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VARIOUS LOCAL GLOBAL PRINCIPLE S
FOR ABELIAN GROUP S

GEORGE PESCHKE 1 AND PETER SYMONDS 2

A bstract	
We discuss local global principies for abelian groups by examin-
ing the adjoint functor pair obtained by (left adjoint) sending a n
abelian group A to the local diagram .C(A) _ {Z (p) ®A —> ~ ® A}
and (right adjoint) applying the inverse limit functor to such di-
agrams ; p runs through all integer primes . We show that the
natural map A ---} lim ,C(A) is an isomorphism if A has torsion at
only finitely many primes . If A is fixed we answer the genus prob-
lem of identifying all those groups B for which the local diagram s
.C(A) and £(B) are isomorphic . A similar analysis is carried ou t
for the arithmetic systems S(A) -- {12 ® A —> ~ ® AA , AA} and
the local systems {Q 0 A --+ (I47L (p) ® A) 1--- Ii(7L (p ) ® A}} .
The delicate relationship between the various adjoint functor pair s
described aboye is explained .

Introductxon

Given an abelian group A it is often easier to work with the localization
of A at a prime p than with A itself. Thus one would like to analyze
the localizations of A, one prime at a time, and then recover informatio n
about A from its local data . For this reason we consider two methods o f
deterrnining a group from local data .

1 . We associate to an abelian group A the inverse local diagram
.C(A) :--- {rp : A (p ) —> Aé , where A(p) is the p-localization of A and
rp rationalizes . Specializing a result of [7], we see that the natural map
c : A ---} llim ,C(A) is an isomorphism if and only if A has torsion at onl y
finitely many primes .

~ Supported by NSERC of Canada
2 Partially supported by NSERC of Canada
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II . We associate to an abelian group A the inverse local system
£S(A) := {A0 —> (HA() )~ 4--- (HA() )} . A result of [5] says that the
natural map c : A —> l{im ,CS(A) is always an isomorphism .	 _

Using results like I and II to obtain information about A has a lon g
tradition ; see [4], [6], [10] . However, our foundation in I is much stronge r
than its counterpart in earlier expositions where the abelian group A i s
assumed to be finitely generated . As a consequence we obtain new insight
into some old questions related to the notion of the "genus" of a group .

We define the .C-genus of a group A to consist of all isomorphism
classes of groups B with £(A) ,C (B) . Thus the .C-genus measure s
the extent to which the local data in .C(A) fail to determine A uniquely .
In section 3, we show how the ,C-genus can be calculated in terms of
invariants familiar from homological algebra .

If we compare the recovery results I and II we see that the extent to
which the local data determine a group depends crucially on the means
used to splice the local data together . In section 6 we explain the rela-
tionship between the categories of local systems and local diagrams . In
particular we explain which additional structural ingredient makes local
systems a more powerful recovery tool than local diagrams .

Closely related to localization at a prime p is p-completion . In fact ,
both processes have the same kernel but completion has a more structure
enhancing quality. We carry out a similar development for completion s
as well . Then we show that the categories of local systems and complete
systems are isomorphic .

Many of our methods and results can be extended in severa" directions .
Firstly, to nilpotent groups and, secondly to algebras over a Dedekind
domain . In section 7 we indicate, without proof, the nature of such
extensions to Dedekind domains .

O . Preliminaries

We begin by collecting the necessary definitions and properties of P-
localization of groups . For details, see [3], [4], [fi] . Given a set of integral
primes P, let Zp denote the set of rational numbers whose denominato r
is not divisible by any p E P . Thus 7L o denotes the rationals Q. If P

consists of a single prime p we write 7L (p ) for 7L p .

A homomorphism of nilpotent groups e : G ~ H is said to P-localize
if and only if

(i) H is a P-local group; i .e. for every prime p P, the functio n
H h ~--~ h P E H is a bijection ;

(u) the kernel of e consists of all those torsion elements of G whose
arder has no divisior in P ;
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(iii) for every h E H there exists an integer n with no divisor in P
such that hn E im(e) .

