

ON INDUCED MORPHISMS OF MISLIN GENERA

PETER HILTON

Dedicated to my good friend Karl Gruenberg, in admiration and affection,
on the occasion of his 65th birthday

Abstract

Let N be a nilpotent group with torsion subgroup TN , and let $\alpha : TN \rightarrow \tilde{T}$ be a surjective homomorphism such that $\ker \alpha$ is normal in N . Then α determines a nilpotent group \tilde{N} such that $T\tilde{N} = \tilde{T}$ and a function α_* from the Mislin genus of N to that of \tilde{N} if N (and hence \tilde{N}) is finitely generated. The association $\alpha \mapsto \alpha_*$ satisfies the usual functorial conditions. Moreover $[N, N]$ is finite if and only if $[\tilde{N}, \tilde{N}]$ is finite and α_* is then a homomorphism of abelian groups. If \tilde{N} belongs to the special class studied by Casacuberta and Hilton (*Comm. in Alg.* 19(7) (1991), 2051–2069), then α_* is surjective. The construction α_* thus enables us to prove that the genus of N is non-trivial in many cases in which N itself is not in the special class; and to establish non-cancellation phenomena relating to such groups N .

0. Introduction

Guido Mislin introduced and discussed in [M] the *genus* $\mathfrak{G}(N)$ of a finitely generated (*fg*) nilpotent group N . This consists of isomorphism classes of *fg* nilpotent groups M such that

$$(0.1) \quad M_p \cong N_p, \text{ for all primes } p,$$

where M_p is the p -localization of M . By abuse we say that M belongs to $\mathfrak{G}(N)$. It was early known that $\mathfrak{G}(N)$ is not trivial, but systematic methods of calculating the set $\mathfrak{G}(N)$ and representing its elements were lacking.

Mislin himself in [M], and together with the present author in [HM], described an abelian group structure which could be introduced into $\mathfrak{G}(N)$ if N satisfied the condition that its commutator subgroup $[N, N]$

is finite; we call the class of such *fg* nilpotent groups \mathfrak{R}_0 ; moreover, $\mathfrak{G}(N)$ is then finite. However, this still did not permit any kind of systematic calculation of $\mathfrak{G}(N)$. Calculations were done for specific groups in [H2]. Later, Casacuberta and Hilton [CH] introduced a class of nilpotent groups $\mathfrak{R}_1 \subset \mathfrak{R}_0$, and calculated $\mathfrak{G}(N)$ for $N \in \mathfrak{R}_1$; they further showed how to modify N to realize any given element in $\mathfrak{G}(N)$. The nature of the groups in \mathfrak{R}_1 was further analysed in [S], [HS1]—indeed, the class is very strongly restricted—and, in [S], [HS2], the calculation of the genus was extended from N to N^k , the direct product of k copies of N , provided $N \in \mathfrak{R}_1$. A key result in this work is that, for $N \in \mathfrak{R}_1$, $\mathfrak{G}(N)$ can only be non-trivial if $FN = N/TN$ is cyclic, where TN is the torsion subgroup of N ; recall that FN is commutative for $N \in \mathfrak{R}_0$.

A significant difficulty in attempting to calculate $\mathfrak{G}(N)$ is that \mathfrak{G} lacks any kind of functoriality. We endeavor in this paper to go some way towards remedying this defect. Thus we suppose given a *fg* nilpotent group N and a surjective homomorphism $\alpha : TN \rightarrow \tilde{T}$, for some finite group \tilde{T} which is, of course, necessarily nilpotent. Given the supplementary condition that $\ker \alpha$ is normal in N , we construct a *fg* nilpotent group \tilde{N} such that $T\tilde{N} = \tilde{T}$ and a function $\alpha_* : \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$. Moreover, $N \in \mathfrak{R}_0$ if and only if $\tilde{N} \in \mathfrak{R}_0$; and α_* is then a homomorphism. It is easy to see that $\alpha \mapsto \alpha_*$ satisfies the usual functoriality conditions. Further we show in Section 2 that if $\tilde{N} \in \mathfrak{R}_1$ then α_* is surjective; thus, in this case, considerable information is made available about $\mathfrak{G}(N)$, since we may calculate $\mathfrak{G}(\tilde{N})$.

A particular, and important, example of the construction is afforded by taking \tilde{T} to be the abelianization of TN with α the abelianizing homomorphism. To avoid triviality we take FN cyclic. Then \tilde{N} satisfies two of the three conditions for membership of \mathfrak{R}_1 (see below). Moreover, the third condition will be automatically satisfied if \tilde{T} happens to be cyclic.

We also show in Section 2 that a non-cancellation result proved in [CH] for groups in \mathfrak{R}_1 extends to groups, which, in our sense above, lie over groups in \mathfrak{R}_1 . That is, we obtain pairwise non-isomorphic groups (L, M, \dots) in $\mathfrak{G}(N)$ such that $L \times C \cong M \times C \cong \dots \cong N \times C$, where C is cyclic infinite.

In Section 3 we give a typical example of the application of the method, with explicit calculations.

For the convenience of the reader, we collect here the crucial facts about the class \mathfrak{R}_1 . We assume $N \in \mathfrak{R}_0$ and refer to the extension

(0.2)

$$TN \rightarrowtail N \twoheadrightarrow FN.$$

Then $N \in \mathfrak{R}_1$ if

- (i) TN is commutative;
- (ii) (0.2) is a split extension for an action $\omega : FN \rightarrow \text{Aut } TN$;
- (iii) $\omega(FN)$ lies in the center of $\text{Aut } TN$.

