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Abstract

Let N be a nilpotent group with torsion subgroup T'N, and let
o : TN — T be a surjective homomorphism such that ker a is
normal in N. Then o determines a nilpotent group N such that
TN = T and a function . from the Mislin genus of N to that of N
if N (and hence N) is finitely generated. The association a — .
satisfies the usual functorial conditions. Moreover [N, N] is finite
if and only if [N, N] is finite and a. is then a homomorphism
of abelian groups. If N belongs to the special class studied by
Casacuberta and Hilton (Comm. in Alg. 19(7) (1991), 2051~
2069), then o is surjective. The construction a. thus enables us
to prove that the genus of NV is non-trivial in many cases in which
N itself is not in the special class; and to establish non-cancellation
phenomena relating to such groups N.

0. Introduction

Guido Mislin introduced and discussed in [M] the genus &(N) of a
finitely generated (fg) nilpotent group N. This consists of isomorphism
classes of fg nilpotent groups M such that

(0.1) M, = N, for all primes p,

where M, is the p-localization of M. By abuse we say that M belongs
to &(N). It was early known that &(N) is not trivial, but systematic
methods of calculating the set &(N) and representing its elements were
lacking.

Mislin himself in [M], and together with the present author in [HM],
described an abelian group structure which could be introduced into
B(N) if N satisfied the condition that its commutator subgroup [N, N]
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is finite; we call the class of such fg nilpotent groups Ro; moreover,
®(N) is then finite. However, this still did not permit any kind of sys-
tematic calculation of &(N). Calculations were done for specific groups
in [H2]. Later, Casacuberta and Hilton [CH)] introduced a class of nilpo-
tent groups R; C Ry, and calculated &(N) for N € R;; they further
showed how to modify N to realize any given element in &(N). The
nature of the groups in R, was further analysed in [S], [HS1] —indeed,
the class is very strongly restricted— and, in [S], [HS2], the calculation
of the genus was extended from N to N*, the direct product of k copies
of N, provided N € ;. A key result in this work is that, for N € R,
&(N) can only be non-trivial if FN = N/TN is cyclic, where T'N is the
torsion subgroup of N; recall that FN is commutative for N € Ro.

A significant difficulty in attempting to calculate &(N) is that & lacks
any kind of functoriality. We endeavor in this paper to go some way
towards remedying this defect. Thus we suppose given a fg nilpotent
group N and a surjective homomorphism o : TN — T, for some finite
group T which is, of course, necessarily nilpotent. Given the supplemen-
tary condition that ker a is normal in N, we construct a fg nilpotent
group N such that TN = T and a function a, : &(N) — &(N). More-
over, N € Ry if and only if N € Rg; and o, is then a homomorphism.
It is easy to see that o — a, satisfies the usual functoriality conditions.
Further we show in Section 2 that if N € R, then «, is surjective; thus,
in this case, considerable information is made available about &(N),
since we may calculate &(IV).

A particular, and important, example of the construction is afforded
by taking T to be the abelianization of TN with a the abelianizing
homomorphism. To avoid triviality we take FN cyclic. Then N satisfies
two of the three conditions for membership of R; (see below). Moreover,
the third condition will be automatically satisfied if T happens to be
cyclic.

We also show in Section 2 that a non-cancellation result proved in
[CH] for groups in R; extends to groups, which, in our sense above, lie
over groups in R;. That is, we obtain pairwise non-isomorphic groups
(L,M,...)in 8(N)such that LxC =M xC=---= N xC, where C
is cyclic infinite.

In Section 3 we give a typical example of the application of the method,
with explicit calculations. '

For the convenience of the reader, we collect here the crucial facts
about the class |R;. We assume N € R, and refer to the extension

(0.2) TN »» N - FN.
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Then N € R, if

(i) TN is commutative;
(ii) (0.2) is a split extension for an action w : FN — AutTN;
(iii) w(F N} lies in the center of AutT'N.

We then note that, in the presence of (i), condition (iii) is equivalent to

(iii)’ for each £ € F N, there exists a positive integer u such that £-a =
ua, for alla € TN.

