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TWO REMARKS ON RIEMANN SURFACES

J. M. RODRIGUEZ*

Abstract

We study the relationship between linear isoperimetric inequalities
and the existence of non-constant positive harmonic functions on
Riemann surfaces.

We also study the relationship between growth conditions of
length of spheres and the existence of Green’s function on Riemann
surfaces.

1. Introduction

The theme of this paper is to clarify some connections between differ-
ent conformal invariants of Riemann surfaces.

By a Riemann surface R we denote a two-dimensional surface with
a complete metric of constant negative curvature —1. In this case, the
universal covering space of R is the unit disk A; R is endowed with
its Poincaré metric, i.e., the metric obtained by projecting the Poincaré
metric of the unit disk ds = 2(1 — |2z|2)~!|dz| onto R. The unit disk A
is isometric to the upper-half plane U endowed with its Poincaré metric
ds = |dz|/y, z = z + iy € U. We will use both models of the hyperbolic
plane. The only Riemann surfaces which are left out are the sphere, the
plane, the punctured plane and the tori.

We shall say that a Riemann surface R satisfies a linear isoperimetric

wnequality (LII) if there exists a finite constant h(R) so that for every
bounded open set G with smooth boundary we have

A(G) < h(R)L(3G).

Here and from now on, A, L and d refer to Poincaré area, length and
distance of R.

There are close connections between LII and some conformal invariants
on Riemann surfaces, namely the bottom of the spectrum of the Laplace-
Beltrami operator b(R), and the exponent of convergence §(R). These
connections are described in the next two known results.
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Theorem A [Ch], [Bu, p. 228}, [FR1]. A Riemann surface R satis-
fies a linear isoperimetric inequality if and only if b(R) > 0. In fact,

< b(R)h(R)? and b(R)h(R) <

plhit—‘
MIQ:I

The next result is a well known theorem of Elstrodt-Patterson-Sulli-
van:

Theorem B [S, p. 333]. A Riemann surface R satisfies a linear
isoperimetric inequality if and only if §(R) < 1. In fact,

1 1
3 zfo <§(R) < 5
b(R) =4 * 2
§(R)(1 - 6(R)), if 5 3 SOR)<1.

We shall be particularly interested in the class B of Riemann surfaces
which do not satisfy a linear isoperimetric inequality.

A theorem of Myrberg [T, p. 522] states that if §(R) < 1 (if R sat-
isfies a LII) then R has a Green'’s function (R ¢ Og in the language of
classification theory). If R is a plane domain (in fact; if R is a surface of
almost finite genus [SN, p. 193]), the following conditions are equivalent
[SN, p. 194]:

(i) R has Green’s function (R ¢ Og),

(ii) R has a non-constant positive harmonic function (R ¢ Ogp),
(iii) R has a non-cosntant bounded harmonic function (R ¢ Ogg),
(iv) R has a non-constant harmonic function with finite Dirichlet in-

tegral (R ¢ Ogp).

The Dirichlet integral of a function is the square of the L?-norm of its

gradient.

For arbitrary Riemann surfaces the following strict inclusions are well
known:

Og C Ogp C OB C Ogp.

One would like to understand exactly how the class B fits into this
chain.

As we have said above, in the case of surfaces of almost finite genus,
Og = Ogp = Oxgg = Ogp C B. The inclusion is strict, even in the
planar case, as it is shown by the example Ry = A\ (U2, {27*} U {0}) :
Ry ¢ Opp because it is a plane domain whose boundary has positive
logarithmic capacity [T, p. 81]; Ry € B because U2 {2 %} U {0} is a
discrete set with an accumulation point in A [FRI Theorem 4]. This
example shows that B is not contained in Ogp, Ogg or Ogp.
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The inclusion Ogp C B is not true in general. To describe why,
consider the real linear space HD(R) of harmonic functions in R with
finite Dirichlet integral. Then, we have the following

Theorem C [Ro]. Let R be a Riemann surface which satisfies a linear
isoperimetric inequality. If there exists in R a set of disjoint simple closed
curves {v;}j=,, such that R\ U; v; contains n connected components of
infinite area, then

dim HD(R) > n.

This inequality is best possible: for each n > 1, there exists a Rie-
mann surface R, satisfying the hypothesis of the theorem and such that
dim HD(R,) =n.

In particular, for n = 1 we have the following

Corollary. There is a Riemann surface Ry with LII and such that
every harmonic function with finite Dirichlet integral on R, is constant.