We then note that, in the presence of (i), condition (iii) is equivalent to (iii)' for each $\xi \in FN$, there exists a positive integer u such that $\xi \cdot a = ua$, for all $a \in TN$.

To avoid a trivial genus, we assume FN cyclic, say, $FN = \langle \xi \rangle$. Let t be the order of $\omega(\xi)$ in $\text{Aut } TN$. Then [CH], if $N \in \mathfrak{R}_1$,

$$(0.3) \quad \mathfrak{G}(N) \cong (\mathbb{Z}/t)^*/\{\pm 1\}.$$

Moreover, if $[m] \in (\mathbb{Z}/t)^*/\{\pm 1\}$, where m is prime to t , we may choose the isomorphism (0.3) so that the group N_m corresponding to m is obtained from N by introducing a new action ω_m of FN on TN , defined by

$$(0.4) \quad \omega_m(\xi) = \omega(\xi^m).$$

A final remark pertains to the general construction in Section 1. There is no need to insist that N be *fg* to carry out the construction. Thus Theorem 1.1 may be extended to yield a function α_* from the *extended genus* of N to the extended genus of \tilde{N} (see [H3]).

1. The construction

Let $N \in \mathfrak{R}_{fg} \subset \mathfrak{R}$; that is, N is a *fg* nilpotent group. There is then a canonical exact sequence

$$(1.1) \quad TN \xrightarrow{i} N \xrightarrow{\pi} FN, \quad TN = \text{torsion subgroup of } N, \\ FN = \text{torsionfree quotient}$$

Now let $\alpha : TN \rightarrow \tilde{T}$ be a surjection, so that \tilde{T} is a finite nilpotent group. Assume that $\ker \alpha$ is normal in N ; call this condition *K*. Then we know [H1] that we may embed (1.1) in a map of exact sequences

$$(1.2) \quad \begin{array}{ccccccc} TN & \xrightarrow{i} & N & \xrightarrow{\pi} & FN & & \\ \alpha \downarrow & & \beta \downarrow & & \parallel & & \\ \tilde{T} & \xrightarrow{\tilde{i}} & \tilde{N} & \xrightarrow{\tilde{\pi}} & FN & & \end{array}$$

with $\tilde{N} \in \mathfrak{R}_{fg}$. Moreover, the LHS of (1.2) is a push-out in the category of groups; and, obviously, $FN = FN$, $T\tilde{N} = \tilde{T}$ —indeed, we will often write $T\tilde{N}$ for \tilde{T} . We now replace N by a nilpotent group M in the genus of N ; we will assume, as we may, that $TM = TN$ and $M_p = N_p$ for all primes p . We claim that $\ker \alpha$ is normal in M under the natural embedding $\ker \alpha \subseteq TN = TM \subseteq M$. For $(\ker \alpha)_p$ is normal in M_p for all primes p , which shows that $\ker \alpha$ is normal in M . We thus have a commutative diagram

$$(1.3) \quad \begin{array}{ccccc} TN & \xrightarrow{i'} & M & \xrightarrow{\pi'} & FM \\ \alpha \downarrow & & \beta' \downarrow & & \parallel \\ T\tilde{N} & \xrightarrow{\tilde{i}'} & \tilde{M} & \xrightarrow{\tilde{\pi}'} & FM \end{array}$$

Theorem 1.1. *The association $M \mapsto \tilde{M}$ defines a function $\alpha_* : \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$.*

Proof: We have the commutative diagram (identifying FM_p with FN_p)

$$\begin{array}{ccccc} TN_p & \xrightarrow{i_p} & N_p & \xrightarrow{\pi_p} & FN_p \\ \parallel & \searrow \alpha_p & \parallel & \searrow \beta_p & \parallel \\ TN_p & \xrightarrow{\tilde{i}_p} & \tilde{N}_p & \xrightarrow{\tilde{\pi}_p} & F\tilde{N}_p \\ \parallel & & \parallel & & \parallel \\ TN_p & \xrightarrow{i_p} & M_p & \xrightarrow{\pi_p} & FM_p \\ \alpha_p \searrow & \parallel & \searrow \beta'_p & \parallel & \parallel \\ T\tilde{N}_p & \xrightarrow{\tilde{i}'_p} & \tilde{M}_p & \xrightarrow{\tilde{\pi}'_p} & F\tilde{M}_p \end{array}$$