To avoid a trivial genus, we assume F'N cyclic, say, FN = (£). Let ¢
be the order of w(£) in AutTN. Then [CH], if N € R,

(0.3) &(N) = (Z/t)"/{£1}.

Moreover, if [m] € (Z/t)* /{£1}, where m is prime to t, we may choose
the isomorphism (0.3) so that the group N,, corresponding to m is ob-
tained from N by introducing a new action w,, of FN on T'N, defined

by
(0.4) wm(£) = w(€™).

A final remark pertains to the general construction in Section 1. There
is no need to insist that N be fg to carry out the construction. Thus
Theorem 1.1 may be extended to yield a function a. from the eztended
genus of N to the extended genus of N (see [H3]).

1. The construction

Let N € Ry, C R; that is, N is a fg nilpotent group. There is then
a canonical exact sequence

(1.1) TN + N 5 FN, TN = torsion subgroup of N,
FN = torsionfree quotient
Now let @ : TN — T be a surjection, so that T is a finite nilpotent

group. Assume that ker @ is normal in N; call this condition K. Then
we know [H1] that we may embed (1.1) in a map of exact sequences

TN s N —"» FN

(1.2) | al al “
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with N € Ry,. Moreover, the LHS of (1. 2) is a push-out in the category
of groups; and, obviously, F' N =FN,TN = T —indeed, we will often
write TN for T. We now replace N by a nilpotent group M in the genus
of N; we will assume, as we may, that TM = TN and M, = N, for
all primes p. We claim that ker o is normal in M under the natural
embedding kera € TN = TM C M. For (kera), is normal in M, for
all primes p, which shows that ker o is normal in M. We thus have a
commutative diagram

TN =% M =% FM
(1.3) al ﬁl [
TN > M —Z» FM

Theoremﬁl.l. The association M — M defines a function a. :
&(N) — B(N).

Proof: We have the commutative diagram (identifying F'M, with
FN,)

ip T

TN, >—> N, —— FN,

N N

V ., FN,

TN, || >—> N,

TN, s> 25| M, — FM,

TN, >-» M, ——» FAl,
Now it is easy to prove that
I'N, 2. N,
lap lﬁxﬂ
TN, -2 N,

is also a push-out in the category of groups. Thus we have a (umque)
homomorphism & : N — M such that kG, = ,8 and mp ] zp We
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; =1 — =/ — A — —- = =
claim that T,k = 7. For k0, = 7,8, = mp = TpB, and Tykip =

ﬁ;i;, = 0 = 7pip. Thus the diagram

Tp

TNI, >i)- ;‘\mfp E— FNP

II =

= - !

TN, ~2 M, —*. FM,

commutes, showing that x is an isomorphism. This proves that M €
&(N) and establishes the theorem. B

The following “functorial” properties of the association a — «, are
obvious.

Theorem 1.2. (i) Id : TN — TN satisfies the condition K and
Id, = Id.

(i) If a : TN — T = TN satisfies condition K and & : TN — T
satisfies condition K, then aa satisfies condition K and (60), = Gao.

Proof: (i) is trivial. As to (ii), it suffices to remark that the existence of
B in (1.2) guarantees that « satisfies condition K. Thus we superimpose
diagrams to produce

TN > N —— FN

(1.4) TN > N — FN
L4 |
TN >——» N —» FN

and deduce, first, that aa satisfies condition K and, second, that (&a). =
@.a,. For, just as (1.3) was derived in similar manner to (1.2) so
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TN > N —» FM
| ol ||
(1.5) TN > M —» FM
IS Il

is derived in a similar manner to (1.4), and shows that

M = Gy0u(M) = (6).(M). ®

We now make the further hypothesis that N € Ry; this is equivalent
to assuming that FN is commutative. Since FN = FN it follows that
N € Ry, so that both B(N), ®(N) are finite abelian groups. (Notice
that, in fact, N € Ry if and only if N € Ro.) We then have

Theorem 1.3. Suppose that N € Ry. Then a, : (N) — &(N) is a
homomorphism.

