)|| ~ neN |[n+ N(T|N)||
=1(S)(TIN) >0

v(PIN) =~(STIN) =

since v(S) = ||T|E||_1 > 0 by the continuity of T'. Therefore P is UO.
By Theorem 3.3 either dim R(T") = dim F < oo or dim N(T') < oo. In
the latter case T € F'y. Hence (i) = (ii) in the case when T is continuous.
Passing now to the general case when T is arbitrary, we note that for
any subspace M of X,

Y(T|M) >0« ¥(TG|G'M) = v(T|M o Grjp) >0

by 2.6 and hence T'is UQ if and only if T'G is UO. Since T'G is continuous,
it follows from what has been proved that either R(T) = R(T'G) is finite
dimensional or TG € F.. But clearly TG € F, = T € F,. Therefore
(i) = (i).

Conversely assume (ii). If R(T') is finite dimensional then clearly T
is UO. On the other hand if T is an F,-operator then so are all its
restrictions and hence by (vii} of Theorem 3.1, T' is UO. &

3.5. Corollary. Let X and Y be Banach spaces and T o closed oper-
ator with infinite dimensional range. Then the following are equivalent:
(i) T is a ¢4 —operator.
(ii) T is ubiquitously open.

Then next corollary is a uniform boundedness principle for the mini-
mum modulus function (7).

3.6. Corollary. The following statements are equivalent for an ar-
bitrary operator T : D(T) C X — Y with infinite dimensional domain
D(T):

(i) For each M € Z(D(T)) we have sup ~(T|N)>0
NeI(M)

ii inf su T|N)>0.

(i) meabim v, V(T|N)

Proof: Assume (i). Then T is UO. Hence either dim R(T) < oc or
T € F, by Theorem 3.4. In the former case v(T|N) = oo for each
N € Z(N(T)) and so (ii) holds. In the latter case we have

inf sup y(T|N) = mfsup inf 1T _ inf  7(T|M).
MeZ(D(T)) Nez(M) N neN |n||  mez(D(T)
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Let E be a finite codimensional subspace of D(T') for which (T|E)~!
exists and is continuous. Then M N E has finite codimension in M for
each M € Z(D(T)) and then 7(T|M) = 7(T|M N E) by 2.3. Therefore

' M) = . _ -1 _1.
sl oy, TTIM) B, T(TIM) = A(TIE)™)

But (T|E)~! is continuous and so A((T'|E)~!) < co. Hence (ii) fol-
lows. H

3.7. Corollary.

(a) The sum of a ubiquitously open operator and a finite rank operator
15 ubiquitously open.

(b) The product of two ubiquitously open operators is ubiquitously
open.

Proof:

(a) Immediate from the equivalence (i) = (viii) of Theorem 3.1.
(b) Combine Theorem 3.4 with 2.5. B

3.8. Corollary. If T is ubiquitously open then so is T.

According to Corollary 3.8 the continuous linear maps between coin-
comparable Banach spaces [GO], except those of finite rank, are all not
UO. The situation is similar when the two spaces are totally incompara-
ble Banach spaces (cf. [R]); indeed such maps are strictly singular.

3.9. Proposition. Let T' be partially open. Then T is partially open.

Proof: Let E be a finite codimensional subspace of D(T') for which Tg
is open. Write Q = Qﬁ(T}. We have

YT|QE) = inf |er|| : | Tel|

>inf —————— =~(Tg) > 0.
e€E ||Qe|| T e€E |le+ N(Tg)|| 7(Ts)

Since QF is finite codimensional in Q(D(T)) = D(T), T is partially
open. B

3.10. Proposition. Let X and Y be Banach spaces and T a closed
operator. Then T is partially open if and only if it is open.
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Proof: Recall that T if RO if and only if TGy is RO (2.6). Hence
also T is PRO if and only if T'Gr is PRO. Furthermore X7 is a Banach
space. Consequently we may suppose that T is bounded. Let T be
partially open. Then T is partially open by Proposition 3.9. Hence T is
an isomorphism by 2.1. Therefore T is open. The converse statement is
trivial. M

3.11. Theorem. Let X and Y be Banach spaces and T : D(T) C
X =Y a closed operator. Then the following statements are equivalent:

(i) T is either a ¢ -operator or a bounded finite rank operator.
(ii) For each linear subspace M of D(T) we have TM C TM.

Proof: Assume (i). Then T is UO by Theorem 3.4. Let M be an
arbitrary subspace of D(T). By Theorem 3.1 T|M is partially open and
hence open by Proposition 3.10. Therefore T'(M) is closed by [G, IV.1.6)].
Hence (i) = (ii).

Conversely, assume (ii). Let R(T') be infinite dimensional. Suppose
M € I(D(T)) where M N N(T) = (0). If T|M is compact, then by the
density invariant result ['o(T|M) = To(T|M) [C11, 3.7), T|M is also
compact, while T(M) contains the infinite dimensional Banach space
TM, which is impossible. Hence T is UO by Theorem 3.1 and conse-
quently T is a ¢ -operator by Corollary 3.5. Since closed finite rank
operators are bounded, the conclusion (i) now follows. M
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