ON A POINTWISE ERGODIC THEOREM FOR MULTIPARAMETER SEMIGROUPS

RYOTARO SATO

Δ	bstract	
$\boldsymbol{\alpha}$	USULALL	

Let T_i $(i=1,2,\ldots,d)$ be commuting null preserving transformations on a finite measure space (X,\mathcal{F},μ) and let $1 \leq p < \infty$. In this paper we prove that for every $f \in L_p(\mu)$ the averages

$$A_n f(x) = (n+1)^{-d} \sum_{0 \le n_i \le n} f(T_1^{n_1} T_2^{n_2} \dots T_d^{n_d} x)$$

converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations T_i) absolutely continuous with respect to μ and a sequence $\{X_N\}$ of invariant sets with $X_N \uparrow X$ such that $\nu B > 0$ for all nonnull invariant sets B and such that the Radon-Nikodym derivative $v = d\nu/d\mu$ satisfies $v \in L_q(x_N,\mu), 1/p+1/q=1$, for each $N \ge 1$.

1. Introduction

We refer to [2] for the basic notation in ergodic theory. Let (X, \mathcal{F}, μ) be a finite measure space and let $T_i: X \to X \ (i=1,2,\ldots,d)$ be commuting null preserving transformations, where $d \geq 1$ is a fixed integer. Associated with these transformations T_i and for any measurable function f on X we have the averages

$$A_n f(x) = (n+1)^{-d} \sum_{0 \le n_i \le n} f(T_1^{n_1} T_2^{n_2} \dots T_d^{n_d} x) \quad (n \ge 0)$$

and the maximal operator

$$Mf = \sup_{n \ge 0} A_n |f|.$$

82 R. Sato

Further each T_i defines, by the Radon-Nikodym Theorem, a unique positive linear contraction operator T_i^* on $L_1(\mu)$ by the relation

$$\int_{B} T_{i}^{*} u \, d\mu = \int_{T_{i}^{-1} B} u \, d\mu \quad (u \in L_{1}(\mu), B \in \mathcal{F}).$$

Under the additional hypothesis that all the transformations T_i are invertible, Martín-Reyes [3] has recently proved the equivalence of the following conditions, for $1 \le p < \infty$.

- (a) The sequence $\{A_n f\}$ converges a.e. for all f in $L_p(\mu)$;
- (b) There exists a positive measurable function U on X such that

$$\int_{\{|A_n f| > t\}} U \, d\mu \le t^{-p} \int_X |f|^p \, d\mu \quad (t > 0, f \in L_p(\mu)).$$

In this paper, without assuming the invertibility hypothesis on the transformations T_i , we intend to characterize those finite measures μ for which (a) holds.

2. The result

Theorem. Let (X, \mathcal{F}, μ) be a finite measure space and let $T_i : X \to X$ (i = 1, 2, ..., d) be commuting null preserving transformations. If $1 \le p < \infty$, then the following are equivalent.

- (a) For any $f \in L_p(\mu)$ the sequence $\{A_n f\}$ converges to a finite limit a.e. on X.
- (b) For any $u \in L_1(\mu)$ the averages

$$A_n^* u = (n+1)^{-d} \sum_{0 \le n_i \le n} T_1^{*^{n_1}} T_2^{*^{n_2}} \dots T_d^{*^{n_d}} u \quad (n \ge 0)$$

converge a.e. on X and also in the norm topology of $L_1(\mu)$; further to every $v \in L_1^+(\mu)$ with $T_i^*v = v$ for all i = 1, 2, ..., d there corresponds a sequence $\{X_N\}$ of invariant sets with $X_N \uparrow X$ such that $v \in L_q(X_N, \mu)$, 1/p + 1/q = 1, for all $N \ge 1$.

- (c) There exists $v \in L_1^+(\mu)$ with $T_i^*v = v$ for all i = 1, 2, ..., d and a sequence $\{X_N\}$ of invariant sets with $X_N \uparrow X$ such that $\int_B v \, d\mu > 0$ for all nonnull invariant sets B and such that $v \in L_q(X_N, \mu)$, 1/p + 1/q = 1, for all $N \ge 1$.
- (d) $Mf < \infty$ for all $f \in L_p(\mu)$.