Now it is easy to prove that

$$\begin{array}{ccc} TN_p & \xrightarrow{i_p} & N_p \\ \downarrow \alpha_p & & \downarrow \beta_p \\ T\tilde{N}_p & \xrightarrow{\tilde{i}'_p} & \tilde{N}_p \end{array}$$

is also a push-out in the category of groups. Thus we have a (unique) homomorphism $\kappa : \tilde{N}_p \rightarrow \tilde{M}_p$ such that $\kappa \beta_p = \beta'_p$ and $\kappa \tilde{i}'_p = \tilde{i}'_p$. We

claim that $\tilde{\pi}'_p \kappa = \tilde{\pi}_p$. For $\tilde{\pi}'_p \kappa \beta_p = \tilde{\pi}'_p \beta'_p = \pi_p = \tilde{\pi}_p \beta_p$ and $\tilde{\pi}'_p \kappa \tilde{i}_p = \tilde{\pi}'_p \tilde{i}'_p = 0 = \tilde{\pi}_p \tilde{i}_p$. Thus the diagram

$$\begin{array}{ccccc} T\tilde{N}_p & \xrightarrow{\tilde{i}_p} & \tilde{N}_p & \xrightarrow{\tilde{\pi}_p} & F\tilde{N}_p \\ \parallel & & \downarrow \kappa & & \parallel \\ T\tilde{N}_p & \xrightarrow{\tilde{i}'_p} & \tilde{M}_p & \xrightarrow{\tilde{\pi}'_p} & F\tilde{M}_p \end{array}$$

commutes, showing that κ is an isomorphism. This proves that $\tilde{M} \in \mathfrak{G}(\tilde{N})$ and establishes the theorem. ■

The following “functorial” properties of the association $\alpha \mapsto \alpha_*$ are obvious.

Theorem 1.2. (i) $\text{Id} : TN \rightarrow TN$ satisfies the condition K and $\text{Id}_* = \text{Id}$.

(ii) If $\alpha : TN \twoheadrightarrow \tilde{T} = T\tilde{N}$ satisfies condition K and $\tilde{\alpha} : T\tilde{N} \twoheadrightarrow \tilde{T}$ satisfies condition K , then $\tilde{\alpha}\alpha$ satisfies condition K and $(\tilde{\alpha}\alpha)_* = \tilde{\alpha}_*\alpha_*$.

Proof: (i) is trivial. As to (ii), it suffices to remark that the existence of β in (1.2) guarantees that α satisfies condition K . Thus we superimpose diagrams to produce

$$(1.4) \quad \begin{array}{ccccc} TN & \xrightarrow{\quad} & N & \longrightarrow & FN \\ \alpha \downarrow & & \beta \downarrow & & \parallel \\ T\tilde{N} & \xrightarrow{\quad} & \tilde{N} & \longrightarrow & FN \\ \tilde{\alpha} \downarrow & & \tilde{\beta} \downarrow & & \parallel \\ T\tilde{N} & \xrightarrow{\quad} & \tilde{N} & \longrightarrow & FN \end{array}$$

and deduce, first, that $\tilde{\alpha}\alpha$ satisfies condition K and, second, that $(\tilde{\alpha}\alpha)_* = \tilde{\alpha}_*\alpha_*$. For, just as (1.3) was derived in similar manner to (1.2) so

$$\begin{array}{ccccccc}
 TN & \longrightarrow & N & \longrightarrow & FM & & \\
 \alpha \downarrow & & \beta' \downarrow & & \parallel & & \\
 T\tilde{N} & \longrightarrow & \tilde{M} & \longrightarrow & FM & & \\
 \tilde{\alpha} \downarrow & & \tilde{\beta}' \downarrow & & \parallel & & \\
 T\tilde{\tilde{N}} & \longrightarrow & \tilde{\tilde{M}} & \longrightarrow & FM & &
 \end{array}
 \quad (1.5)$$

is derived in a similar manner to (1.4), and shows that

$$\tilde{\tilde{M}} = \tilde{\alpha}_* \alpha_*(M) = (\tilde{\alpha}\alpha)_*(M). \quad \blacksquare$$

We now make the further hypothesis that $N \in \mathfrak{R}_0$; this is equivalent to assuming that FN is commutative. Since $FN = F\tilde{N}$ it follows that $\tilde{N} \in \mathfrak{R}_0$, so that both $\mathfrak{G}(N)$, $\mathfrak{G}(\tilde{N})$ are finite abelian groups. (Notice that, in fact, $N \in \mathfrak{R}_0$ if and only if $\tilde{N} \in \mathfrak{R}_0$.) We then have

Theorem 1.3. *Suppose that $N \in \mathfrak{R}_0$. Then $\alpha_* : \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$ is a homomorphism.*

Proof: Suppose that $K + L = M$ in $\mathfrak{G}(N)$. We continue to assume that

$$TK = TL = TM = TN.$$

Then, according to [HM], there exists an exhaustive pair $\varphi : N \rightarrow K$, $\psi : N \rightarrow L$, such that we may form the push-out (in \mathfrak{R})

$$\begin{array}{ccc}
 N & \xrightarrow{\varphi} & K \\
 \psi \downarrow & & \tau \downarrow \\
 L & \xrightarrow{\sigma} & M
 \end{array}
 \quad (1.6)$$

We recall from [HM] that an *exhaustive pair* (φ, ψ) is defined by the requirements

(i) φ or ψ is a T -equivalence, where

$$T = T(N) = \{p \mid N \text{ has } p\text{-torsion}\};$$

and (ii) for all primes p , φ or ψ is a p -equivalence.

However, examination of the proof of Theorem 2.3 of [HM] shows that we may assume that *both* φ and ψ are T -equivalences. For having constructed φ as a T -equivalence, we define

$$P = \{p \mid \varphi \text{ is not a } p\text{-equivalence}\}$$

and then, modifying the argument in [HM], construct ψ to be a $(P \cup T)$ -equivalence.