Proof: Suppose that K + L = M in &(N). We continue to assume
that

TK=TL=TM =TN.

Then, according to [HM], there exists an exhaustive pair ¢ : N — K,
1 : N — L, such that we may form the push-out (in R)

N >% K
(1.6) wl Tl
L X M

We recall from [HM)| that an ezhaustive pair (p,%) is defined by the
requirements

(i) ¢ or ¢ is a T-equivalence, where

T =T(N) = {p|N has p-torsion};

and (ii) for all primes p, ¢ or v is a p-equivalence.
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However, examination of the proof of Theorem 2.3 of [HM] shows
that we may assume that both ¢ and v are T-equivalences. For having
constructed ¢ as a T-equivalence, we define

P = {p|yp is not a p-equivalence}

and then, modifying the argument in [HM], construct ¢ to be a (PUT)-
equivalence.

With this strengthened sense of an exhaustive pair, we revert to (1.6).
Then ¢, 1, when restricted to TN, are both isomorphisms, so we may
suppose that both are identities on TN. We may then suppose that o,
T are also identities on TN. Now let us factor out ker o from each of K,
L, M, N. Since ker o C T'N, this gives rise to a commutative diagram

N K
(L.7) q}l 'FJ'

I —
which is easily seen to inherit from (1.6) the property of being a push-out
in R. Moreover, it is plain that ¢, 1,(; remain T-equivalences and that,
for all primes p, ¢ or 1,:‘) is a p-equivalence. Since TN is a quotient of TN
it is plain that T(N) C T(N), so that ¢ and ¢ are T(N)-equivalences
and (¢, ) is an exhaustive pair. We conclude that

K+ L= M in &(N),
so that ¢ is a homomorphism. W

2. A special case

Since it has not yet proved possible to calculate &(N) systematically
for N € Ry, it is not to be expected that we would have much success
in trying to analyse the homomorphism «, in the generality in which
it has been introduced in the preceding section. However, we do find it
possible to make some headway if we make the restrictive assumption
that N € R,. We then prove

Theorem 2.1. Let o, : B(N) — &(N) be defined as in Section 1 and
let N € Ry. Then o, is a surjective homomorphism.

Proof: Since NT_ € Ry, it follows that N € Ry and a, is a homomor-
phism. Now &(N) = 0 unless FN is cyclic [S], [HS]. Thus, to avoid
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triviality, we assume FN eyclic. Under this assumption, the top row of
(1.2) splits for an action w : FN — AutTN. Let 0 : FN — N be a
splitting (wo = 1), so that, if FN = (£), then w is given by

(2.1) w(€)(a) = yay™*, a € TN, where y = o(&).

We will often write £ - a for w({)(a). We use fo : FN — N to split
the botton row of (1.2) and write @ : FN — Aut TN for the associated
action. Note that @ is given by

(2.2) @(&)(aa) = a(w(é)(a)), aeTN.
We write (2.2) more simply as
(2.3) E-aa=a(f-a), a€TN.

Now let £ be the height of ker@ in FN; that is, since F'IN is cyclic, t
is the order of @(€¢) in Aut TN. Then, by the main theorem of [CH],

(2.4) B(N) = (Z/t)* /{x1}.
Moreover, we may choose the isomorphism (2.4) so that the group Nm_,

m prime to £, corresponding to [m] € (Z/t)*/{%1}, is obtained from N
simply by replacing the action @ by a new action &y, defined by

(2.5) G (€)(a) =B(E™)(@), a€TN.

Of course we have freedom in (2.4) to choose m within its given class
[rm] without changing N,,. We will, in fact, choose m to be a T'-number,
where T = T'(N) is the set of primes p such that N has p-torsion. To
see that we can do this it suffices to notice that m is prime to £ so that,
by Dirichlet’s Theorem, the residue class [m] contains primes not in T'.

