ON SUBGROUPS OF ZJ TYPE OF AN \mathfrak{F}-INJECTOR FOR FITTING CLASSES \mathfrak{F} BETWEEN \mathfrak{E}_{p^*p} AND $\mathfrak{E}_{p^*}\mathfrak{S}_p$

A. MARTÍNEZ PASTOR (*)

Abstract

Let G be a finite group and p a prime. We consider an \mathfrak{F}-injector K of G, being \mathfrak{F} a Fitting class between \mathfrak{E}_{p^*p} and $\mathfrak{E}_{p^*}\mathfrak{S}_p$, and we study the structure and normality in G of the subgroups $ZJ(K)$ and $ZJ^*(K)$, provided that G verify certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p-stable group, Canad. J. Math. 20 (1968), 555-564).

1. Introduction and notation

In this paper we consider a finite group G verifying certain conditions of stability and constraint, and we study the structure and normality in G of the subgroups $ZJ(K)$ and $ZJ^*(K)$, being K and \mathfrak{F}-injector of G and \mathfrak{F} a Fitting class such that $\mathfrak{E}_{p^*p} \subseteq \mathfrak{F} \subseteq \mathfrak{E}_{p^*}\mathfrak{S}_p$, extending some results of Glauberman [6].

All groups in this paper are assumed to be finite. Given a fixed prime p, \mathfrak{S}_p will denote the class of all p-groups, \mathfrak{E}_{p^*}, the class of all p^*-groups, \mathfrak{E}_{p^*p} the class of all p^*p-groups and $\mathfrak{E}_{p^*}\mathfrak{S}_p$ that of all p^*-by-p-groups. The corresponding radicals in a group G are denoted by $O_p(G)$, $O_{p^*}(G)$, $O_{p^*p}(G)$ and $O_{p^*p}(G)$ respectively. For all definitions we refer to Bender [3].

The notation for Fitting classes is taken from [4]. The remainder of the notation is standard and it is taken mainly from [7] and [8]. In particular, $E(G)$ is the semisimple radical of G and $F^*(G) = F(G)E(G)$ the quasimilpotent radical of G. If H is a subgroup of G, $C_G^*(H)$ is the generalized centralizer of H in G (see [3]). Note that $C_G^*(F^*(G)) \leq$}

(*) Work supported by the CICYT of the Spanish Ministry of Education and Science, project PB90-0414-C03-01.
A group \(G \) is said to be \(\mathfrak{N} \)-constrained if \(C_G(F(G)) \leq F(G) \), that is, if \(E(G) = 1 \).

Moreover, \(\pi(G) \) is the set of primes dividing the order of \(G \), \(d(G) \) is the maximum of the orders of the abelian subgroups of \(G \), \(\mathfrak{A}(G) \) is the set of all abelian subgroups of order \(d(G) \) in \(G \) and \(J(G) \) is the subgroup generated by \(\mathfrak{A}(G) \), that is, the Thompson subgroup of \(G \). We set \(ZJ(G) = Z(J(G)) \).

In [6] G. Glauberman proves his well-known \(ZJ \)-Theorem and also introduces the subgroup \(ZJ^*(P) \) proving the following: “Let \(p \) be an odd prime and let \(P \) be a Sylow \(p \)-subgroup of a group \(G \). Suppose that \(C_G(O_p(G)) \leq O_p(G) \) and that \(SA(2;p) \) is not involved in \(G \). Then \(ZJ^*(P) \) is a characteristic subgroup of \(G \) and \(C_G(ZJ^*(P)) \leq ZJ^*(P) \)”.

On the other hand, Arad and Glauberman study in [2] the structure and normality of the subgroup \(ZJ(H) \), \(H \) being a Hall \(\pi \)-subgroup of a \(\pi \)-soluble group \(G \) with abelian Sylow \(2 \)-subgroups and \(O_{\pi^*}(G) = 1 \).

Some related results were obtained by Arad in [1], by Ezquerro in [5] and by Pérez Ramos in [11] and [12].

Here we study the structure of the subgroups \(ZJ(K) \) and \(ZJ^*(K) \) where \(K \) is an \(\mathfrak{F} \)-injector of \(G \), being \(\mathfrak{F} \) a Fitting class such that \(\mathcal{E}_{p^*p} \subseteq \mathfrak{F} \subseteq \mathcal{K} \), \(\mathcal{E}_{p^*} \mathcal{K} \), and we obtain that it depends only of \(G \). Also, we obtain some analogous to Glauberman’s \(ZJ \) and \(ZJ^* \) Theorems for such Fitting classes. Recall that such a Fitting class \(\mathfrak{F} \) is dominant in the class of all finite groups, so every finite group \(G \) has a unique conjugacy class of \(\mathfrak{F} \)-injectors (see [10]). Moreover, for such \(\mathfrak{F} \) every finite group is \(\mathfrak{F} \)-constrained in the sense of [9] (see [3]).

In the following \(\mathfrak{F} \) will be a Fitting class such that \(\mathcal{E}_{p^*p} \subseteq \mathfrak{F} \subseteq \mathcal{E}_{p^*} \mathcal{K} \).

2. Preliminary results

Remark 1.