With this strengthened sense of an exhaustive pair, we revert to (1.6). Then φ, ψ , when restricted to TN , are both isomorphisms, so we may suppose that both are identities on TN . We may then suppose that σ, τ are also identities on TN . Now let us factor out $\ker \alpha$ from each of K, L, M, N . Since $\ker \alpha \subseteq TN$, this gives rise to a commutative diagram

$$(1.7) \quad \begin{array}{ccc} \tilde{N} & \xrightarrow{\tilde{\varphi}} & \tilde{K} \\ \tilde{\psi} \downarrow & & \tilde{\tau} \downarrow \\ \tilde{L} & \xrightarrow{\tilde{\sigma}} & \tilde{M} \end{array}$$

which is easily seen to inherit from (1.6) the property of being a push-out in \mathfrak{R} . Moreover, it is plain that $\tilde{\varphi}, \tilde{\psi}$ remain T -equivalences and that, for all primes p , $\tilde{\varphi}$ or $\tilde{\psi}$ is a p -equivalence. Since $T\tilde{N}$ is a quotient of TN it is plain that $T(\tilde{N}) \subseteq T(N)$, so that $\tilde{\varphi}$ and $\tilde{\psi}$ are $T(\tilde{N})$ -equivalences and $(\tilde{\varphi}, \tilde{\psi})$ is an exhaustive pair. We conclude that

$$\tilde{K} + \tilde{L} = \tilde{M} \text{ in } \mathfrak{G}(\tilde{N}),$$

so that φ is a homomorphism. ■

2. A special case

Since it has not yet proved possible to calculate $\mathfrak{G}(N)$ systematically for $N \in \mathfrak{R}_0$, it is not to be expected that we would have much success in trying to analyse the homomorphism α_* in the generality in which it has been introduced in the preceding section. However, we do find it possible to make some headway if we make the restrictive assumption that $\tilde{N} \in \mathfrak{R}_1$. We then prove

Theorem 2.1. *Let $\alpha_* : \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$ be defined as in Section 1 and let $\tilde{N} \in \mathfrak{R}_1$. Then α_* is a surjective homomorphism.*

Proof: Since $\tilde{N} \in \mathfrak{R}_0$, it follows that $N \in \mathfrak{R}_0$ and α_* is a homomorphism. Now $\mathfrak{G}(\tilde{N}) = 0$ unless FN is cyclic [S], [HS]. Thus, to avoid

triviality, we assume FN cyclic. Under this assumption, the top row of (1.2) splits for an action $\omega : FN \rightarrow \text{Aut } TN$. Let $\sigma : FN \rightarrow N$ be a splitting ($\pi\sigma = 1$), so that, if $FN = \langle \xi \rangle$, then ω is given by

$$(2.1) \quad \omega(\xi)(a) = yay^{-1}, \quad a \in TN, \text{ where } y = \sigma(\xi).$$

We will often write $\xi \cdot a$ for $\omega(\xi)(a)$. We use $\beta\sigma : FN \rightarrow \tilde{N}$ to split the bottom row of (1.2) and write $\tilde{\omega} : FN \rightarrow \text{Aut } T\tilde{N}$ for the associated action. Note that $\tilde{\omega}$ is given by

$$(2.2) \quad \tilde{\omega}(\xi)(\alpha a) = \alpha(\omega(\xi)(a)), \quad a \in TN.$$

We write (2.2) more simply as

$$(2.3) \quad \xi \cdot \alpha a = \alpha(\xi \cdot a), \quad a \in TN.$$

Now let \tilde{t} be the *height* of $\ker \tilde{\omega}$ in FN ; that is, since FN is cyclic, \tilde{t} is the order of $\tilde{\omega}(\xi)$ in $\text{Aut } T\tilde{N}$. Then, by the main theorem of [CH],

$$(2.4) \quad \mathfrak{G}(\tilde{N}) \cong (\mathbb{Z}/\tilde{t})^*/\{\pm 1\}.$$

Moreover, we may choose the isomorphism (2.4) so that the group \tilde{N}_m , m prime to \tilde{t} , corresponding to $[m] \in (\mathbb{Z}/\tilde{t})^*/\{\pm 1\}$, is obtained from \tilde{N} simply by replacing the action $\tilde{\omega}$ by a new action $\tilde{\omega}_m$, defined by

$$(2.5) \quad \tilde{\omega}_m(\xi)(\tilde{a}) = \tilde{\omega}(\xi^m)(\tilde{a}), \quad \tilde{a} \in T\tilde{N}.$$

Of course we have freedom in (2.4) to choose m within its given class $[m]$ without changing \tilde{N}_m . We will, in fact, choose m to be a T' -number, where $T = T(N)$ is the set of primes p such that N has p -torsion. To see that we can do this it suffices to notice that m is prime to \tilde{t} so that, by Dirichlet's Theorem, the residue class $[m]$ contains primes not in T .