(e) There exists a positive measurable function U on X such that

$$\int_{\{Mf>t\}} U \, d\mu \le t^{-p} \int_X |f|^p \, d\mu \quad (t>0, \, f \in L_p(\mu)).$$

(f) There exists a positive measurable function U on X, a constant r > 0, and a subsequence $\{n(k)\}$ of $\{n\}$ such that

$$\int_{\{|A_{n(k)}f|>t\}} U\,d\mu \le t^{-r} \left(\int_X |f|^p\,d\mu\right)^{r/p} \quad (t>0,\,f\in L_p(\mu)).$$

We begin by proving the following lemma, which deals with the case $p = \infty$.

Lemma. Let (X, \mathcal{F}, μ) be a finite measure space and let $T_i : X \to X$ (i = 1, 2, ..., d) be commuting null preserving transformations. Then the following are equivalent.

- (a) The sequence $\{A_n f\}$ converges a.e. on X for all $f \in L_{\infty}(\mu)$.
- (b) The sequence $\{A_n^*u\}$ converges in the norm topology of $L_1(\mu)$ for all $u \in L_1(\mu)$.
- (c) For any $u \in L_1^+(\mu)$ with $||u||_1 > 0$ the pointwise limit $u_0^*(x) = \lim_{n \to \infty} A_n^*(x)$ exists a.e. on X and satisfies $||u_0^*||_1 > 0$.
- (d) For any $u \in L_1^+(\mu)$ with $||u||_1 > 0$ we have

$$0<\|\liminf_n A_n^* u\|_1<\infty.$$

Proof

- (a) \Rightarrow (b) follows from a mean ergodic theorem (see e.g. [2, Theorem 2.1.5]).
- (b) \Rightarrow (a) and (c). Let $v_0 = \text{strong-}\lim_n A_n^* 1 (\in L_1^+(\mu))$. Since $T_i^* v_0 = v_0$ for all $i = 1, 2, \ldots, d$, we have

$$Y \subset T_i^{-1}Y$$
 for all $i = 1, 2, ..., d$, where $Y = \{v_0 > 0\}$.

Since the measure $\nu = v_0 d\mu$ is invariant under the T_i 's, we may regard the transformations T_i as commuting measure preserving transformations on a finite measure space $(Y, v_0 d\mu)$. Then, by the classical multiparameter pointwise ergodic theorem, for any $f \in L_{\infty}(\mu)$ the sequence

R. Sato

 $\{A_nf\}$ converges a.e. on Y. To prove the a.e. convergence of $\{A_nf\}$ on $X\backslash Y$, it is sufficient to show that

$$(T_1T_2\ldots T_d)^{-n}Y\uparrow X.$$

To do this, let $B = \lim_{n} (T_1 T_2 \dots T_d)^{-n} Y$. We see easily that $T_i^{-1} B = B$ for all $i = 1, 2, \dots, d$, i.e., B is an invariant set. Hence

$$\mu(X \backslash B) = \int_{X \backslash B} A_n^* 1 \, d\mu \to \int_{X \backslash B} v_0 \, d\mu = \int_{\{v_0 = 0\}} v_0 \, d\mu = 0.$$

To prove (c), let $u \in L_1^+(\mu)$ and $\|u\|_1 > 0$. Since $\|A_n^*u\|_1 = \|u\|_1 > 0$ and $\{A_n^*u\}$ converges in the norm topology of $L_1(\mu)$, it is sufficient to prove the a.e. convergence of $\{A_n^*u\}$. Since the transformations T_i preserve the measure $\nu = v_0 d\mu$, the classical pointwise ergodic theorem for multiparameter semigroups of Dunford-Schwartz operators and an approximation argument imply that $\{A_n^*u\}$ converges a.e. on Y.