Let \(K \) be an \(\mathfrak{F} \)-injector of a group \(G \). By [10] we know that

\[
K = (O_{p^*}(G)p)_{\mathfrak{F}}
\]

where \(P \) is a Sylow \(p \)-subgroup of \(G \). Moreover, \(O_{p^*}(K) = O_{p^*}(G) \), so \(O_{p^*}(K) = O_{p^*}(G) \) and \(O_{p^*}(F(K)) = O_{p^*}(F(G)) \). On the other hand, since \(F^*(G) \leq K \), we have \(E(K) = E(G) \).

Remark 2.

Suppose that \(K \) is an \(\mathcal{E}_{p^*} \mathcal{K} \)-group, that is, \(K = O_{p^*}(K)S \) where \(S \) is a Sylow \(p \)-subgroup of \(K \). Since \([O_{p^*}(K), O_p(K)] = 1\), it is clear that \(K \)
acts nilpotently on $O_p(K)$, i.e. $K = C^*_K(O_p(K))$. In particular, we can deduce that

$$C^*_K(E(K)O_p(F(K))) = C^*_K(F^*(K)) \leq F(K).$$

Lemma 2.1.

Let G be a group and let K be an $E_p \cdot C_p$-subgroup of G containing $F^*(G)$. Then $\pi(ZJ(K)) \leq \pi(F(G)) = \pi(F(K))$. Moreover if the prime p belongs to $\pi(F(G))$ then $p \in \pi(ZJ(K))$.

Proof:

Since $\pi(F(K)) = \pi(Z(F(K)))$ and $Z(F(K)) \leq C(G,F^*(G)) \leq F(G)$, the first statement can be easily obtained. On the other hand if $p \in \pi(F(G))$ and P is a Sylow p-subgroup of K we have $1 \neq Z(P) \cap O_p(K) \leq Z(K) \leq ZJ(K)$ since $K = PO_{p^*}(K)$, and so the result holds. ■

Lemma 2.2.

Let G be a group and let K be an $E_p \cdot C_p$-subgroup of G containing $O_p(G)$. Let B be a nilpotent normal subgroup of G and let A be any nilpotent subgroup of K. Then $A O_p(B)$ is nilpotent.

Proof:

By the Remark 2 A acts nilpotently on $O_p(B) \leq O_p(K)$, so the result follows. ■

Next we will deal with the subgroup $ZJ^*(K)$ of an arbitrary group K and its properties:

Definition 2.3. [5].

For any group K define two sequences of characteristic subgroups of K as follows. Set $ZJ^0(K) = 1$ and $K_0 = K$. Given $ZJ^i(K)$ and K_i, $i \geq 0$, let $ZJ^{i+1}(K)$ and K_{i+1} the subgroups of K that contain $ZJ^i(K)$ and satisfy:

$$ZJ^{i+1}(K)/ZJ^i(K) = ZJ(K_i/ZJ^i(K))$$

$$K_{i+1}/ZJ^i(K) = C_{K_i/ZJ^i(K)}(ZJ^{i+1}(K)/ZJ^i(K)).$$

Let n be the smallest integer such that $ZJ^n(K) = ZJ^{n+1}(K)$, then $ZJ^n(K) = ZJ^{n+r}(K)$ and $K_n = K_{n+r}$ for every $n \geq 0$. Set $ZJ^*(K) = ZJ^n(K)$ and $K^*_n = K_n$.

Example.

In general, the subgroups $ZJ(K)$ and $ZJ^*(K)$ of a group K are different. To see this, we can consider, as an example, the group $K = [Q_8 \times C_3]S_3$ generated by the elements a, b, c, x, y with the following relations:

$$a^4 = 1, \quad a^2 = b^2, \quad a^b = a^{-1}, \quad c^3 = 1, \quad a^c = a, \quad b^c = b, \quad x^3 = y^2 = 1, \quad x^y = y^{-1},$$

$$a^x = ba, \quad b^x = a^{-1}, \quad c^x = c, \quad a^y = b, \quad b^y = a, \quad c^y = c^{-1}.$$

Then we can get check that $d(K) = 18$, $Z(K) = Z(Q_8) = \langle a^2 \rangle$, $ZJ(K) = Z(Q_8) \times C_3$, $K_1 = [Q_8 \times C_3] \langle x \rangle = J(K)$ and $ZJ^*(K) = ZJ^2(K) = K_2 = [Q_8 \times C_3]$.

Remark 3.

For every group K:

i) $ZJ(K_i/ZJ^i(K)) = ZJ(K_{i+1}/ZJ^i(K)) = Z(K_{i+1}/ZJ^i(K))$, for every $i \geq 0$.

ii) $Z(J_i) \leq Z(K_{i+1})$, for every $i \geq 0$.

Lemma 2.4.

For any group K and for every $i \geq 0$:

i) $ZJ^i(K)$ is nilpotent.

ii) $F(K_i/ZJ^i(K)) = F(K_i)/ZJ^i(K)$.