Given G, the P-localizing homomorphism e : G ~ H is completel y
determined by P. So we write ep : G ~ G . The functor G Gp
is exact and idempotent . Moreover, ep has a nonincreasing effect on
the order of nilpotency of a given group . Every homomorphism fro m
G to a P-local group factors uniquely through ep . This is called the
universal property of P-localization . In particular, if P C Q then ep
factors uniquely through eQ .

We turn to formal completions as introduced by Sullivan [9] . The
p-adic integers ZpA are given as the inverse limit of the system • • • ~
Z'p2 ~ Z/p —> O. Formal p-completion of an abelian group A is given
by ApA := A o Zp . This is an exact functor because ZpA is flat . The
p-adic rationals can be obtained as Qp = Zp. The completion of
Z is ZA = flp Z

p
and the formal completion of an abelian group A is

AA = A 0 Zn From [S] we know that ApA is the inverse limit of the
system of quotients of A which are p-torsion and that AA is the invers e
limit of the system of all torsion quotients of A.

1. Properties of localizing
and completing homomorphisms

We make frequent use of the fact that the natural homomorphism from
an abelian group to the product of its p-localizations or its p-completions
is a monomorphism whose cokernel is a rational vector space. Results of
this nature are collected in this section .

1 .1 . Lemma. The homomorphism e : A—> li A(p) , whose p -th co-
ordínate map is p-localizatíon, is a monomorphism whose cokernel is a
rational vector space .

Proof The monomorphism part follows from (u) in section o and i s
well known; see e .g . [6] . We investigate the cokernel of i using the
commutative diagram below .
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Tor(A, Z/p)	 Tor(IIA (p) , 7L/p)

	

0

A

	

HA(p)

	

-» coker(i )

p
J-

I

	

Pl

	

lp

A	 	 2	 >

	

IIA(p)	 	 » coker(i )

1

	

1

	

1
A ® Z/p -"=--> (llA() ) ~ 7G/p ~ 0

As the rocas and the left two volums are exact, so is the right hand col-

umn. Thus multiplication by any prime p is an isomorphism on coker(i) .
So coker(i) is a rational vector space . ■

1 .2 . Lemma. The natural maps Z (p)

	

and Z c—> ZA ^=J Hp 7Lp

induce natural monomorphism s

A(p)>--->Ap and A>—> A"

whose cokernels are rational vector spaces .

Proof: We show first that 7Lp /L(p) is a rational vector space . Conside r
the commuting diagram below.

o

o~
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As both Z (p) and ZpA are 7L (p) -modules, so is the cokernel 7Lp/Z (p) . The
diagram aboye shows that multiplication by p on this cokernel is an
isomorphism. Therefore we have the exact sequence

A(p) —> Ap —» Ap /A(p)
A

0 (7L'/Z() ) .

The claim foliows because n/ 7L (p ) is a Q-module . For A^ /A, the same
method applied to

Z ~--~ lI7Lp -» II7Lp/7L

p

Z >—> 117LpA	 »

Z/p o	 Z/p ----4

shows that AA/A is a rational vector space . ■

1 .3 .. Remark. The cokernel of the inclusion Op 7Lp̂ , Hp 7Lp is a
rational vector space .

Proof The splitting np 7Lp" Ĵ 7Lp̂ ~ n q �p Zq shows that multiplication
by p on ~ 7Lp̂ has cokernel Z/p . Now the proof can be completed as in
the argument of the previous result . ■

2 . Facts about fiber square s

Our main tool to identify pullback (fiber square) diagrams is the fol-
lowing lemma .

2 .1 . Lemma. Suppose f : A —> B is a homomorphism between
abelian groups whose kernel is a rational vector space and whose cok-
ernel is torsion free . Then the diagram below is a pullback diagram in
the category of all groups .

A	 f} B
rA l T D

A0 ---> B~
fo
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Proof: The lemma will follow after we have shown that, for a E A o
and b E B with fo(a) = rB (b), there exists a E A with f(a) = b and
rA (a) = a .