With such a choice of m , we show that \tilde{N}_m may be represented as $\alpha_*(N_m)$ for a suitable group N_m in $\mathfrak{G}(N)$. We define N_m to be the semi-direct product of TN and FN for the action $\omega_m : FN \rightarrow \text{Aut } TN$, given by

$$(2.6) \quad \omega_m(\xi)(a) = \omega(\xi^m)(a), \quad a \in TN.$$

We first show that $N_m \in \mathfrak{G}(N)$. Consider the diagram

$$(2.7) \quad \begin{array}{ccccccc} TN & \longrightarrow & N_m & \longrightarrow & FN \\ \parallel & & \downarrow m & & \\ TN & \longrightarrow & N & \longrightarrow & FN \end{array}$$

where the endomorphism of FN is just $\xi \mapsto \xi^m$. Then (2.6) asserts that (2.7) satisfies the compatibility condition permitting us to complete it with $\varphi : N_m \rightarrow N$ to a commutative diagram. Now if $p \in T$ then $m : FN \rightarrow FN$ is a p -equivalence, so that $\varphi : N_m \rightarrow N$ is a p -equivalence. If $p \notin T$ then TN_p is the trivial group so both N and N_m are p -equivalent to FN and hence p -equivalent to each other. Thus $N_m \in \mathfrak{G}(N)$.

Finally we show that $\alpha_*(N_m) = \tilde{N}_m$. Consider the diagrams

$$\begin{array}{ccccc} TN & \longrightarrow & N & \longrightarrow & FN \\ \alpha \downarrow & & \beta \downarrow & & \parallel \\ T\tilde{N} & \longrightarrow & \tilde{N} & \longrightarrow & FN \end{array}$$

(2.8)

$$\begin{array}{ccccc} TN & \longrightarrow & N_m & \longrightarrow & FN \\ \alpha \downarrow & & & & \parallel \\ T\tilde{N} & \longrightarrow & \tilde{N}_m & \longrightarrow & FN \end{array}$$

Recall that we are writing “ \cdot ” to indicate the actions of FN on TN or $T\tilde{N}$ in the first diagram; let us write “ \circ ” for the actions of FN on TN or $T\tilde{N}$ in the second diagram of (2.8). Then (2.3) $\xi \cdot \alpha a = \alpha(\xi \cdot a)$, $a \in TN$ and (2.6) $\xi \circ a = \xi^m \cdot a$, $a \in TN$. Moreover, by (2.5), $\xi \circ \alpha a = \xi^m \cdot \alpha a$, $a \in TN$. But since $\xi \cdot \alpha a = \alpha(\xi \cdot a)$, it follows that $\xi^m \cdot \alpha a = \alpha(\xi^m \cdot a)$, whence

$$\alpha(\xi \circ a) = \alpha(\xi^m \cdot a) = \xi^m \cdot \alpha a = \xi \circ \alpha a, \quad a \in TN.$$

This, however, is precisely the compatibility condition guaranteeing the existence, in the second diagram of (2.8), of $\beta_m : N_m \rightarrow \tilde{N}_m$ making the diagram commutative. Then β_m must be surjective. This, however, guarantees that

$$\begin{array}{ccc} TN & \xrightarrow{i} & N_m \\ \alpha \downarrow & & \beta_m \downarrow \\ T\tilde{N} & \xrightarrow{\tilde{i}_m} & \tilde{N}_m \end{array}$$

is a push-out in the category of groups and hence, by the uniqueness of push-outs, that $\tilde{N}_m = \alpha_*(N_m)$. ■

We now consider the groups $N_m \in \mathfrak{G}(N)$ constructed in the course of our proof of Theorem 2.1. We have immediately

Corollary 2.2. *Suppose $N_m \cong N_{m'}$. Then $m \equiv m' \pmod{\tilde{t}}$.*

For if $N_m \cong N_{m'}$ then $\tilde{N}_m \cong \tilde{N}_{m'}$. We use Corollary 2.2 to obtain a non-cancellation result. We need some preliminary lemmas, the first of which addresses Remark 1 of [HM, Section 4].

Lemma 2.3. *Let $N \in \mathfrak{R}_0$ and let $FZN = nZN$, where ZN is the center of N and $n = \exp TZN$. Let k be a T -number, where $T = T(N)$, and let $QN = N/kFZN$. Then QN is a finite group and $p \in T(QN)$ if and only if $p \in T$.*

Remark. In [HM] it was remarked that we achieved the same effect whether we defined n to be the exponent or the order of TZN ; of course, in either case FZN is free abelian.

Proof of Lemma 2.3: Since $[N, N]$ is finite and N is fg nilpotent, N/ZN is finite. Also ZN is fg so $ZN/knZN$ is finite. Hence $N/knZN$ is finite. Now let $ZN = F \oplus TZN$, with F fg free abelian. Then $kFZN = knF$, so

$$(2.9) \quad ZN/kFZN = F/knF \oplus TZN.$$

Also we have an exact sequence

$$(2.10) \quad ZN/kFZN \rightarrow QN \twoheadrightarrow N/ZN.$$

From (2.9) we infer, for an arbitrary prime p ,

ZN has p -torsion $\Rightarrow ZN/kFZN$ has p -torsion $\Rightarrow N$ has p -torsion.

Thus, from (2.10),

QN has p -torsion $\Rightarrow ZN/kFZN$ or N/ZN has p -torsion $\Rightarrow N$ has p -torsion; and N has p -torsion $\Rightarrow ZN$ or N/ZN has p -torsion $\Rightarrow ZN/kFZN$ or N/ZN has p -torsion $\Rightarrow QN$ has p -torsion.