Proof:

i) By induction on i, assume that $ZJ^i(G)$ is nilpotent, for every group G. By ([5, Prop. II 3.6]) we have that $ZJ^{i+1}(K)/ZJ^i(K) = ZJ^i(K_1/ZJ^1(K))$, so this is a nilpotent group. Now, by the previous remark, $ZJ^i(K) \leq Z(K_i) \leq Z(J_i)$, and $ZJ^{i+1}(K) \leq K_i$, hence $ZJ^{i+1}(K)$ is nilpotent.

ii) By induction on i. The assertion is clear for $i = 0$. Assume now that $F(K_i/ZJ^i(K)) = F(K_i)/ZJ^i(K)$. We have:

$$F(K_{i+1}/ZJ^{i+1}(K)) \cong F(K_{i+1}/ZJ^i(K))/ZJ^{i+1}(K)/ZJ^i(K))$$

and since $ZJ^{i+1}(K)/ZJ^i(K) = Z(K_{i+1}/ZJ^i(K))$, it follows

$$F(K_{i+1}/ZJ^i(K))/ZJ^{i+1}(K)/ZJ^i(K)) = F(K_{i+1}/ZJ^i(K))/ZJ^{i+1}(K)/ZJ^i(K).$$

But applying the inductive hypothesis we have:

$$F(K_{i+1}/ZJ^i(K)) = F(K_i/ZJ^i(K)) \cap K_{i+1}/ZJ^i(K) = F(K_i)/ZJ^i(K) \cap K_{i+1}/ZJ^i(K) = F(K_{i+1}/ZJ^i(K))$$

and so we can conclude that $F(K_{i+1}/ZJ^{i+1}(K)) = F(K_{i+1})/ZJ^{i+1}(K)$.

3. The structure of the ZJ-subgroup and the ZJ^*-subgroup

In this section we will study the structure of the subgroups $ZJ(K)$ and $ZJ^*(K)$ being K an $\mathcal{E}_p^r \mathcal{S}_p$-subgroup of a group G containing $O_p(G)$ and satisfying that $O_p^r(K) = O_p^r(G)$, properties that hold for an \mathfrak{S}-injector of G, as we have seen.

Theorem 3.1.

Let G be an \mathfrak{N}-constrained group and let K be an $\mathcal{E}_p^r \mathcal{S}_p$-subgroup of G containing $O_p(G)$ and such that $O_p^r(K) = O_p^r(G)$. Assume that at least one of the following conditions hold:

i) $O_p^r(F(G)) \leq ZJ(K)$,

ii) $F(G)$ is abelian,

iii) $d(K)$ is odd and $O_2(G)$ is abelian.

Then:

a) $\{O_p(A)|A \in \mathfrak{A}(K)\} = \mathfrak{A}(O_p(K))$.

b) $O_p(ZJ(K)) = ZJ(O_p(K))$.

c) $\{O_p^r(A)|A \in \mathfrak{A}(K)\} = \mathfrak{A}(O_p^r(G))$.

d) $O_p^r(ZJ(K)) = ZJ(O_p^r(G))$.

In particular, if we assume $O_p^r(F(G)) \leq ZJ(K)$ then for every $A \in \mathfrak{A}(K)$

$O_p^r(A) = O_p^r(ZJ(K)) = O_p^r(F(G))$.

Moreover the prime numbers divisors of $d(K)$, $|ZJ(K)|$, $|F(K)|$ and $|F(G)|$ coincide.

Proof:

Let $A \in \mathfrak{A}(K)$. Since $F^*(G) \leq K$ we know that $E(K) = E(G) = 1$, so K is an \mathfrak{N}-constrained group. Leading from our assumptions we can obtain that $AF(G)$ is nilpotent (if we assume i) Lemma 2.2 applies; if we assume ii) or iii) Proposition 1 of [2] applies). Moreover, since $O_p^r(K) = O_p^r(G)$ we have $O_p^r(F(K)) = O_p^r(F(G))$.

a) Let $A \in \mathfrak{A}(K)$. Since $AF(G)$ is nilpotent $O_p(A)$ centralizes $O_p^r(F(G))$ and so applying Remark 2 we obtain

$O_p(A) \leq C_K(O_p^r(F(K))) \leq F(K)$

so $O_p(A) \leq O_p(K)$.

Let $B \in \mathfrak{A}(O_p(K))$. Since $AO_p(K)$ is nilpotent by Lemma 2.2, $O_p^r(A)$ centralizes $O_p(K)$, so $O_p^r(A)B$ is an abelian subgroup of K and then

$|O_p^r(A)B| \leq |A| = |O_p^r(A)O_p(A)|$.
Hence $d(O_p(K)) \leq |O_p(A)|$. Since $O_p(A) \leq O_p(K)$ the equality $d(O_p(K)) = |O_p(A)|$ holds.

Thus, for every $B \in \mathfrak{A}(O_p(K))$, $O_p'(A) \times B \in \mathfrak{A}(K)$. So we have

$$\{O_p(A)|A \in \mathfrak{A}(K)\} = \mathfrak{A}(O_p(K)).$$

b) This follows easily from a):

$$O_p(ZJ(K)) = O_p(\cap\{A|A \in \mathfrak{A}(K)\})$$

$$= \cap\{O_p(A)|A \in \mathfrak{A}(K)\} = ZJ(O_p(K)).$$

c) Let $A \in \mathfrak{A}(K)$. By a) we know that $O_p(A) \leq O_p(K)$. On the other hand, since K is an $\mathcal{E}_p \cdot \mathcal{G}_p$-group we have $O_p'(A) \leq O_p(K) = O_p'(G)$.