With such a choice of m, we show that N’m may be represented as
a.(N,,) for a suitable group N,, in &(N). We define N,, to be the
semi-direct product of TN and F'N for the action wy, : FN — AutTN,
given by

(2.6) wm(8)(a) =w(€™)(a), a€TN.
We first show that N,, € &(N). Consider the diagram
TN > N,, —» FN
(2.7) I |
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where the endomorphism of F'V is just & — ™. Then (2.6) asserts that
(2.7) satisfies the compatibility condition permitting us to complete it
with ¢ : N, — N to a commutative diagram. Now if p € T then m :
FN — FN is a p-equivalence, so that ¢ : N,,, — N is a p-equivalence. If
p ¢ T then TN, is the trivial group so both N and N,, are p-equivalent
to F'N and hence p-equivalent to each other. Thus N, € &(N).

Finally we show that a,(Ny,) = N,,. Consider the diagrams

™ >—» N —s FN

Ll

TN > N —» FN
(2.8)

TN >— N, —» FN

g H

TN > N, —» FN

Recall that we are writing “-” to indicate the actions of FN on TN or
TN in the first diagram,; let us write “o” for the actions of N on T'N or
TN in the second diagram of (2.8). Then (23)¢-aa=a(-a),a € TN
and (2.6) £oa =E&™-a, a € TN. Moreover, by (2.5), £oaa = £™ - aa,
a € TN. But since § - aa = a(£ - a), it follows that £™ - aa = a(é™ - a),
whence

aloa)=a(™-a)=E" aa=Eocaa, a€TN.

This, however, is precisely the compatibility condition guaranteeing the
existence, in the second diagram of (2.8), of 8,, : N, — N,, making
the diagram commutative. Then (3,, must be surjective. This, however,
guarantees that

TN >'s Np

Ql Bm L
TN > Np
is a push-out in the category of groups and hence, by the uniqueness of

push-outs, that N,, = a.(N,,). B

We now consider the groups N,, € &(N) constructed in the course of
our proof of Theorem 2.1. We have immediately
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Corollary 2.2. Suppose Ny, = N,,.. Then m = m/ mod{.

For if Np & Ny then N, & N,,,. We use Corollary 2.2 to obtain a
non-cancellation result. We need some preliminary lemmas, the first of
which addresses Remark 1 of [HM, Section 4].

Lemma 2.3. Let N € Ry and let FZN = nZN, where ZN is the
center of N and n =expTZN. Let k be a T-number, where T = T(N),
and let QN = N/kFZN:. Then QN is a finite group and p € T(QN) if
and only ifpe T.

Remark. In [HM] it was remarked that we achieved the same effect
whether we defined n to be the exponent or the order of TZN; of course,
in either case FZN is free abelian.

Proof of Lemma 2.3: Since [N, N] is finite and N is fg nilpotent,
N/ZN is finite. Also ZN is fg so ZN/knZN is finite. Hence N/knZN
is finite. Now let ZN = F @ TZN, with F fg free abelian. Then
kFZN = knF, so

(2.9) ZN/kFZN = F/knF & TZN.

Also we have an exact sequence

(2.10) ZN/kFZN — QN — N/ZN.

From (2.9) we infer, for an arbitrary prime p,

ZN has p-torsion = ZN/kFZN has p-torsion = N has p-torsion.
Thus, from (2.10),

QN has p-torsion = ZN/kFZN or N/ZN has p-torsion = N

has p-torsion; and N has p-torsion = ZN or N/ZN has p-torsion
= ZN/kFZN or N/ZN has p-torsion = @N has p-torsion.

This completes the proof. B

Lemma 2.4. Let N € Ry with FN cyclic, FN = (£). Let t be the
order of w(§) € AwtTN. Thent is a T-number, where T = T(N).

Proof: Certainly FZN is a free cyclic group. Suppose it is generated
by (a,&*), a € TN. By conjugating with (1,£) it is clear that £ - a = a.
Let k be the order of a. Then (a,£%)* = (1,£%%). Now, since ¢t is the
order of w(£), we infer that t|sk.
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We compute @N as in Lemma 2.3. We have

N = (TN,y), where y = (1,£)
kFZN = (y°*) (we confuse additive and multiplicative notation here!)
Thus, QN = (TN, yly** = 1).