This completes the proof. ■

Lemma 2.4. *Let $N \in \mathfrak{R}_0$ with FN cyclic, $FN = \langle \xi \rangle$. Let t be the order of $\omega(\xi) \in \text{Aut } TN$. Then t is a T -number, where $T = T(N)$.*

Proof: Certainly FZN is a free cyclic group. Suppose it is generated by (a, ξ^s) , $a \in TN$. By conjugating with $(1, \xi)$ it is clear that $\xi \cdot a = a$. Let k be the order of a . Then $(a, \xi^s)^k = (1, \xi^{sk})$. Now, since t is the order of $\omega(\xi)$, we infer that $t|sk$.

We compute QN as in Lemma 2.3. We have

$$N = \langle TN, y \rangle, \text{ where } y = (1, \xi)$$

$kFZN = \langle y^{sk} \rangle$ (we confuse additive and multiplicative notation here!)

Thus, $QN = \langle TN, y | y^{sk} = 1 \rangle$.

When we abelianize QN we get generators from $(TN)_{ab}$, together with \bar{y} ; and the only relation involving \bar{y} is $\bar{y}^{sk} = 1$. Thus $sk \mid \exp QN_{ab}$, whence $t \mid \exp QN_{ab}$. Now since QN is a finite nilpotent group, $T(QN) = T(QN_{ab})$, so that, by Lemma 2.3,

$$(2.11) \quad T = T(N) = T(QN_{ab}).$$

Since $t \mid \exp QN_{ab}$, t is a $T(QN_{ab})$ -number. Hence, by (2.11), t is a T -number. ■

Before stating our non-cancellation result, we observe that the invariant t provides us with a partial converse to Corollary 2.2. Thus we may prove

Theorem 2.5. (i) $\tilde{t} \mid t$; (ii) if $m \equiv m' \pmod{t}$, then $N_m \cong N_{m'}$.

Proof: (i) follows immediately from (2.3) and the fact that α is surjective.

As to (ii), observe first that $N_m \cong N_{-m}$; for we have the diagram

$$\begin{array}{ccccccc} TN & \longrightarrow & N_m & \longrightarrow & FN & & \\ \parallel & & & & \downarrow -1 & & \\ TN & \longrightarrow & N_{-m} & \longrightarrow & FN & & \end{array}$$

satisfying the obvious compatibility condition, giving rise to an isomorphism $N_m \cong N_{-m}$. Further we have an actual equality between N_m and N_{m+qt} since $\xi^{m+qt} \cdot a = \xi^m \cdot a$, for all $a \in TN$. ■

We are now ready to enunciate our non-cancellation theorem; recall that we have constructed a group N_m in $\mathfrak{G}(N)$ for each m such that m is a T' -number prime to t ; and that $N_m \cong N_{m'} \Rightarrow m \equiv \pm m' \pmod{t}$.

Theorem 2.6. $N_m \times C \cong N \times C$, where C is cyclic infinite.

Proof: Since m is a T' -number it follows from Lemma 2.4 that m is prime to t , the order of $\omega(\xi)$ in $\text{Aut } TN$. Let $A = \begin{pmatrix} m & t \\ r & s \end{pmatrix}$ be a unimodular matrix over \mathbb{Z} ; let $C = \langle \eta \rangle$ and interpret A as the automorphism of $FN \times C$ given by $\xi \mapsto \xi^m \eta^r$, $\eta \mapsto \xi^t \eta^s$. Consider the diagram

$$(2.12) \quad \begin{array}{ccc} TN & \longrightarrow & N_m \times C & \longrightarrow & FN \times C \\ \parallel & & \downarrow A & & \\ TN & \longrightarrow & N \times C & \longrightarrow & FN \times C \end{array}$$

We claim that (2.12) satisfies the compatibility condition. For C operates trivially on TN so we may write, for the top row of (2.12),

$$(2.13) \quad \xi \circ a = \xi^m \cdot a, \quad \eta \circ a = a, \quad a \in TN.$$

and, for the bottom row of (2.12),

$$(2.14) \quad \eta \cdot a = a, \quad a \in TN.$$

Moreover, each of $N_m \times C$, $N \times C$ is the semi-direct product for the given actions. Further

$$\begin{aligned} A\xi \cdot a &= \xi^m \eta^r \cdot a = \xi^m \cdot a = \xi \circ a, \\ A\eta \cdot a &= \xi^t \eta^s \cdot a = a = \eta \circ a, \end{aligned}$$

by (2.13) and (2.14). It follows that we may find

$$\varphi : N_m \times C \rightarrow N \times C$$

completing (2.12) to a commutative diagram. It is then clear that φ is an isomorphism. ■

Now to obtain an actual non-cancellation example, it suffices to find an example of the data of Theorem 2.1 in which $\tilde{t} \not\equiv 1, 2, 3, 4, 6$. In the next section we show, in fact, how to construct examples with *any* given \tilde{t} .

3. Examples

We may apply Theorem 1.1 by factoring $[TN, TN]$, $[N, N] \cap TN$, TZN , $ZN \cap TN$ out of TN and N and letting α , β be the associated quotient maps. The first is especially interesting for then $T\tilde{N}$ is commutative, but \tilde{N} , in general, is not. If $N \in \mathfrak{R}_0$, we may apply Theorem 1.3; and we may further hope that $\tilde{N} \in \mathfrak{R}_1$ so that we can apply Theorem 2.1. If FN is cyclic we will only need to verify condition (iii) for membership of \mathfrak{R}_1 (see the Introduction), and, if $T\tilde{N}$ is also cyclic, condition (iii) is automatically verified.