Let K = ker(f) . This is a rational vector space . So we get a splitting
A = K e, Al , and the restriction of f to A 1 is an isomorphism to im(f ) .
Now pick n ~ 1 and a ' E A such that na = rA (a' ) . This yield s

rBf(a ' ) = .ÍOra (a' ) = n f0 (a) = nrB (b) ,

and so nb — f(a ' } E ker(rB ) = T [Bl, the torsion subgroup of B . As
coker ( f) is torsion free, there exists a torsion element t E A l with f (t) =
nb — f (a' ) . Thus we 'hav e

rA (t + a' ) = rA (a ') = na
f (t + a ' ) = f (t) + f (a' ) = nb .

Thus nb E im (f) and, hence, b E im (f) ; otherwise coker ( f) is not torsion
free . So b = f (a l), far some a1 E Al . On the other hand ,

h(a ) = rB(b ) = rs(.Í(a i)) = Mra(ai) )

and, hence, (a — rA (a l )) E ker(fo) = rA (K) . So let rA (k) = a — rA(al ) ,
for some k E K and set a := k + a l . By design, f(a) = f (a l ) = b and
rA (a) = a . E

2 .2 . Corollary. For every abelian group A the diagram below is a

ffber square .

A

	

e	
' 11A (p )

eol e

A o	 >(HA (p) ) o
a

Mere e is the homomorphism whose p-th coordinate is the p -localization
map of A . The rest of the diagram is obtained by rationalizing e .

Proof: This follows from 1.1 and 2 .1 . ■

2.3 . Remark . Corollary 2 .2 has been shown by Hilton and Mislin
[5] by different arguments . In fact they also show that (D) is a push-out
diagram in the category of abelian groups .

(D)
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2.4 . Proposition . Por every abelian group A, there are fiber square s

A (p )

	

} AA

	

P

	

A -> AA

A0 -> (A) 0

	

A0

	

(A A ) 0

Proof Use 1 .2 and 2.1 . ■

3. The genus of an £-diagram of abelian groups

Let ,£ denote the diagram of localizing functor s

L2

	

L 3

	

L 5

L 0

where Lp denotes localization at the prime p and Lo , denotes rational-
ization .

3 .1 . Definition . A diagram A — {rp : Ap ~ Ao} of abelian group s
modeled on .0 is an £-diagram if

(i) Ap is a p-local group ;
(u) Ao is a rational vector space ;
(iii) for each prime p, rp : Ap —> Ao rationalizes .

The £-diagrams form a category ,CAZ3. "Inverse limit" is a covariant
functor ,C,AB —> AB: it is right adjoint to the functor AB —> £AB which
sends an abelian group A to the £-diagram £(A) := {LA ---} L0A} .
The ,C-genus of an £-diagram A consists of all isomorphism classes of
abelian groups A with £(A) A, and two groups A and B belong to
the same £-genus if £(A) £(B) . In this section we relate the genus o f
an abelian group to invariants familiar from homological algebra.

3.2 . Theorem. Let A = {rp : A p —> Ao } be an ,C-diagram of abelia n
groups . Put 1 := n Im(rp) and suppose that A satisfies the conditio n

(*)

	

1 c---> Ao induces an isornorphism 10 —> Ao .
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Let T[A] be the direct sum of the torsion subgroups T[A p] of Ap and
denote the product of the T[Ap] by II[A] = ll im{T[AP ] - > Ao} . Set O[A] =

l< im{Ap/T[AP ] -> Ao} . Then the following hold

(i) The sequence II[A] ~ A --» O[A] is exact.
(ii) An abelian group A belongs to the G-gens of A if and only if

there is a commutative diagram with exact rows .

T [A]

	

A

	

H [A]

TI

	

I

y

II[AI

	

1S imA —L- ~[A ]

Q	 > (limA)/A —> o
t

Proof: All claims pertaining to the top two rows of the diagram are
special cases of 7.2 in [7] . We sketch the argument for completeness '
sake .

The sequence II [A] >--> lim A [A] is the inverse limit of the diagram{
of short exact sequences {(T[A] >-> Ap ---» Ap /T [Ap ] ) -> Ad. . Thus the
inverse limit sequence is exact in the left hand and center positions, using
general properties of inverse límits ; see [11 . Moreover, q is onto because
I = O[A] and l A -+ 1 is onto .