Let $B \in \mathfrak{A}(O_p'(G))$. Since $[O_p'(G), O_p(K)] = 1$, $O_p(A)$ centralizes B so $O_p(A)B$ is an abelian subgroup of K and then

$$|O_p'(A)B| \leq |A| = |O_p(A)O_p'(A)|.$$

Hence $d(O_p'(G)) \leq |O_p'(A)|$. Since $O_p'(A) \leq O_p'(G)$ it follows $d(O_p'(G)) = |O_p'(A)|$. Therefore, for every $B \in \mathfrak{A}(O_p'(G))$, $O_p(A) \times B \in \mathfrak{A}(K)$. This proves c).

d) This follows from c) as in b).

If we assume $O_p'(F(G)) \leq ZJ(K)$ then it is clear that $O_p'(ZJ(K)) = O_p'(F(K)) = O_p'(F(G))$. Let $A \in \mathfrak{A}(K)$. Since $ZJ(K) = \cap\{A|A \in \mathfrak{A}(K)\}$ and $AF(G)$ is nilpotent we obtain that $O_p'(A) \leq C_G(F(G)) \leq F(G)$ and so the equality $O_p'(F(G)) = O_p'(ZJ(K)) = O_p'(A)$ holds.

Now since $F^*(G) \leq K$ we can apply Lemma 2.1 and our assumptions to obtain $\pi(ZJ(K)) = \pi(F(G)) = \pi(F(K))$. Moreover, if $A \in \mathfrak{A}(K)$ it is clear that $\pi(ZJ(K)) \subseteq \pi(A) = \pi(d(K))$. On the other hand, if q is a prime number such that $q \neq p$ and $q \in \pi(A)$, then $q \in \pi(F(G))$, by the foregoing assertion. Finally, if we assume that $p \in \pi(A)$, then $p \in \pi(F(K)) = \pi(F(G))$ because of a), and so the result follows. ■

Corollary 3.2.

Let G be an \mathfrak{A}-constrained group, H an $\mathcal{E}_p \cdot \mathcal{G}_p$-injector of G and $K = H_3$ its associated 3-injector of G. If one of the following conditions holds:

i) $O_p'(F(G)) \leq ZJ(K)$,

ii) $F(G)$ is abelian,

iii) $d(K)$ is odd and $O_2(G)$ is abelian,
then

\[\text{ZJ}(K) = \text{ZJ}(O_p^*(G)) \times \text{ZJ}(O_p(H)) = \text{ZJ}(H). \]

So, in particular, \(\text{ZJ}(K) \) does not depend on the Fitting class \(\mathfrak{F} \).

Proof:

Given \(A \) in \(\mathfrak{A}(H) \), by Remark 2 we see that \(O_p(A) \leq O_p(H) = O_p(K) \). On the other hand, due to the structure of the injectors considered here, one has \(O_p'(A) \leq O_p'(H) = O_p'(H) = O_p'(G) \leq K \). Therefore \(\mathfrak{A}(H) = \mathfrak{A}(K) \). Then apply Theorem 3.1 parts b) and d) to the subgroups \(H \) and \(K \). ■

Corollary 3.3.

If \(G \) is an \(\mathfrak{N} \)-constrained group and \(K \) and \(\mathfrak{F} \)-injector of \(G \) such that \(O_p'(F(G)) \leq Z(K) \), then

\[K = O_p'(F(G)) \times P \]

where \(P \) is a Sylow \(p \)-subgroup of \(G \). In particular,

\[\mathfrak{A}(K) = \{ O_p'(F(G))A | A \in \mathfrak{A}(P) \}. \]

Proof:

Since \(K = PO_p^*(G) \), \(P \) a Sylow \(p \)-subgroup of \(K \) and \(O_p'(F(G)) \leq Z(K) \), due to 6.11 in [3], we can write \([P, O_p(G)] = 1\). Now by \(\mathfrak{N} \)-

constrained, \(K \) is nilpotent and hence it is an \(\mathfrak{E}_p \cdot \mathfrak{S}_p \)-injector of \(G \) (see [10]); therefore \(P \) is a Sylow \(p \)-subgroup of \(G \) and \(K = O_p'(F(G)) \times P \). ■

Our next goal is to study the structure of the \(ZJ^* \)-subgroup.

Theorem 3.4.

Let \(G \) be an \(\mathfrak{N} \)-constrained group. Let \(K \) be an \(\mathfrak{E}_p \cdot \mathfrak{S}_p \)-subgroup of \(G \) containing \(O_p(G) \) and such that \(O_p^*(K) = O_p^*(G) \). Assume that \(O_p'(F(G)) \leq ZJ(K) \). Denote \(P = O_p(K) \). Then for every \(i \geq 1 \), \(O_p'(ZJ^i(K)) = O_p'(F(K_i)) = O_p'(F(G)), K_i \) is a nilpotent group and

\[O_p(ZJ^i(K)) = ZJ^i(P) \quad O_p(K_i) = P_i \]

with the notation given in Definition 2.3. In particular \(O_p(ZJ^*(K)) = ZJ^*(P), O_p(K_*) = P_* \) and

\[ZJ^*(K) = ZJ^*(P) \times O_p'(F(G)). \]
Proof:
Since $O_p'(ZJ(K)) \leq O_p'(ZJ^i(K)) \leq O_p'(F(K)) \leq O_p'(F(G))$, the first statement is clear.