To prove that $\lim_{n} A_n^* u(x) = 0$ a.e. on $X \setminus Y$, we use Brunel's Theorem (see e.g. [2, Theorem 6.3.4]) concerning an ergodic inequality for commuting linear contraction operators on $L_1(\mu)$: there exists a constant $K_d > 0$ and a positive linear operator Q on $L_{\infty}(\mu)$ of the form

$$Qf(x) = \sum_{n_1 > 0} a(n_1, n_2, \dots, n_d) f(T_1^{n_1} T_2^{n_2} \dots T_d^{n_d} x),$$

where $a(n_1, n_2, ..., n_d) > 0$ and $\sum_{n_i \geq 0} a(n_1, n_2, ..., n_d) = 1$, such that if Q^* denotes the positive linear operator on $L_1(\mu)$ associated with Q, then

$$\limsup_{n} A_{n}^{*} u \leq K_{d} \cdot \limsup_{n} (n+1)^{-1} \sum_{i=0}^{n} Q^{*i} u \quad (u \in L_{1}^{+}(\mu)).$$

Let $C = \{x : \sum_{i=0}^{\infty} Q^{*i}u = \infty\} \setminus Y$. Since $\|Q^*\|_1 = 1$, it follows that $Q1_C \geq 1_C$, 1_C being the indicator function of C. Thus we have $C \subset T_i^{-1}C$ for all $i = 1, 2, \ldots, d$, and hence

$$\mu C \le \int_X A_n 1_C d\mu = \int_C A_n^* 1 d\mu \to \int_C v_0 d\mu = \int_{\{v_0 = 0\}} v_0 d\mu = 0.$$

This proves that $\lim_{n} A_n^* u(x) = 0$ a.e. on $X \setminus Y$.

(c) \Rightarrow (d). Obvious.

(d) \Rightarrow (b). There exists $v_0 \in L_1^+(\mu)$ with $T_i^*v_0 = v_0$ for all $i = 1, 2, \ldots, d$ such that if $v \in L_1^+(\mu)$ satisfies $T_i^*v = v$ for all $i = 1, 2, \ldots, d$ then $\{v > 0\} \subset \{v_0 > 0\}$. Let $Y = \{v_0 > 0\}$ and

$$B = \lim_{n} (T_1 T_2 \dots T_d)^{-n} Y.$$

Since B and $X \setminus B$ are invariant sets, it follows that if $u \in L_1^+(X \setminus B, \mu)$ and $||u||_1 > 0$ then the function

$$\tilde{u}_0 = \liminf_n A_n^* u$$
 satisfies $\{\tilde{u}_0 > 0\} \cap \{v_0 > 0\} = \phi$.

But this is impossible, since $T_i^*\tilde{u}_0 = \tilde{u}_0 \in L_1^+(\mu)$ for all i = 1, 2, ..., d and (d) implies that $\mu\{\tilde{u}_0 > 0\} > 0$. We conclude that

$$(T_1T_2\ldots T_d)^{-n}Y\uparrow X.$$

Hence by an approximation argument we see that $\{A_n^*u\}$ converges in the norm topology of $L_1(\mu)$ for all $u \in L_1(\mu)$, completing the proof.

Proof of the Theorem: (a) \Rightarrow (b). The first part of (b) follows from the lemma. To prove the second part, let $v \in L_1^+(\mu)$ be such that $T_i^*v = v$ for all $i = 1, 2, \ldots, d$. Putting $Y = \{v > 0\}$, we see that the transformations T_i can be regarded as commuting null preserving transformations on the measure space (Y, μ) . Since the measure $v = v d\mu$ is invariant under the transformations T_i , it follows that these T_i are conservative on (Y, μ) .

By this and the fact that for each f in $L_p(Y,\mu)$ the sequence $\{A_nf\}$ converges to a finite limit a.e. on Y, we can apply Theorem 3.1 in [4] to infer that there exists a sequence $\{Y_N\}$ of sets in \mathcal{I}_Y , where

$$\mathcal{I}_Y = \{B \in \mathcal{F} : B \subset Y, B = Y \cap T_i^{-1}B \text{ for all } i = 1, 2, \dots, d\},\$$

such that $Y_N \uparrow Y$ and $v \in L_q(Y_N, \mu)$ for all $N \geq 1$. Then, letting

$$X_N = \left[\lim_n (T_1 T_2 \dots T_d)^{-n} Y_N\right] \cup \left[X \setminus \lim_n (T_1 T_2 \dots T_d)^{-n} Y\right],$$

we have $v \in L_q(X_N, \mu)$ for all $N \geq 1, X_N \uparrow X$, and $X_N \in \mathcal{I}$ where

$$\mathcal{I} = \{ B \in \mathcal{F} : B = T_i^{-1}B \text{ for all } i = 1, 2, \dots, d \}.$$

(b) \Rightarrow (c). It is enough to put $v = \text{strong-}\lim_{n} A_n^* 1$.