Next show that, given an abelian group B, the image of the rationaliz-
ing map B -> Bo coincides with the intersection of the images B (p) -> A) .
This implies the claim in the case where all the groups A p are torsion
free because c¢[A] = 1 .

In general, if A satisifes £(A) A, we see that A/T [A] r=" ~[A] from
the torsion free case. The maps from the top row to the middle row
come from the universal property of inverse limits . Conversely, if A is
an extension as in the diagram we get commuting diagrams

A

	

} A(p) .—> Ao

4--

l
lim A

	

Ao
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from the universal property of p-localization . Moreover, h,p restrict s
to an isomorphism between torsion subgroups and induces an isomor-
phism between torsion free quotients. Thus hp is an isomorphism by the
5-lemma .

In either case, the map t exists because Kerey} contains z (Ker (cx)} .
The bottom row is seen to be exact by regarding the vertical arrows in
the diagram as an exact sequence of chain complexes . ■

We use Theorem 3.2 to relate the genus of an .C-diagram A to invariant s
from homological algebra .

The homomorphism •r : (T := T[A]) —> (II [A] _: II} induces the map

T* : Ext(0, T) —> Ext(0, II )

by taking the pushout as indicated .

T	 + K

T

	

Y
I

II
~

II,_-_— L

Let a E Ext(0, II) denote the class corresponding to the extension II >-->
lim A --~ O .<- -

3.3. Theorem. If an .C-diagram of abelian groups satisfies condi-
tion (*) of 3.2 then the elements of the ,C-genes of A are in bijec-
tive correspondence with (T* ) -1 ( A ) modulo the action of the subgroup
of Aut(0) x Aut(T) which stabilizes A .

Proof: Every extension B of ~ by T with £(B) A represents an ele-
ment in T(À) and every element in 7-.-1 (A) determines a group B with
£(B) A ; by (3 .2) . Therefore, we determine which elements in T* 1 (a )
have isomorphic groups in the middle. Consider the exact sequenc e

o -4 Hom (0, T) ~ Hom (0, II) —> Hom (0, Q) ~
--4 Ext (0, T) ~ Ext (q5, II) ----} Ext (c¢, Q) = o

in which the last term is o because Q is rational vector space (multiplica-
tion by an integer n o in II is an isomorphism modulo n-torsion) . Thus
we see that T~ is onto. Suppose ,f : B1 —> Bz is an isomorphism between

0

--»

(Hom-Ext)
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two extensions of ~ by T . Then f induces automorphisms T[f] : T —> T
and O[f] : —} 0 which make the diagram below commute

Hence B 1 is isomorphic to B2 if and only if ~7 = (0[f]_ l )* o T[f]E . This
implies the claim . ■

We call an ,C-diagram A realizable if it is of the form .C(A) for some
abelian group A. From the proof of 3 .3 we see

3.4 . Corollary. An £-diagram A is realizable if and only if A satis-
fies condition 3.2(*) . ■

The information pertaining to the .C-genus, which is encoded in the
Hom-Ext sequence aboye, can be reinterpreted "geometrically" using an
analogy with principie bundle classification. Let us consider all abelian
groups whose torsion subgroup is a fixed group T. Associated with T is
the universal T-extension

oT~II—> o

where II is the product of the p-prirnary subgroups of T .

3 .5 . Theorem. Suppose the abelian groups A and A ' have torsion
extensions

o --* T >---> A -94 ,0 ---4 o

D—}T>----> A'--» 0 --} p

Then A and A ' belong to the same £-genus if and only if there exists a
"classifying map " cA ► : —> Q such that EA , = EA + (CA,)*(w) .

Proof: The boundary operator a : Hom(0, Q} —> Ext(0, R) sends a
map c : —> Q to c* (w) . The claim follows from 3 .3 using the exactnes s
of the Hom-Ext sequence . ■

(w)

and

(EA')
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3.6 . Corollary. Suppose the element A E Ext(0, II) in the previou s
proposition is 0 . Then the genus of A is in bijective correspondence with
the cokernel of Hom(, II) —> Hom(, Q) modulo the action of Aut(0) x
Aut(T) . ■

3 .7 . Remark. It is well known that Ext (0, T) = o for all torsion
free ~ if and only if T is the direct sum of a divisible group D and a
group T' of finite exponent ( i . e . kT' = 0, for a suitable k E N) ; see
[2J . Consequently, a group A whose torsion group T is the direct sum
of a divisible group and a group of finite exponent is itself isomorphic to
T ~ A/T. In particular, A has trivial £-genus .