Notice that $O_p'(F(G)) \leq ZJ(K) \leq Z(K_1)$, so $O_p'(K_1) \leq C_G(F(G)) \leq F(G)$. Hence $O_p'(K_1) = O_p'(F(K)) \leq Z(K_1)$ and K_1 is a nilpotent group. Now apply that for every $i \geq 1, K_i \leq K_1$.

We will prove that $O_p(ZJ^i(K)) = ZJ^i(P)$ and $O_p(K_i) = P_i$ by induction on i. By Proposition 3.2 we have $ZJ(P) = O_p(ZJ(K))$. On the other hand $P = O_p(K)$ centralizes $O_p'(ZJ(K))$, so $C_P(ZJ(P)) \leq C_K(ZJ(K))$ and then we obtain

$$O_p(K_1) = P \cap K_1 = P \cap C_K(ZJ(K)) = C_P(ZJ(P)) = P_1.$$

Thus, the statement is clear for $i = 1$.

Now suppose that $O_p(ZJ^i(K)) = ZJ^i(P)$ and $O_p(K_i) = P_i$. Applying Lemma 2.4 and the fact that $O_p'(F(K_i)) = O_p'(ZJ^i(K))$, we get that $K_i/ZJ^i(K) = F(K_i)/ZJ^i(K)$ is a p-group. Then it follows that

$$K_i/ZJ^i(K) = P_iZJ^i(K)/ZJ^i(K) \cong P_i/ZJ^i(K) \cap P_i = P_i/ZJ^i(P)$$

by the inductive hypothesis. Thus

$$ZJ^{i+1}(K)/ZJ^i(K) = ZJ(K_i/ZJ^i(K)) \cong ZJ(P_i/ZJ^i(P)) = ZJ^{i+1}(P)/ZJ^i(P).$$

and since $ZJ^{i+1}(K) = ZJ^i(K)(ZJ^{i+1}(K) \cap P_i)$ we can conclude

$$O_p(ZJ^{i+1}(K)) = ZJ^{i+1}(K) \cap O_p(K_i) = ZJ^{i+1}(K) \cap P_i = ZJ^{i+1}(P).$$

Now we will prove that $O_p(K_{i+1}) = P_{i+1}$. It is clear that $O_p(K_{i+1}) \leq O_p(K_i) = P_i$ and

$$[O_p(K_{i+1}), ZJ^{i+1}(P)] \leq [O_p(K_{i+1}), ZJ^{i+1}(K)] \leq O_p(K_{i+1}) \cap ZJ^i(K) = ZJ^i(P).$$

Hence by the definition of P_{i+1} it follows that $O_p'(K_{i+1}) \leq P_{i+1}$. On the other hand, $P_{i+1} \leq P_i \leq K_i$ and since $O_p'(F(G)) \leq ZJ(K) \leq Z(K_i)$, we have

$$[P_{i+1}, ZJ^{i+1}(K)] = [P_{i+1}, ZJ^{i+1}(P)] \leq ZJ^i(P) \leq ZJ^i(K).$$

Thus, by the definition of K_{i+1} we obtain $P_{i+1} \leq K_{i+1}$. Now, since $O_p(K_{i+1})$ is the Sylow p-subgroup of K_{i+1} the result follows. ■
Corollary 3.5.

Let G be an \mathcal{H}-constrained group. Let H be an $\mathfrak{E}_p \mathfrak{G}_p$-injector of G and assume that $O_p'(F(G)) \leq ZJ(H)$. Let $K = H_{\mathfrak{F}}$ be an \mathfrak{F}-injector of G. Then

$$ZJ^*(K) = O_p'(F(G)) \times ZJ^*(O_p(H)) = ZJ^*(H).$$

In particular, $ZJ^*(K)$ does not depend on \mathfrak{F}.

Proof:

Because of Corollary 3.2 we have $ZJ(K) = ZJ(H)$. Now Theorem 3.4 is applied, keeping in mind that $O_p(K) = O_p(H)$. ■

4. The normality of the ZJ-subgroup and the ZJ*-subgroup

In this section we prove some results related to the normality of the ZJ-subgroup and the normality and self-centrality of the ZJ*-subgroup of an \mathfrak{F}-injector K of a group G, provided that G verifies certain conditions of stability. Concretely, we will use the following version of p-stability:

Definition 4.1.

A group G is said to be p-stable if whenever A is a subnormal p-subgroup of G and B is a p-subgroup of $N_G(A)$ satisfying $[A, B, B] = 1$, then

$$B \leq O_p(N_G(A) \mod C_G(A)).$$

Proposition 4.2.