R, can be constructed verifying the extra customary hypothesis of
bounded geometry [K], which in our context simply means that the
injectivity radius ¢(R,) is positive. For any Riemann surface R, «(R) is
defined as

L(R) = inf{«(p) : p € R},
where 1(p) is the injectivity radius of the geodesic exponential map cen-
tered at p.

Summarizing, the situation is the following:
OgCB, OgCOgpCOgpC Oxp,

and there are no inclusion relationships between B and Oxp. But, is
there any inclusion relationship between B and Oyp or between B and

It was natural to expect the inclusion Ogg C B to be true. For
instance, if R is a surface of almost finite genus, then Oyg = Og C B;
if R has a LII and is a regular covering of a compact surface (then
R has infinite genus), one can prove that the Varopoulos’s index a(R)
[V3] is positive, and this implies the existence of non-constant bounded
harmonic functions. Then, the inclusion is true for finite genus and for
two extremal cases with infinite genus: almost finite genus and covering
spaces of compact surfaces.

In this paper we prove by an example that the inclusion Ogp C B is
not true. In fact, we prove that the weaker inclusion Ogp C B is not
true, even with the hypothesis ¢ > 0:
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Theorem 1. There exists a Riemann surface M with LII, ((M) > 0,
and such that every positive harmonic function on M is constant.

A most interesting example in the classification of Riemann surfaces
was obtained by Lyons [L]. He constructed two quasiisometric (and, in
particular, quasiconformaly equivalent) Riemann surfaces, one of them
belonging to Oy p while the other supports non-constant bounded har-
monic functions. We shall be using his construction as a basic ingredient
in the proof of theorem 1.

The relationship between growth conditions of area of balls and the
existence of Green’s function is a well-known and classical issue. We
refer, for instance, to [D], [E], [F], [FR2], [G], [Ka], [LS], [V1] and the
references therein for some general (in arbitrary Riemannian manifolds)
geometric and topological conditions related to the existence of Green’s
function. Green’s function exists if and only if there exists a positive non-
constant superharmonic function or equivalently if Brownian motion on
the surface is transient (see, e.g. [AS, p. 204], [V1]).

If p is a point of a Riemann surface R and ¢ is a positive number we
denote by Agr(p,t) and Lgr(p,t), the area of B(p,t) and the length of
O0B(p, t) respectively, where B(p,t) is the ball of radius ¢ centered at p.
Of course, Agr(p,t) < Aa(0,t) = 4msinh®(t/2) ~ met as t — oo, and
Lr(p,t) < La(0,t) = 2wsinht =~ me* as t — oo.

The following theorem is known.

Theorem D. (i) If for a point py € R and constants cp, to

ARr(po,t) > coe’, for everyt > to,
then R has a Green’s function.

(ii) Given a function 9 : (0,00) — (0, 00), increasing, and such that

lim &f) =0,

t—oo €

there exists a Riemann surface R and a point py € R so that
ARr(po,t) = ¥(t), for everyt > ty,
but R has no Green’s function.

Part (i) is elementary and part (ii) is due to Nicholls [N]. We do remark
that in the example of (ii) of theorem D, R can be chosen to be planar.
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It has been suggested by N. Varopoulos that in our situation, i.e.,
constant negative curvature, a uniform ezponential growth of the area
should imply that Green’s function exists. More precisely, if there are
positive constants ¢, o, ty, such that

Ar(p,t) > ce™, for every t > to, p € R,

can we deduce that R has a Green’s function?
The following theorem [FR2] answers the question.

Theorem E. (i) If R is a non-compact Riemann surface of finite
genus and there are positive constants c, tg, such that

AR(p! tO) > c, fO‘J" every p € R:

then R has a Green’s function.
(ii) There exists a Riemann surface R so that

where ¢, ag, to are positive numbers, and such that R does not have a
Green’s function.

Varopoulos in [V2, p. 271] gives an example like the one in theorem E
with ap = 1/2, but with variable curvature. Notice that topologically
his example is the plane.

The example constructed in [FR2] has exponential growth of area of
balls but the length of spheres does not grow. As a matter of fact, there
exists a point p and positive numbers ¢,, converging to infinity, such
that L(p,?,) remain bounded as n — oco. And actually that is why the
Riemann surface has no Green’s function.

Therefore, it is natural to ask if the stronger condition
Lr(p,t) > ce®®, for every t > ty, p € R,
implies that R has a Green’s function. Observe that this implies
Ar(p,t) > cce*, foreveryt >ty +e,pe R, £ >0,

because Agr(p,t) = fot Lg(p,s) ds.