4. Examples

4.1 . Remark . The genus of the £-diagram A = {Z/p ~ Pr°je °t }

Q} is in bijective correspondence with the power set of the set of al l
primes a sub ject to the equivalence relation that X (— Y if and only if the
symmetric difference of X and Y is finite .

Proof: Let T be the sum of the groups Z/p and let II be the product
of the groups 7L /p . Then the Hom-Ext sequence in the proof of 3 .3 reads

o= Hom(Q, II) ---} Hom(Q, Q) --> Ext(Q, T) ~ Ext(Q, II) .

One group in the genus of A is TeQ. So a = O . Moreover, Hom(Q, II) =
o since no nonzero element of II is divisible . Consequently, the elements
in the genus of A correspond bijectively with the orbits of Hom(Q, Q

) Qunder the action of Aut(Q) x Aut(T), where Aut(Q) acts as scalar
multiplication on Q and Aut(T) = ~ Aut(Z/p) acts on T and on II ,
hence on their quotient Q. We calculate these orbits : It can be seen
that each Aut(Q)-orbit is contained in an Aut(T)-orbit . Thus it suffices
to consider the action of Aut(T) on Q . Represent w E Q by x E H .
Using the action of Aut(T), we can alter x so that all its non-zero coor -
dinates are 1 . Let X denote the set of primes corresponding to non-zero
coordinates of x . Another element y E II represents an element in the
Aut(T)-orbit of w if and only if the symmetric difference of X and Y is
finite . This implies the claim .

The argument just given is constructive in that it allows us to de-
scribe the group Ax in the £-genus of A corresponding to a given set
X of primes ; compare 3 .5 : Let x E II be the element with 1's as the
coordinates in X and O's everywhere else. Then x represents an element
in Q and, hence, a homomorphism cx : Q —> Q . So Ax is obtained via
the pullback of the sequence

T >--3 II ~ Q
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along cs . Consequently, Ax is isomorphic to the subgroup cx-1 (im (cs) }

of II . ■

4.2 . Example . Let Q be a set of primes and put

T(Q) :=

	

7L /p and II(Q) := H Z/p
pEQ

	

pE Q

Now define E(Q) := II(Q )/T(Q) . Then B(Q) := T(Q) E(Q) has the

same ,C-genus as 11(Q) . To see this, note that E(Q) is a rational vector
space . Further, if p E Q, we get an isomorphism II(Q) (p ) r—" 7L /p E(Q)
from the splitting II(Q) ^--' 7L / p e IIgE(Q_{p } )7L/q• ■

4.3 . Remark. Two groups A and B are customarily defined to be in
the same genus if A (p ) ^-' B (p) for all primes p . This notion corresponds
to the 1C-genus associated with the diagram of localizing functor L2 L 3

L5 . . . (no arrows) . The 1C-genus differs from the r-genus in that no co-
herence conditions are imposed amongst the localizing functors involved .
As a consequence, it is rarely possible to recover an infinite group from
its 1C-diagram. This is illustrated in the following

4.4 . Example . The number of isomorphism classes of abelian group s
in the same 1C-genus as Z is uncountable . To see this, choose integer s
rp > o for each prime p, and let A,. be the subgroup of ~ generated by
{p- T P } . Then ( A,- ) (p ) ^--' Z(p) for all p, but A T r—" A5 if and only if r and
s differ at only finitely many primes ; see [2] . The groups Ar represent
the entire incoherent 1C-genus of Z.

In contrast, the genus of the £-diagram {p_TPZ() ~--} Q} consists of a
single element, namely the group A,. ; see theorems 3 .2 and 3 .3 . ■

5 . r-diagrams, .C-systems

In this section we explain the relationship between various local global
principies involving completion or localization .