We now give an example (or, rather, a family of examples) which gives rise to a group \tilde{N} in \mathfrak{R}_1 (although $T\tilde{N}$ is not cyclic), and thus to the construction of non-trivial genera $\mathfrak{G}(N)$ for groups N in \mathfrak{R}_0 , with TN non-commutative, and to explicit non-cancellation results, based on Corollary 2.2 and Theorem 2.6.

Given \tilde{t} , choose n and u such that (i) n is even; (ii) $p|n \Rightarrow p|u-1$, for all primes p ; (iii) the order of $u \bmod n$ is \tilde{t} . Notice that (i) and (ii) imply that u is odd. As examples of possible choices for n and u , we have:

If \tilde{t} is odd, say $\tilde{t} = p_1^{\ell_1} p_2^{\ell_2} \dots p_\lambda^{\ell_\lambda}$, choose

$$n = 2p_1^{\ell_1+1} p_2^{\ell_2+1} \dots p_\lambda^{\ell_\lambda+1}, \quad u = 1 + 2p_1 p_2 \dots p_\lambda;$$

If \tilde{t} is even, say $\tilde{t} = 2^{\ell_1} p_2^{\ell_2} \dots p_\lambda^{\ell_\lambda}$, choose

$$n = 2^{\ell_1+2} p_2^{\ell_2+1} \dots p_\lambda^{\ell_\lambda+1}, \quad u = 1 + 4p_2 \dots p_\lambda.$$

Now set $TN = \langle x, y, z | x^2 = y^2 = z^{2n} = 1, [x, y] = z^n, [x, z] = [y, z] = 1 \rangle$. Obviously TN is nilpotent of class 2. Let $FN = \langle \xi \rangle$ operate on TN by the rule

$$(3.1) \quad \xi \cdot x = x, \quad \xi \cdot y = y, \quad \xi \cdot z = z^u.$$

This clearly describes an automorphism of TN since u is prime to n by (ii) above and hence, being odd, prime to $2n$. Moreover, $z^{un} = z^n$, again because u is odd.

We claim that the action (3.1) is nilpotent. For we have $\Gamma_{FN}^0 TN = TN$,

$$\begin{aligned} \Gamma_{FN}^1 TN &= \langle z^{u-1}, z^n \rangle, \\ \Gamma_{FN}^2 TN &= \langle z^{(u-1)^2}, z^{(u-1)n} \rangle = \langle (z^{(u-1)^2}) \rangle, \\ \Gamma_{FN}^3 TN &= \langle z^{(u-1)^3} \rangle, \dots, \end{aligned}$$

and thus, again by (ii) above, $\Gamma_{FN}^k TN = \{1\}$ for k sufficiently large. If, then, we form the semi-direct product N of TN and FN for this action, N is a nilpotent group and, indeed, $N \in \mathfrak{R}_0$.

Now $[TN, TN] = \langle z^n \rangle$. Thus we may factor out $[TN, TN]$ to form

$$(3.2) \quad \tilde{T} = (TN)_{ab} = \langle \tilde{x}, \tilde{y}, \tilde{z} | 2\tilde{x} = 2\tilde{y} = n\tilde{z} = 0 \rangle,$$

and, following the procedure of Section 1, we have the commutative diagram

$$(3.3) \quad \begin{array}{ccccc} TN & \longrightarrow & N & \longrightarrow & FN \\ \alpha \downarrow & & \beta \downarrow & & \parallel, \quad T\tilde{N} = \tilde{T} \\ T\tilde{N} & \longrightarrow & \tilde{N} & \longrightarrow & FN \end{array}$$

Now FN acts on $T\tilde{N}$ by

$$(3.4) \quad \xi \cdot \tilde{x} = \tilde{x}, \quad \xi \cdot \tilde{y} = \tilde{y}, \quad \xi \cdot \tilde{z} = u\tilde{z},$$

so that

$$(3.5) \quad \xi \cdot \tilde{a} = u\tilde{a}, \text{ for all } \tilde{a} \in T\tilde{N}.$$

Moreover, $\exp T\tilde{N} = n$, so that $\tilde{N} \in \mathfrak{R}_1$ by (3.5) and

$$(3.6) \quad \mathfrak{G}(\tilde{N}) \cong (\mathbb{Z}/\tilde{t})^*/\{\pm 1\},$$

by condition (iii). Thus

$$(3.7) \quad \alpha_* : \mathfrak{G}(N) \rightarrow (\mathbb{Z}/\tilde{t})^*/\{\pm 1\}$$

and $\mathfrak{G}(N)$ is a non-trivial group, provided that $\tilde{t} \neq 1, 2, 3, 4, 6$.

Now $u^{\tilde{t}} \equiv 1 \pmod{n}$. Thus $u^{2\tilde{t}} \equiv 1 \pmod{2n}$, so that $t = 2\tilde{t}$ or \tilde{t} . Moreover, we may follow the procedure of Section 2 to construct N_m if m is prime to \tilde{t} and a T' -number, where $T = T(N)$. Plainly $\exp TN = 2n$, so T consists of the prime divisors of n .