Observe that if Lr(po,t) > cet, for some point pg € R and for every
t > to then, of course, R has a Green’s function, while, on the other
hand, a classical criterion of Ahlfors [A] says that if R has a Green’s
function then Lg(po,t), grows rapidly; in fact,

/w dt < oo
LR(pUs t) ’

Here we prove
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Theorem 2. There exists a Riemann surface N' so that
Ly (p,t) > ce'’?, for everyt > to, p € N,

where ¢, to are positive numbers, and such that N does not have a Green’s
function.

Notice in particular that theorem 2 has theorem E, (ii) as an immediate
corollary. The proof of theorem 2 is simpler and gives the precise rate
ap = 1/2. We do not know what the sharp rate ap in theorem E is.

The organization of the paper is as follows. In Section 2 we prove the-
orem 1. In Section 3 we construct the Riemann surface N of theorem 2,
while in Section 4 we prove that if satisfies the inequality Las(p,t) >
cet/2. In Section 5 we prove that A has no Green’s function.

2. Proof of Theorem 1

The desired Riemann surface M will be obtained with the help of two
graphs G and Gp.

In the set of vertices of any connected graph we can define a natural
distance:

d(p, q) = inf{length of the paths from p to g},

where all edges have length 1. This will be “the distance” in all graphs
of this section. The degree of a vertex is the number of its neighbours,
i.e., the number of vertices at distance 1 from it.

The vertices of the graphs G and Gy are simply the elements of the
free group on two generators I' = (a,b). Now we define the edges of G
and Gg.

Each element of I" can be expressed as a word with the letters a, a™?,
b, b~1. This expression is unique if no simplification of contiguous letters
is possible; in this case we say that the word is a reduced word.

For each n, we choose 8, a length preserving permutation of the words
of length greater or equal than n. This permutation must have order
3"=1 and must satisfy that g and g6, start on the left with the same
letter for all reduced words g of length n. If g is a reduced word of length
at least n, there is a unique factorization g = g;g2 with length (g1) +
length (go) = length (g), and length (g2) = n. We also require that 6,
satisfies g0, = g1(g20,) (observe that length (gf,) = length (g), because
0., does not change the leftmost element of gs).
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The sequence {6,}52, can be arranged so that it verifies the recursion

(9':1)3 =Vn-1
6, = identity.

Let {r,} and {s,} be two sequences of natural numbers satisfying
n <7y < 8y < Tpyy and s, — 1y > (3"71)2+¢) for some positive € and
for each n.

We define the set of edges of G in the following way. If g; and g, are
reduced words of I, there is an edge between them if and only if they
verify one of the conditions:

(i) g197 ' = a*,
(i) grgz " = b,
(iii) g1 = g20=" and length (g1) € [rn, 5, for some n.

Consequently, every vertex of G has degree four or six.

Gg is simply the Cayley graph of the group T', i.e., g; and ¢, are
connected by an edge of Gy only if (i) or (ii) is satisfied.

Then, every vertex of Gy has degree four.

A way to build up our Riemann surface M, modelled upon the graph
G, is to use the so called Lébell Y-pieces, which are a standard tool
for constructing Riemann surfaces. A clear description of these Y-pieces
and their use is given in [C, Chapter X.3]. (In [L] there is an equivalent
way of constructing Riemann surfaces.)

A Lobell Y-piece is a three-holed sphere, endowed with a metric of con-
stant negative curvature —1, so that the boundary curves are geodesics.
The Y-pieces are a flexible tool: given any three positive numbers a, b,
¢, there is a Y-piece with boundary curves which have lengths a, b, ¢
(see [C, p. 248] and [Fe, p. 99] for details).

A X-piece (*-piece) is a four-holed (six-holed) sphere, endowed with a
metric of curvature —1, so that the boundary curves are geodesics. We
can construct these pieces, for example, joining two (four) Y-pieces, by
identifying corresponding boundary curves of the same length, in such a
way that the resulting surface has genus zero.

We are free to choose the lengths of the four (six) boundary curves of
the X-piece (x-piece). We choose the lengths of the boundary curves of
a X-piece and a *-piece following the construction of the manifold M
in [L, p. 57] (a large “cylinder” in M corresponds to a short boundary
curve of our Riemann surface M [R]). The four boundary geodesics of
a X-piece have the same length . Four of the boundary geodesics of
a *-piece also have length «; the order two boundary curves have the
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same length 3, with 8 > «. We take now infinitely many copies of both
pieces.