Let G be a p-stable group. Let K be an $\mathfrak{E}_p \mathfrak{G}_p$-subgroup of G containing the \mathfrak{E}_{p^∞}-radical of G, $O_{p^\infty}(G)$. If N is an abelian normal subgroup of K then $N \trianglelefteq G$ and $N \leq F(G)$. In particular $ZJ(K) \leq F(G)$.

Proof:

First notice that $O_{p^\infty}(G) \leq K$ implies $O_p(K) = O_{p^\infty}(G)$ (see [3, 4.22]). Thus, $O_p'(N) \leq O_p'(G) \leq O_{p^\infty}(G) \leq K$, and so $O_p'(N) \leq O_{p^\infty}(G)$.

On the other hand, it holds $[O_p(G), O_p(N), O_p(N)] = 1$ and so applying the p-stability of G we have:

$$O_p(N)C_G(O_p(G))/C_G(O_p(G)) \leq O_p(G/C_G(O_p(G))),$$

$$= C_G^*(O_p(G))/C_G(O_p(G)).$$
(see [3, 3.8]). Then we obtain
\[O_p(N) \leq C_G^*(O_p(G)) \cap C_G(E(G)O_p'(F(G))) \leq C_G^*(F^*(G)) \leq F(G) \]
so \(O_p(N) \leq O_p\cdot p(G) \) and the result follows. ■

Theorem 4.3.

Let \(G \) be a \(p \)-stable group, \(p \) and odd prime and assume that \(O_p(G) \neq 1 \). If \(K \) is an \(\mathcal{Z} \)-injector of \(G \) then
\[1 \neq O_p(ZJ(K)) \leq G. \]
Moreover, if \(O_p'(F(G)) \leq ZJ(K) \), then \(1 \neq ZJ(K) \leq G. \)

Proof:

First note that \(O_p(ZJ(K)) \leq G \) implies \(O_p(ZJ(K)) \) char \(G \), because of the conjugacy of the \(\mathcal{Z} \)-injectors.

By Proposition 4.2, we know that \(O_p(ZJ(K)) \leq O_p(G) \), and by Lemma 2.1 \(O_p(ZJ(K)) \neq 1 \). Now, to obtain the theorem it is enough to prove that if \(B \) is a normal \(p \)-subgroup of \(G \), then \(B \cap O_p(ZJ(K)) \) is normal in \(G \).

Assume the result false and suppose that \(G \) is a minimal counterexample. Suppose that \(B \) is a normal \(p \)-subgroup of \(G \) of least order such that \(B \cap O_p(ZJ(K)) \) is not normal in \(G \).

Set \(Z = O_p(ZJ(K)) \) and let \(B^* \) be the normal closure of \(B \cap Z \) in \(G \), then \(B \cap Z = B^* \cap Z \) and by our minimal choice of \(B \) we obtain \(B = B^* \).

Moreover, since \(B' < B \) we have that \(B' \cap Z \) is a normal subgroup of \(G \). Thus, for any \(g \) in \(G \) we have \([(B \cap Z)^g, B] = [B \cap Z, B]^g \leq B' \cap Z \).
Since \(B \) is generated by all such \((B \cap Z)^g \), it follows that \(B' \leq Z \). In particular \(B \cap Z \) centralizes \(B' \), and applying the foregoing argument we get \([B, B, B] = 1 \).

Let \(A \in \mathfrak{A}(K) \). By Lemma 2.2 we know that \(AB \) is nilpotent, so there exists some positive integer \(n \) such that \([B, A; n] = 1 \). Moreover, since \(p \) is an odd prime \([A, B'] \leq B' \) has odd order.

Now by Glauberman's replacement Theorem ([1, Corollary 2.8]) we can conclude that there exists an element \(A \) in \(\mathfrak{A}(K) \) such that \(B \leq N_G(A) \), and therefore \([B, A, A] = 1 \).

In particular, \([B, O_p(A), O_p(A)] = 1 \). Since \(G \) is \(p \)-stable we have:
\[O_p(A)C/C \leq O_p(G/C) = T/C \leq G/C \]
where \(C = C_G(B) \) and \(T = C_G^*(B) \). Moreover, since \(O_p'(A) \leq C_G(B) \) we get
\[A \leq T. \]
If $T = G$, then G/C is a p-group, so KC is a subnormal subgroup of G. Since KC normalizes $B \cap Z$, $KC < G$. Let M be a normal proper subgroup of G such that $KC \leq M$. Clearly M verifies the hypothesis of the theorem, K being an \mathfrak{Z}-injector of M, so by our minimal choice of G, we get $Z \leq M$, and then $Z \operatorname{char} M$. Therefore, $Z \leq G$, contrary to our choice of G.

Thus, we have $T < G$. Since $A \leq K \cap T$, it follows that $\mathfrak{A}(K \cap T) \subseteq \mathfrak{A}(K)$, $J(K \cap T) \leq J(K)$ and $ZJ(K) \leq ZJ(K \cap T)$. It is clear that T verifies the hypothesis of the theorem, being $K \cap T$ an \mathfrak{Z}-injector of T. Thus, by the minimal choice of G, $O_p(ZJ(K \cap T)) \operatorname{char} T$ and then $O_p(ZJ(K \cap T)) \leq G$. Since B is the normal closure of $B \cap Z$ in G we obtain $B \leq O_p(ZJ(K \cap T))$. In particular, B is abelian.