When we abelianize QN we get generators from (T'N),;, together
with 7; and the only relation involving 7 is 7°* = 1. Thus sk|exp QN,s,
whence t| exp QN,p. Now since QN is a finite nilpotent group, T'(QN) =
T(QNyp), so that, by Lemma 2.3,

(211) T =T(N) =T(QNa)-

Since t|exp @Ngs, t is a T(QNgp)-number. Hence, by (2.11), ¢ is a T-
number. W

Before stating our non-cancellation result, we observe that the invari-
ant ¢t provides us with a partial converse to Corollary 2.2. Thus we may
prove

Theorem 2.5. (i) t|t; (i) if m = m’' modt, then N,, = N, .
Proof: (i) follows immediately from (2.3) and the fact that a is sur-

jective,
As to (ii), observe first that N,, & N_,,; for we have the diagram

TN - N, ——s» FN

| -

TN > N_, —» FN

satisfying the obvious compatibility condition, giving rise to an isomor-
phism N,, 2 N_,,,. Further we have an actual equality between N,, and
Niniqe since M .q=¢™ . q, foralla € TN. B

We are now ready to enunciate our non-cancellation theorem; recall
that we have constructed a group N,, in &(N) for each m such that m
is a T'-number prime to ¢; and that N, & N,y = m = +m/ modt.

Theorem 2.6. N,, x C = N x C, where C is cyclic infinite.

Proof: Since m is a T'-number it follows from Lemma 2.4 that m is

prime to ¢, the order of w(£) in Aut TN. Let A = e be a unimod-

ular matrix over Z; let C' = () and interpret A as the automorphism of
FN x C given by £ — £™y", n— £tns. Consider the diagram
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TN >— N,xC —» FNxC
(2.12) H 1.4
TN —» NxC —» FNxC(C

We claim that (2.12) satisfies the compatibility condition. For C operates
trivially on TN so we may write, for the top row of (2.12),

(2.13) foa=E&M-a, noa=a, a€TN.
and, for the bottom row of (2.12),
(2.14) n-a=a, a€TN.

Moreover, each of N,, x C, N x C' is the semi-direct product for the given
actions. Further

Af-a=€"n" a=€"-a=¢oq,
An-a=E&n*-a=a=noa,

by (2.13) and (2.14). It follows that we may find
@:NpuxCr— NxC

completing (2.12) to a commutative diagram. It is then clear that ¢ is
an isomorphism. W

Now to obtain an actual non-cancellation example, it suffices to find
an example of the data of Theorem 2.1 in which ¢ # 1,2,3,4,6. In the
next section we show, in fact, how to construct examples with any given
t.

3. Examples

We may apply Theorem 1.1 by factoring [N, TN], [N, NJNT'N, TZN,
ZNNTN out of TN and N and letting «, 8 be the associated quotient
maps. The first is especially interesting for then TN is commutative,
but N, in general, is not. If N € Ry, we may apply Theorem 1.3; and
we may further hope that N € R, so that we can apply Theorem 2.1. If
FN is cyclic we will only need to verify condition (iii) for membership
of R; (see the Introduction), and, if TN is also cyclic, condition (iii) is
automatically verified.
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We now give an example (or, rather, a family of examples) which
gives rise to a group N in R, (although TN is not cyclic), and thus to
the construction of non-trivial genera &(N) for groups N in Rg, with
TN non-commutative, and to explicit non-cancellation results, based on
Corollary 2.2 and Theorem 2.6.

Given £, choose n and u such that (i) n is even; (ii) pln = plu — 1, for
all primes p; (iii) the order of umodn is £. Notice that (i) and (ii) imply
that u is odd. As examples of possible choices for n and u, we have:

It £ is odd, say { = p‘f‘pg? e pi", choose

n= 2pf‘+1'p52+1 .. .pi*“, u=142pips...px;

if  is even, say £ = 2%p%? ... p, choose

n=28+2pltl Bt — 14 dpy.pa.