5 .1 . Definition . A local (arithmetic) system ,CS consists of a Z(p) -
module Bp , for each prime p, and a Q-module Bo together with rational
isomorphisms kp : Bp —> Bo such that

(LS)

	

im(Bo ~ Rp(Bo) => n(Bp)0) < im((nBp)o —> II(Bp) 0 ) .

5.2 . Remark. The last condition ensures that the various isomor-
phisms kp can be assembled over a single map c : Bo —> (n Bp) o (not
necessarily unique) according to the commuting diagram below .
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IIBp

1 \

13o	 > (1113 0

n (BP) m

Thus we may form the category ,C;S* of local systems with assembly map
c. An object of ,CS* is denoted by B* .

5 .3 . Lemma . Let B denote the pultóack of the local system

B,— {Bo ~ (llBp ) o f-- IIBp} .

~
Then CS* (B) B* .

Proof: This follows from 2 .2 . ■

5.4. Remark. Two assembly maps Bo —> (n Bp )m differ by an
element of Hom(B, Q), where

Q := ker((IIBp )0 —> II(Bp)o} IIT[Bp]/ e T[Bp ] .

-Thus c is unique if B* has torsion at only finitely many primes . ■

~
5.5 .. Definition . A complete system C consists of a Lp -module

Cp, far each prime p, and a Q-module Co together with isomorphisms
vp : (C0 ) pA —} (Cp)o such that

(CS) im (Co IIp(Co)P ñ n (cP)0) < im((ncp)0 , n (cP)0) •
P

A morphism between complete systems is a commuting diagram

Co ----> H(C)0 ~	 IICP

ho

	

lllh,

Có ----> II(Cp ) 0 <— IICp

such that each hp is a 7LpA -module homomorphism .
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5.6. Proposition . For any complete system C* with assembly map
c let A be the pull-back

A	 ; IICp

Co	 > (HC) o

Then Cs* (A) ^' C* .

For the proof we need the followin g

5.7 . Lemma. For any n -module Cp the natural homomorphis m

m : (C)pA b~r~--}rbECp

has as its kernel a vector space over Qp" .

Proof: The kernel is a ZP-module . To see that it is also a Q-module
notice that m is split by the inclusion Cp ~ (C)p of 1 .2, whose cokerne l
is a rational vector space . ■

Proof of 5.6 : There is a commutative diagram

AA

	

(HC)p -	 7 (Cq ) m

	

Cq

(Co)q

	

~ (H(Cp)) 0	 ((Cq)) 0

	

(Cq ) o

The three squares are fiber squares: the first because it is the completion
of a fiber square and the other two by 2 .1 . Therefore the outer rectangle
is a fiber square. Its bottom row is an isomorphism . So its top row is an
isomorphism as well . We see that Ao Co by rationalizing the pullback
diagram defining A. Together these isomorphism give an isomorphis m
of diagrams . ■

With the same methods we prove

5 .8 . Lemma. lfA is defined as the pullback oía- : Bo ~ (B) 0 <— Bp ,
a part of a complete system, then Ao (A)0 #— AP is isomorphic to
cr . ■
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6. Summary of equivalences of categories

In this section we provide a list of categories which are isomorphi c
with respect to functors used in a local global principie .

6 .1 . Theorem . For abelian groups we have the following equivalences
of categories.

(i) {realizable local diagrama}

	

{local systems}

	

{complete systems }
G,

	

GS

	

CS

(ii) {abelian groups}

	

{ assembled local systems }
AB

	

cs*
^~ {assembled complete systems }

cs*

(iii) Let the subscript "f " with any of the categories aboye denote "sub-
category whose objects have torsion at only finitely many primes " . Then

ABf r--' (Lr) f ~ £S f (£s * ) f Csf ^-~ (CS) 1 .

The remainder of this section will be devoted to proving 6 .1 . All the
functors giving these equivalences preserve the f-subcategories . So 6 .1 .ii i
will follow from the fact that ,ABf £f , which is a corollary of 3 .2 .

