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POLAR DECOMPOSITION
IN RICKART C∗-ALGEBRAS

Dmitry Goldstein

Abstract
A new proof is obtained to the following fact: a Rickart C∗-algebra
satisfies polar decomposition. Equivalently, matrix algebras over
a Rickart C∗-algebra are also Rickart C∗-algebras.

Introduction.
In this paper we give new proof of the following result: all Rickart

C∗-algebras satisfy polar decomposition. This fact was established in [2]
by P. Ara and author by using a suitable factorization of the elements
in the regular overring of a finite Rickart C∗-algebra.

New proof also uses the construction of the regular overring, but in
a different way. In particular, we don’t need the result of Goodearl,
Lawrence and Handelman about algebras without one-dimensional rep-
resentations.

The regular ring of measurable operators of a finite AW ∗-algebra was
constructed by S. K. Berberian in [3]. Later Saito modified Berberian’s
approach for general AW ∗-algebras [11]. E. Christensen constructed and
investigated a ∗-algebra of measurable operators, associated to MSC C∗-
algebras [5].

Handelman found a regular extension Q(T ) for a finite Rickart C∗-
algebra T , using a technique of the module-homomorphisms on the es-
sential countably generated ideals (instead of Berberian’s coordinated
sequences) [9]. It was established ([1], [10]) that a finite Rickart C∗-
algebra T satisfies polar decomposition iff the bounded elements of Q(t)
belong to T . Goodearl, Handelman and Lawrence have proved that T
satisfies polar decomosition in the case where T has no one-dimensional
representations (see [8]).

P. Ara in [1], using his special construction, proved that left and right
projections of element in a Rickart C∗-algebra are equivalent and the
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polar decomposition problem in general Rickart C∗-algebras can be re-
duced to the finite case. In this work Ara also proved an equivalence of
the following conditions for a Rickart C∗-algebra T :

(i) T satisfies polar decomposition;
(ii) The matrix algebras Mn(T ) over T are the Rickart C∗-algebras

for all n;
(iii) The partial isometries of T are ℵ0-addable.

Finally, by development of the methods of [1], [8], it was proved in [2]
that conditions (i)-(iii) are always fulfiled in Rickart C∗-algebras.

In [6], [7] was constructed a ∗-algebra of measurable operators for a
finite Rickart C∗-algebra and were proved some algebraic properties of
this ∗-algebra. We continue to develope this approach in order to solve
the polar decomposition problem.

1. Preliminaries.

A ∗-algebra A is Rickart, if for all x ∈ A there exists a projection e ∈ A
such that R(x) = {a ∈ A|xa = 0} is eA. Because of the involution,
L(x) = {a ∈ A|ax = 0} = Tf for some projection f . We shall write
e = RA(x), f = LA(x), 1 − e = RP (x), 1 − f = LP (x) and P (A) for
the set of all projections of A.

The projections e and f are equivalent (e ∼ f) in a ∗-algebra A if
e = uu∗, f = u∗u for some partial isometry u ∈ A. A is finite if p ∼ 1
implies p = 1. A Rickart C∗-algebra is a C∗-algebra that is also a Rickart
∗-algebra. We recall some properties of the Rickart C∗-algebras.

Theorem 2.1. A Rickart C∗-algebra satisfies the following proper-
ties:

(i) P (T ) is ℵ0-complete lattice partially ordered by p ≥ q iff pq = q
(see [4]).

If in addition T is finite then the lattice P (T ) is ℵ0-continuous
[9, Cor. 1.1].

(ii) LP (x) ∼ RP (x) for all x ∈ T [1, Th. 2.5].
(iii) For given sequences (en) and (fn) of ortogonal projections such

that en ∼ fn for all n ∈ N, we have
∨

n en ∼
∨

n fn [1].

The partial isometries are ℵ0-addable in a Rickart C∗-algebra T if for
every sequence of partial isometries {wn} such that {wnw

∗
n} and {w∗

nwn}
are the sequences of ortogonal projections there exists a partial isometry
w such that ww∗

nwn = wnw
∗
nw = wn.
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2. Strongly dense domains.
Through this paper T denotes (if the opposite is not specified) a finite

Rickart C∗-algebra.
A sequence of projections (en) ⊂ P (T ) is a strongly dense domain

(SDD) in case en ↑ 1. Let e ∈ P (T ), x ∈ T . We define x−1(e) =
RA[(1 − e)x].

Proposition 2.1. Let (en) and (fn) are SDD, xn ∈ T such that
m ≤ n implies xnem = xmem. Then a sequence (tn = x−1

n (fn)
∧
en)

is a SDD.