If $J(K) = J(K \cap T)$ then $O_p(ZJ(K)) = O_p(ZJ(K \cap T)) \leq G$, contrary to the choice of G. Thus, there exists an element $A_1 \in \mathfrak{A}(K)$ such that A_1 is not a subgroup of T. Then we must have $[B, A_1, A_1] \neq 1$. Among all such A_1, choose A_1 such that $|A_1 \cap B|$ is maximal. As B does not normalize A_1, by Thompson’s replacement Theorem ([1, Theorem 2.5], there exists an element A_2 in $\mathfrak{A}(K)$ such that $A_1 \cap B < A_2 \cap B$ and A_2 normalizes A_1. The maximal choice of A_1 implies that $[B, A_2, A_2] = 1$ and $A_2 \leq T$. Hence, $B \leq ZJ(K \cap T) \leq A_2 \leq N_G(A_1)$ and this is the last contradiction.

Finally, if in addition we assume $O_p(F(G)) \leq ZJ(K)$, then $O_p(F(G)) = ZJ(K)$ and the result follows. ■

Corollary 4.4 (compare with Glauberman’s ZJ-Theorem [6]).

Let G be a p-stable group such that $C_G(O_p(G)) \leq O_p(G)$, p and odd prime. If P is a Sylow p-subgroup of G then $ZJ(P) \leq G$.

Proof:

Leading from our assumptions we have $O(p^*F(G)) = O_p(G) = 1$, so P is actually an $\mathfrak{E}_p^*, \mathfrak{G}_p^*$-injector of G and Theorem 4.3 applies. ■

Theorem 4.5.

Let p be an odd prime and K an \mathfrak{Z}-injector of a group G, being \mathfrak{Z} a Z-extensible and Q_2-closed Fitting class. Assume that $SA(2,p)$ is not involved in G and that $O_{p'}(F(G)) \leq ZJ(K)$. Then $ZJ^i(K)$ is a characteristic subgroup of G for every $i \geq 0$.

Proof:

Assume the result to be false and let G be a minimal counterexample. Since $SA(2,p)$ is not involved in G, we know that G is p-stable (using Definition 4.1 above, proceed as in [6]). Therefore applying Theorem 4.3
we have $ZJ(K)$ char G. Because of the choice of G we can assume $1 \neq ZJ(K)$.

Set $C = C_G(ZJ(K))$. Assume that $C < G$. Then for every $i \geq 0$ we have $ZJ^i(K \cap C)$ char C, and so $ZJ^i(K \cap C) \leq G$. Now since $J(K) \leq K \cap C$, it follows that $J(K) = J(K \cap C)$ and $ZJ(K) = ZJ(K \cap C)$. Also $K_1 = C_K(ZJ(K)) = C_K \cap C(ZJ(K \cap C))$ and applying induction on i we can obtain $ZJ^i(K) = ZJ^i(K \cap C) \leq G$, contrary to the choice of G.

Therefore $C = G$ and then $ZJ(K) = ZG$. Since $|G/Z(G)| < G$ and $K/Z(G)$ is an \mathfrak{F}-injector of $G/Z(G)$ we obtain $ZJ^i(K) \leq G$, for every $i \geq 0$. Now since $K_1 = C_K(ZJ(K)) = K$, using ([5, Prop. II.3.6]) we can deduce $ZJ^i(K/Z(G)) = ZJ^{i+1}(K)/Z(G)$, and so $ZJ^{i+1}(K)$ char G for every $i \geq 0$, which is the last contradiction. ■

Remark 4.

Recall that for any group K, $C_K(ZJ^*(K)) \leq K^*$ and $K^*/C_K(ZJ^*(K))$ is nilpotent (by [5, Prop. II 3.7]). Using this facts it is easy to see that for any group K the following statements are equivalent:

i) $C_K(ZJ^*(K)) \leq ZJ^*(K)$
ii) $K^* = ZJ^*(K)$.

Also, we know that $C_K(K^*) \leq C_K(ZJ^*(K)) \leq K^*$, using ([5, Prop. II 3.7]).

Remark 5.

Let K be an \mathfrak{F}-injector of a group G. Then K is also an \mathfrak{F}-injector of any subgroup of G containing K (see [10]). In particular, K is an \mathfrak{F}-injector of $N_G(K^*)$, and so by the previous remark $Z(K^*) = C_K(K^*) = C_G(K^*) \cap K$ is an \mathfrak{F}-injector of $C_G(K^*)$. Thus if $x \in C_G(K^*)$, since $\langle x, Z(K^*) \rangle$ is an abelian subgroup of $N_G(K^*)$ with $Z(K^*) \leq \langle x, Z(K^*) \rangle \leq C_G(K^*)$, we can conclude that $Z(K^*) = \langle x, Z(K^*) \rangle$. Therefore, we have proved that $C_G(K^*) \leq K^*$.

Proposition 4.6.