Let us now insist, for simplicity, as we clearly may, that \tilde{t} and n have precisely the same prime divisors, except that $2|n$ even if \tilde{t} is odd. Thus we can construct N_m if m is prime to \tilde{t} , with the additional condition that m is odd, even if \tilde{t} is odd. We thus have

Theorem 3.1. *For a given \tilde{t} , choose (n, u) as above and construct the group N as described. Then there is a surjective homomorphism*

$$\alpha_* : \mathfrak{G}(N) \rightarrow (\mathbb{Z}/\tilde{t})^*/\{\pm 1\}.$$

We may also construct $N_m \in \mathfrak{G}(N)$ for any odd m prime to \tilde{t} , and

$$(3.8) \quad m \equiv \pm m' \pmod{2\tilde{t}} \Rightarrow N_m \cong N_{m'} \Rightarrow m \equiv \pm m' \pmod{\tilde{t}}.$$

Moreover, $N_m \times C \cong N \times C$ for any odd m prime to \tilde{t} .

Finally, we become even more specific! Let \tilde{t} itself be odd and choose (n, u) as follows (this modifies slightly our earlier example of a possible choice). Thus, if $\tilde{t} = p_1^{\ell_1} p_2^{\ell_2} \dots p_{\lambda}^{\ell_{\lambda}}$, choose

$$(3.9) \quad n = 2p_1^{\ell_1+1} p_2^{\ell_2+1} \dots p_{\lambda}^{\ell_{\lambda}+1}, \quad u = 1 + 4p_1 p_2 \dots p_{\lambda}.$$

The effect of this choice is that $t = \tilde{t}$, since the order of $u \bmod 2n$ is the same (i.e., \tilde{t}) as the order of $u \bmod n$. Thus, with the choice (3.9) —of course, other choices may have the same effect— we may improve (3.8) to

$$(3.8') \quad m \equiv \pm m' \bmod \tilde{t} \Leftrightarrow N_m \cong N_{m'}.$$

Example 3.1. Let $\tilde{t} = 35$. Then, according to (3.9), we choose $n = 2450$, $u = 141$. Now $(\mathbb{Z}/35)^*/\{\pm 1\} \cong C_{12}$, its elements being $[2], [4], [8], [16], [32], [29], [23], [11], [22], [9], [18], [1]$. Thus, since we must take m odd, we have, as possible values of m ,

$$(3.10) \quad m = 33, 31, 27, 19, 3, 29, 23, 11, 13, 9, 17, 1.$$

Each of these values of m yields, according to (3.8'), a group N_m in $\mathfrak{G}(N)$, no two of which are isomorphic. On the other hand all the groups $N_m \times C$, as m runs through the values of (3.10), are isomorphic.

Remark. It is easy to extend Theorem 2.1 to the study of $\mathfrak{G}(N^k)$, $k \geq 2$, where N^k is the direct product of k copies of N . For we recall from [CH] the surjective homomorphism $\rho : \mathfrak{G}(N) \rightarrow \mathfrak{G}(N^k)$, $N \in \mathcal{N}_0$, given by $\rho(M) = M \times N^{k-1}$. Plainly we have a commutative diagram

$$(3.11) \quad \begin{array}{ccc} \mathfrak{G}(N) & \xrightarrow{\rho} & \mathfrak{G}(N^k) \\ \downarrow \alpha_* & & \downarrow \alpha_*^k \\ \mathfrak{G}(\tilde{N}) & \xrightarrow{\rho} & \mathfrak{G}(\tilde{N}^k) \end{array}$$

so that, since α_* is surjective, so is α_*^k . Since we have calculated $\mathfrak{G}(\tilde{N}^k)$ for $\tilde{N} \in \mathfrak{R}_1$ [S], [HS2], we may extend the applications in this section from $\mathfrak{G}(N)$ to $\mathfrak{G}(N^k)$. We leave the details to the reader.

References

- [CH] CASACUBERTA C. AND HILTON P., Calculating the Mislin genus for a certain family of nilpotent groups, *Comm. in Algebra* **19**(7) (1991), 2051–2069.
- [H1] HILTON P., Localization of crossed modules, Springer Lecture Notes in Mathematics **1029**, 1984, pp. 311–324.
- [H2] HILTON P., On the genus of nilpotent groups and spaces, *Israel Journ. Math.* **54**(1) (1986), 1–13.

[H3] HILTON P., On the extended genus, *Acta Math. Sinica* **4**(4) (1988), 372–382.

[HM] HILTON P. AND MISLIN G., On the genus of a nilpotent group with finite commutator subgroup, *Math. Zeit.* **146** (1976), 201–211.

[HS1] HILTON P. AND SCHUCK C., On the structure of nilpotent groups of a certain type, to appear.

[HS2] HILTON P. AND SCHUCK C., Calculating the genus of a certain nilpotent group, *Bulletin de la Sociedad Matemática Mexicana*, to appear.

[M] MISLIN G., Nilpotent groups with finite commutator subgroups, Springer Lecture Notes in Mathematics **418**, 1974, pp. 103–120.

[S] SCHUCK C., Some contributions to the study of a class of nilpotent groups, Ph. D. Dissertation, SUNY Binghamton, 1992.

Department of Mathematical Sciences
SUNY Binghamton
Binghamton, New York, 13902-6000
U.S.A.

Primera versió rebuda el 10 de Novembre de 1993,
darrera versió rebuda el 14 de Març de 1994