We now build M by joining these pieces following the combinatorial
design of G, with the X-pieces (#-pieces) in the place of the vertices of
degree four (six), glueing boundary curves of the same length. M is a
complete surface of constant negative curvature —1, and since we have
used only two distinct pieces to build up M, it is obvious that ¢(M) > 0.

The results of [L] give that every positive harmonic function on M is
constant.

To prove that M has a LII we need to make precise the metric rela-
tionship between G and M. Following Kanai’s terminology K|, we say
that a mapping , not necessarily continuous, between two metric spaces

@ : (My,dy) — (Mz,d2)

is a rough isometry if the following two conditions are satisfied:
(i) There are constants @ > 1 and b > 0 such that

a'di(z,y) — b < da(e(z), (y)) < adi(z,y) +b,

for all z, y € M;.

(ii) For some € > 0, the e-neighbourhood of ¢(M1) covers M.

A metric space M; is said to be roughly isometric to a metric space
M, if there exists a rough isometry from M; into Ms. It can be checked
that being roughly isometric is an equivalence relation between metric
spaces.

It is obvious that the graph G and the surface M are roughly isometric.

If F is a graph, and P is a subset of vertices of F' we define its boundary
3P by

OP={veV(F):d(v,P)=1}.

If | - | denotes the number of elements of a subset of vertices, the linear
isoperimetric constant of F' is defined by

where P ranges over all the non-empty finite subsets of vertices of F'.

Lemma K. Let R be a Riemannian manifold with bounded geometry
and let F be a graph with bounded degree. If R and F are roughly iso-
metric, then R satisfies a linear isoperimetric inequality if and only if F
satisfies a linear isoperimetric inequality.
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To prove this lemma it is enough to combine two lemmas of Kanai [K,
p. 401] (observe that the hypothesis of bounded geometry is satisfied in
our case, and also that m = oo is allowed in the notation of Kanai).

Lemma K says that the surface M and the graph G simultaneously
verify or not a LII. Moreover, the definition of the linear isoperimetric
constant in a graph implies that G has a LII if the tree Gy has a LII,
because both have the same vertices and G has more edges.

It is elementary that a regular tree of degree d > 3, satisfies the LII
with constant 1/(d — 2). In particular, Gy satisfies the LII

M |P| < 510P|

Lemma K then gives that our surface M satisfies LII. The proof of
theorem 1 is complete. W

3. Constructing the Riemann surface N

Let U be the upper-half plane U = {z + iy € C : y > 0} endowed
with its Poincaré metric ds = |dz|/y. Let Vj be the closed subset of
{z +1iy: —1 <2 <1} limited by the geodesic arcs g1, g2, 93:

g ={l1+iy:y=>1}
g2 ={-1+1iy:y =1},
gg={z+iy:z’+y*=2,-1<z<1}.

We define Vi, = T*V,, for all integer k, where T*(z) = z + 2k, and
let W, be the closed periodic set W; = Ui V. The boundary of W) is
the union of the geodesic arcs G¥ = T%(g3). Observe that two geodesics
G% and G§*! meets at the point 2k + 1 + ¢ with angle m/2. We denote
¥ = G3* and nk = G2+,

Let W, be another copy of W;. We denote by G%, v5, n¥, the analogues
in W, of G¥, vF, n¥, respectively.

If we join both copies Wy and W, identifying nf with 7§, we obtain a
Riemann surface W with boundary. Let yx be the simple closed geodesics
in W, v = v¥ U~%; then the boundary curves of W are {v¢}2 _..

Let W' be another copy of W. We denote by ). the analogues in W'
of vx. Finally, if we join W and W’ identifying v with 7;, we obtain
the complete Riemann surface .
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4. Proof of the growth inequality of N/

We need the following lemma.
Lemma. If Hy={z+iy:y>V2} and H = {z + iy :y > 1}, then

\/r——__
L(0B(z,t) N Hp) > 2sinhtarctan (M )

V2cosht — 1
for all z in H, and all radius t > log V2.

Proof of the lemma:

Without loss of generality we can assume that z = ¢, because this point
minimize L(8B(z,t) N Hy), for every t > logv/2(log v/2 is the distance
between i and iv/2). Let us fix a radius ¢ > log v/2.