(c) \Rightarrow (a). Put $Y = \{v > 0\}$. It follows (cf. the proof of the lemma) that

$$(T_1T_2\ldots T_d)^{-n}Y\uparrow X.$$

86 R. Sato

Hence it is sufficient to prove that for each f in $L_p(Y,\mu)$ the sequence $\{A_nf\}$ converges to a finite limit a.e. on Y; this follows from the equivalence of (a) and (f) of Theorem 3.1 in [4], since the transformations T_i may be regarded as commuting conservative null preserving transformations on the measure space (Y,μ) .

- (a) \Rightarrow (d). Obvious.
- (d) \Rightarrow (e). This follows from Nikishin's Theorem (see e.g. [1, p. 536]).
- (e) \Rightarrow (f). Obvious.
- (f) \Rightarrow (a). We may suppose that $0 < U \le 1$ on X. Using an approximation argument we see (cf. the proof of (d) \Rightarrow (a) of Theorem 3.1 in [4]) that

$$\lim_{\mu B \to 0} \sup_{k > 1} \int_{B} A_{n(k)}^{*} 1 \, d\mu = 0.$$

Hence by a mean ergodic theorem we see that the sequence $\{A_n^*1\}$ converges in the norm topology of $L_1(\mu)$. Write $v = \text{strong-lim} A_n^*1$ and $Y = \{v > 0\}$. Since $T_i^*v = v$ for all i = 1, 2, ..., d and $(T_1T_2...T_d)^{-n}Y \uparrow X$, it follows from the classical multiparameter pointwise ergodic theorem that for any $f \in L_p^+(\mu)$ the limit

$$f^*(x) = \lim_n A_n f(x)$$

exists a.e. on X (but may be equal to infinity on some subset of X).

To prove that $f^* < \infty$ a.e. on X, we observe that $\{f^* = \infty\} \subset \liminf_k \{A_{n(k)}f > t\}$ for all t > 0; hence by Fatou's Lemma and (f)

$$\int_{\{f^*=\infty\}} U \, d\mu \le \liminf_k \int_{\{A_{n(k)}f>t\}} U \, d\mu \le t^{-r} \left(\int_X f^p \, d\mu\right)^{r/p}.$$

Letting $t \uparrow \infty$, we have $\int_{\{f^* = \infty\}} U d\mu = 0$ and $\mu\{f^* = \infty\} = 0$. The proof is complete.

Since the above proofs of the implications (a) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (a) hold for 0 , we have the

Corollary. Let (X, \mathcal{F}, μ) be a finite measure space and let $T_i: X \to X$ (i = 1, 2, ..., d) be commuting null preserving transformations. Let $0 < p, r < \infty$. If there exists a subsequence $\{n(k)\}$ of $\{n\}$ such that the operators $A_{n(k)}$ are equicontinuous mappings from $L_p(\mu)$ to $L_r(\mu)$ then

for any $f \in L_p(\mu)$ the sequence $\{A_n f\}$ converges to a finite limit a.e. on X.

Proof: This follows from the equivalence of (a) and (f) of the theorem. \blacksquare

References

- J. GARCÍA-CUERVA AND J. L. RUBIO DE FRANCIA, "Weighted Norm Inequalities and Related Topics," North Holland, Amsterdam, 1985.
- 2. U. Krengel, "Ergodic Theorems," Walter de Gruyter, Berlin, 1985.
- F. J. MARTÍN-REYES, On a pointwise ergodic theorem for multiparameter groups, in "Almost Everywhere Convergence," (G. A. Edgar and L. Sucheston, editors), Academic Press, Boston, 1989, pp. 267–279.
- 4. R. Sato, Multiparameter pointwise ergodic theorems for Markov operators on L_{∞} , submitted for publication.

Department of Mathematics School of Science Okayama University Okayama 700 JAPAN

Rebut el 5 de Juliol de 1993

Added in proof: An obvious argument shows that condition (c) of the theorem may be sharpened as follows. (c') There exists $v \in L_q^+(\mu)$ with $T_i^*v = v$ for all $1 \le i \le d$ such that $\int_B v \, d\mu > 0$ for all nonnull invariant sets B.