Proof of 6.1 : We know that AB £S * , by 5 .3 . Also AB '1-2 Cs* by 5.6 .
Thus 6 .1 .ii is proved . A local diagram £ = {hp : Ap --- > Ad- determines
a local system ,~cS with Bp = Ap , Bo = Ao and kp = hp and vice versa .
We need to check that the realizability condition 1 Ao induces an
isomorphism 1 --4 Ao , where 1 := n im (rp : Ap —> A 0 ), is equivalent to
5 .1 (LS) , where 1 := n im(hp : Ap —> A 0 ) .

Identify Ao with its image in H(A)0 under the diagonal map. To see
that realizability implies 5 .1 (LS), notice that 1 := rl im hp c H(A)0 .
Consequently, 10 = Ao = Ao n im (IIAp )o .

Conversely, if the local system associated with the .C-diagram A satis-
fies 5 .1(LS), choose a lift

c : Ao ~ (HA) 0 of Ao ~ II(Ap ;: Q)

and define A by the pullback of Ao —+ fl(A) o #--- ~ Ap . Now realizabil-

ity of A follows from 5 .3 .

To see that £s

	

CS, suppose a local system B is given. Setting
Co := Bo and Cp := Bp : ; Zp , we get a complete system. The condition
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5 .5(CS) is satisfied because the map Bo --> 11(BP Qp̂ ) lifts to Bo —>

(fl(BP ED 7G^ )) 0 according to the commuting diagram below .

	 + (
IIBp ) O —+ (llC)0Bo

n(BP ~ Q) --> (llCE~Q )p

¿''' ,Conversely, given a complete system

	

we construct a local system
by setting Bo := Co and defining Bp to be the pullback of Co —> (C)0 <—

Bp ; compare 2 .4 . To see that condition 5.1(LS) is satisfied, consider th e
commuting diagram below .

IIBp

	

~---=----~

	

HCp

(nBp)o

	

(nBp ) 0

l v
Bo	 } II(Bp 11) r-> II (Cp e Q )

u

The outer rectangle is a fiber square since it is a product of fiber squares .
Its rationalization is the bottom rectangle, which is, therefore, also a fiber
square . Condition 5.1(LS) now follows using the universal property o f
pullbacks . ■

7 . Further remarks

7.1 . Remark. If we regard an abelian group as a 7L-module then there
is an obvious generalization of this work to the case of modules over a
Dedekind domain R, where localization, completion and torsion are al l
with respect to the prime ideals of R. The appropriate generalizations
of all our results and their proofs remain valid .

Since our constructions are natural, most of them also apply to mod-
ules for an algebra A over R (localization etc. are still with respect to
primes of R). Theorem 6.1 remains true but (3 .4) may fail. The problem
is that T*1 (a) in 3 .3 may be empty when there is torsion at infinitel y
many primes . However, corollary 3 .4 remains valid if every A 0 -module
is injective . This happens, for example, if A is the group algebra of a
finite group .
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7.2 . Example. Let C = (c) be an infinite cyclic group . Far each
prime p, let Ap = Z/p Z(p) be a Z(p) [C]--module with action c(x, y) --
(x + y, y), x E 7L /p, y E Z(p) and the image of y in 7L /p . Let A0 = ~
and let rp : A(p) ~ Q be the usual inclusion of Z (p) in Q . This local
diagram has a unique realization as an abelian group, namely (epZ/p)
Z. However, the action of C does not extend because c(9, 1) would have
to have non -zero coordinate in every summand . ■

Theorem 6.1 can be generalized to nilpotent groups. We state the
result . Its proof is completely parallel to our treatment of the abelian
case . An additional technical quibble arises, however, from the fact that
nat every subgroup of a nilpotent group is normal . This is relevant, for
example, in the nilpotent analogue of lemma 1 .1 .

7 .3 . Theorem . _U e is any of the categories aboye, let denote th e
analogous category but with nilpotent objects . Then we have the following
equivalences of categories.

(i) 9't%' 91£0 ;

(u) ~ Ĵ the subcategory of 915..120 whose objects have a uniforrn bound
on their order of nilpotency;

(iii) fR1 Tlf ^r YteC3f 91.Lt£C3f .
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