Now set TN = (z,y,zlz? = y? = 22" =1, [z,y] = 2", [z,2] = [y, 2] =
1). Obviously TN is nilpotent of class 2. Let FN = (¢) operate on TN
by the rule

(3.1) §-z=a, {y=y, & z2=2"

This clearly describes an automorphism of T'N since u is prime to n by
(ii) above and hence, being odd, prime to 2n. Moreover, z*™ = 2™, again
because u is odd.

We claim that the action (3.1) is nilpotent. For we have 'L TN =
TN,

TEnTN = (%71, 27,
PenTN = (2477, 20mm) = (Lm0,
113
F%‘NTN = (z(u 1 )r e uy
and thus, again by (ii) above, T'%, TN = {1} for k sufficiently large. If,
then, we form the semi-direct product N of TN and FN for this action,

N is a nilpotent group and, indeed, N € Ry.
Now [T'N,TN] = (2™). Thus we may factor out [T'N,T'N]| to form

(3.2) T = (TN)as = (,§, 2125 = 2§ = nz = 0),

and, following the procedure of Section 1, we have the commutative
diagram
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(3.3) al 31 ”, TN =T.
TN —» N —» FN

Now FN acts on TN by

(3.4) ¢-i=% E-g=§ €E-i=uf
so that

(8.5) £-d=ua, forall a € TN.
Moreover, expTN = n, so that N € R; by (3.5) and
(3.6) B(N) = (Z/8)" /{£1},

by condition (iii). Thus

(3.7) <1 B(N) > (Z/1)" /{£1}

and @(N} is a non-trivial group, provided that f # 1,2, 3,4, 6.

Now u! = 1modn. Thus u2* = 1mod 2n, so that t = 2t or £. More-
over, we may follow the procedure of Section 2 to construct N,, if m is
prime to ¢ and a T’-number, where T' = T(N). Plainly expTN = 2n, so
T consists of the prime divisors of n.

Let us now insist, for simplicity, as we clearly may, that £ and n have
precisely the same prime divisors, except that 2|n even if ¢ is odd. Thus
we can construct N,, if m is prime to ¢, with the additional condition
that m is odd, even if ¢ is odd. We thus have

Theorem 3.1. For a given t, choose (n,u) as above and construct
the group N as described. Then there is a surjective homomorphism

@, : 8(N) - (Z/D)* /{1}.
We may also construct N, € &(N) for any odd m prime to t, and
(3.8) m = +m’' mod 2t = Ny, & N,r = m = +m/ mod .
Moreover, Ny, x C = N x C for any odd m prime to t.

Finally, we become even more specific! Let # itself be odd and choose
(n,u) as follows (this modifies slightly our earlier example of a possible
choice). Thus, if { = pf‘ pgs .. .pi", choose

(3.9) n=2pP ¥ Ipht pPtL u=1+4pips.. . pa.
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The effect of this choice is that ¢ = £, since the order of wmod 2n is the
same (i.e., t) as the order of umodn. Thus, with the choice (3.9) —of
course, other choices may have the same effect— we may improve (3.8)
to

(3.8") m = +m'modt & N,,, & N,

Example 3.1. Let ¢ = 35. Then, according to (3.9), we choose

= 2450, u = 141. Now (Z/35)*/{£1} & Cys, its elements being [2],
(4], [8], [16], [32], [29], [23], [11], [22], [9], [18], [1]. Thus, since we must
take m odd, we have, as possible values of m,

(3.10) m = 33,31,27,19,3,29,23,11,13,9,17, 1.

Each of these values of m yields, according to (3.8"), a group N,, in
&(N), no two of which are isomorphic. On the other hand all the groups
Npm x C, as m runs through the values of (3.10), are isomorphic.

Remark. It is easy to extend Theorem 2.1 to the study of &(N¥),
k > 2, where N* is the direct product of k copies of N. For we recall
from [CH] the surjective homomorphism p : &(N) = &(N*), N € Np,
given by p(M) = M x N*~1. Plainly we have a commutative diagram

B(N) —2» &(NF)
(3.11) la. laf
&(N) —£» &(N¥)

so that, since o, is surjective, so is aF. Since we have calculated &(N*)
for N € R, [S], [HS2], we may extend the applications in this section
from &(N) to &(N*). We leave the details to the reader.
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