Let K be an \mathfrak{F}-injector of a group G and assume $O_{p'}(F(G)) \leq ZJ(K)$. Then the following are equivalent:

i) G is an \mathfrak{N}-constrained group.
ii) $K^* = ZJ^*(K)$.
iii) $C_G(ZJ^*(K)) \leq ZJ^*(K)$.

Proof:

First notice that, applying Lemma 2.1, since $K_*/ZJ^*(K)$ is an $\mathfrak{S}_p\mathfrak{G}_p$-group, $ZJ(K_*/ZJ^*(K)) = 1$ implies $O_p(K_*/ZJ^*(K)) = 1$. Now applying Lemma 2.4 and the fact that $O_p^e(F(G)) \leq ZJ(K)$ we obtain that $F(K_*/ZJ^*(K)) = F(K_*)/ZJ^*(K)$ is a p-group and so we conclude $ZJ^*(K) = F(K_*)$.

i) \Rightarrow ii) Since $F(G) \leq K$ it follows that $C_K(F(K)) \leq F(K)$, and so on $C_{K_*}(F(K_*)) \leq F(K_*)$. Bearing in mind that $ZJ^*(K) = F(K_*)$ and $C_K(ZJ^*(K)) = C_{K_*}(ZJ^*(K))$, ii) follows from Remark 4.

ii) \Rightarrow iii) Since $ZJ^*(K)$ is nilpotent we have $E(G) \leq C_G(ZJ^*(K)) \leq ZJ^*(K)$, and then $E(G) = 1$, that is, G is an \mathfrak{M}-constrained group. ■

Corollary 4.7.

Let p be an odd prime and K an \mathfrak{H}-injector of an \mathfrak{N}-constrained group G, being \mathfrak{F} a Z-extensible and QZ-closed Fitting class. Assume that $SA(2,p)$ is not involved in G and that $O_p^e(F(G)) \leq ZJ(K)$. Then $ZJ^*(K)$ is a characteristic subgroup of G and $C_G(ZJ^*(K)) \leq ZJ^*(K)$.

Recall that both the classes $\mathfrak{E}_p^*\mathfrak{G}_p$ and $\mathfrak{E}_p^*\mathfrak{G}_p$ are Z-extensible and QZ-closed Fitting classes (see [3] and [10]), so the previous result applies for such classes. Moreover, as in the case of the ZJ-theorem we can also recover the Glauberman’s ZJ^*-Theorem quoted at the beginning as a consequence of the above corollary.

5. Final remarks

Remark 6.

There exist \mathfrak{M}-constrained groups G such that $O_p^e(F(G)) \leq ZJ(K)$, being K an $\mathfrak{E}_p^*\mathfrak{G}_p$-injector of G, verifying that $SA(2,p)$ is not involved in G, p odd, and however with $O_p^e(G) \neq 1$.

Proof:

It is enough to take the group $G = SA(3,3) = [N]H$, with $N \cong C_3 \times C_3 \times C_3$ and $H \cong SL(3,3)$ and the prime $p = 13$. Really, G is an \mathfrak{M}-constrained group with $O_p^e(F(G)) = N$, an $\mathfrak{E}_p^*\mathfrak{G}_p$-injector of G is $K = O_p^e(G)P = NP$ where $P \cong C_{13}$, and $ZJ(K) = N$. Moreover, it is clear that $SA(2,13)$ is not involved in G, bearing the orders in mind. ■
Remark 7.
In [2] and [12], the authors consider a \(\pi \)-soluble group \(G \) with abelian Sylow 2-subgroups and \(O_{\pi'}(G) = 1 \), and they study the structure of the subgroup \(ZJ(H) \), where \(H \) is a Hall \(\pi \)-subgroup of \(G \), or \(H \) is an \(\mathfrak{Z} \)-injector of \(G \) for certain Fitting classes \(\mathfrak{Z} \), respectively. Recall that such a group is an \(\mathfrak{N} \)-constrained group (see [2]), and moreover it is a \(p \)-stable group for any prime number \(p \) (see [12]).

Moreover, since the \(p \)-nilpotent groups are \(\mathfrak{Z}_p \cdot \mathfrak{S}_p \)-groups, we can easily generalizes Lemma 4 of [2], as follows:

"Let \(G \) be a group and let \(P \) be a \(p \)-subgroup of \(K = O_{p^*} \cdot p(G) \). Assume that \(P \) centralizes \(E(G)O_{p'}(F(G)) \). Then \(P \leq O_p(G) \)."

For the proof, let \(K = O_{p^*} \cdot p(G) \); since \(F^*(K) = F^*(G) \), applying Remark 2 it follows that \(P \leq C_K(E(K)O_{p'}(F(K))) \leq F(K) \), and hence \(P \leq O_p(K) = O_p(G) \).

References

5. L. M. Ezquerro, \(\mathfrak{Z} \)-estabilidad, constricción y factorización de grupos finitos, Tesis doctoral, Univ. de Valencia, 1983.

Departamento de Matemática Aplicada
E. U. Informática
Universidad Politécnica de Valencia
Camino de Vera s/n
Valencia
SPAIN

Primera versió rebuda el 15 de Març de 1994,
darrera versió rebuda el 10 de Maig de 1994