There are two points in B(i, t) with imaginary part v/2 : u+14/2 and

—u + i/2. If we denote by d the Poincaré distance in U, we have ([B,
p. 130], [Fe, p. 38))

(Rez — Rew)? 4+ (Im z)? + (Imw)?

coshd(z,w) = 2ImzImw

In our case, d(i,u +iv/2) = t, and then

u?+3
2v2
The length of &B(i,t) is 2wsinht [B, p. 132]. Let a be the angle in

1 between the geodesic arc which joins 7 and u + iv/2, and the geodesic
{iy : y > 1}. Therefore,

(2) cosht =

L(6B(i,t) N Hp) > 2asinht.

The proof is finished, once we show that

v2v2cosht — 3

tana =
V2cosht — 1

‘To see this, consider the geodesic g which joins i and u + iv/2. The
Poincaré geodesics in U are the vertical straight lines and the circles
orthogonal to the real axis. This implies that g has the equation

z? — 2oz + % =1,



TwO REMARKS ON RIEMANN SURFACES 473

with ¢ > 0, because u > 0 and i belongs to g.

It is easy to see that the constant z; is equal to
(3) zg = tan(m/2 — a) = cotana,

because the Poincaré metric is conformal with respect to the Euclidean
metric.

The number zq also satisfies that

(4) u? - 2zpu+1=0.

Therefore, (2), (3) and (4) give

1 V2v2cosht — 3

tang = — = —————«———
Tg V2cosht -1 '

and the lemma, is proved. ®

Using the lemma, we have that
L(8B(z,t) N Hy) > cet/?,

for all z in H and for all ¢ > ¢y, where ty is any number greater than
log v/2 and c is a constant which depends only on tp (not in z or t).

Let p be any point of N. We constructed N by joining four copies
of Wi. Without loss of generality, we can identify p with a point 2
of Wi C H. There is a part of dB(p,t) which corresponds, by this .
identification, with B(z,t) N Hp. This is true because a point in W,
at distance ¢ of 2 corresponds with a point in A at distance ¢ of p: the
geodesic arc which joins two points of W) is contained in W; (W) is
geodesicaly convex) and the union of the four copies of W; does not
decrease distances in each copy. Consequently,

LN(ps t) = cet/2,

for all p in N and for all ¢t > ¢y, where tg is any number greater than
log /2 and c is a constant which depends only on ;.
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5. N does not have a Green’s function

There is an easy way to convince oneself that this is true. The Riemann
surface NV has a Green’s function if and only if the Brownian motion in A/
is transient ([AS, p. 204], [V1]), i.e., a “Brownian walker” has positive
probability to escape to infinity. N was constructed by joining four
copies of W;. W, is “approximately” the horocycle D = {Imz > 1}.
If we transform by a Mobius mapping T the upper-half plane U in the
unit disk A, D is transformed in a subdisk of A tangent in one point to
8A. Therefore, there are not many points (there is only one!) in T(D)
where the Brownian walker can escape to infinity, and consequently the
Brownian motion in NV is not transient.

We give now a rigorous proof. Let K be a relatively compact domain
in N. We simply have to prove that the extremal length A(I') of the
family of curves I' “joining” 0K with the Alexandrov-infinity of A is
infinite [AS, p. 229].

We choose, for example, K to be the union of the four sets Wy N {]z| <
2} (one for each copy of W;). Let €, be the union of the four sets
Wi N {2 < |z| < n}. If T, is the set of curves in Q, which join {|z| = 2}
with {|z| = n}, the definition of A(I") gives

AT) = lim A(Ty).

—00

It is a well-known fact [AS, p. 225] that

where D(u,) means the Dirichlet integral in the domain €, of the func-
tion u, harmonic in ,, with boundary values u, = 0 in 0K and u, =1
in 0Q,\0K.

Therefore, if v, is another function in Q, with the same boundary
values that u,, the Dirichlet principle gives

1
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Let v, be the function defined in each Wy N {2 < |2] < n} as

_ log(|2/2)

(%) = Togln/2)

We can compute D(v,) in local coordinates because the Dirichlet in-
tegral is a conformal invariant. Then

T T 1 1
D(v :4[/ Vu,|? dzd §4/ / ———————rdrdb,
(vn) Win{2<(z|<n} IVon| Y o J2 r%(log(n/2))?

47
D(v,) < W‘
and 1
MI'n) 2 £~ log(n/2).

This proves that A(I') = oo, and consequently N does not have a Green’s
function.
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