Proof: Let dn = x−1
n (fn). If m ≤ n then

(1 − en)xntm = (1 − en)(1 − em)xnemtm = (1 − en)(1 − em)xmtm = 0,

so that tm ≤ tn. Let p ∈ P (T ). We show that there exists a number k
such that tk

∧
p = 0. For that choose a number i such that q = p

∧
ei =

0. If xiq = 0, then q ≤ ti. Now let xiq = 0. There exists a ∈ T such that
h = xiqa is non-zero projection [4, par. 8]. Observe that xiq = xnq for
all n ≥ i and h′ = fk

∧
h = 0 for sufficiently large k. For k ≥ i we have

(1 − fk)xkqah
′ = (1 − fk)xiqah

′ = (1 − fk)hh′ = 0.

Therefore g = LP (qah′) ≤ dk. In addition, g ≤ q ≤ ei ≤ ek, hence
g ≤ tk. Thus p

∧
tk ≥ g = 0.

Corollary 2.2. If (en) and (fn) are SDD, then (en

∧
fn) is also SDD.

Proof: Put in Proposition 2.1 xn = 1 for all n.

3. A ring of measurable operators.
An essentially measurable operator (EMO) is a pair of sequences

(xn, en) with xn ∈ T , (en) an SDD, and such that m ≤ n implies
xnem = xmem and x∗nem = x∗mem. Two (EMO) (xn, en) and (yn, fn)
are equivalent, if there exists an SDD (gn) such that xngn = yngn,
gnxn = gnyn for all n ∈ N. Clearly that this relation is indeed equiva-
lence relation (By Corollary 2.2). If (xn, en) is (EMO), [xn, en] denotes
its equivalence class. We call [xn, en] a measurable operator (MO) and
denote by S(T ) the set of all (MO), and use the letters x,y, z, . . . for
the elements of S(T ). Now we define the algebraic operations on S(T ).
We put

[xn, en] + [yn, fn] =
[
xn + yn, en

∧
fn

]
λ[xn, en] = [λxn, en]

[xn, en][yn, fn] = [xnyn, kn],
[xn, en] = [x∗n, en],
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where kn = fn

∧
y−1

n (en)
∧
en

∧
(x∗n)−1(fn).

Summarizing,

Theorem 3.1. The set S(T ) of all MO is a ∗-algebra. The mapping
x �→ [x, 1](x ∈ T ) is a ∗-isomorphism of T into Q, and [1, 1] is a unity
element for S(T ).

We write x = [x, 1], for x ∈ T . The image of T in S(T ) is T .
We recall the construction by Handelman of the ∗-regular ring associ-

ated to a finite Rickart C∗-algebra. Let A be a unital ring. A right (left)
ideal E ⊆ A is essential if E has nontrivial intersection with any nonzero
right (left) ideal of A. We say that E is essential countably generated
(ecg) right ideal if there exist a sequence {tn}n∈N ⊆ A such that

∑
tiA

is essential in A. Similarly, we define left ecg ideal. It was proved in [9]
that every ecg ideal of a finite Rickart C∗-algebra is generated by SDD.

Let T be a finite Rickart C∗-algebra. Consider the following pairs
of mappings [f,E; f1, E1], where f is right T -module homomorphisms
from essential countably generated right ideal E, f1 is left T -module
homomorphism from essential countably generated left ideal E1, and
they are balanced by the following condition: e1f(e) = f1(e1)e for all
e ∈ E and all e1 ∈ E1. Two pairs [f,E; f1, E1] and [g, J ; g1, G1] are
equivalent if f(x) = g(x) and f1(y) = g1(y) for all x ∈ E

⋂
J and all

y ∈ E1

⋂
J1. Let Q be the set of equivalence classes of just defined pairs.

It was shown in [9] that Q is endowed with algebraic operations, and
with respect to these operation Q becomes a ∗-regular algebra.

Define mapping from S(T ) to Q. If [xn, en] is MO then E =
⋃∞

n=1 enT
(E1 =

⋃∞
n=1 Ten) is an essential countably generated right(left) ideal in

T correspondently. Define a right T -module homomorphism f : f(ent) =
xnent, where ent ∈ E. Obviously, f(entx) = f(ent)x for all x ∈ T . Let
ent = ems (m ≤ n). Then

f(ems) = f(em)s = xmems = xnems = xnent = f(ent).

Thus this definition is correct. Similarly, we define a left T -module ho-
momorphism f1 : E1 → T , f(ten) = tenxn. Now let e ∈ E, e1 ∈ E1,
e = emt, e1 = t1en. If m ≤ n then

e1f(e) = t1enf(emt) = t1enxmemt = t1enxnemt

= f1(t1en)emt = f1(e1)e.

By a similar argument e1f(e) = f1(e1)e. Therefore [f,E, f1, E1] ∈
Q. We shall denote just defined mapping by π. Then π([xn, en]) =
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[f,E, f1, E1]. Let [xn, en] = [x′n, e
′
n], π([x′n, e

′
n]) = [f ′, E′, f ′

1, E
′
1].

Choose an SDD (pn) such that xnpn = x′npn, pnxn = pnx
′
n for all

n ∈ N. Put qn = pn

∧
en

∧
e′n. Note that qn ∈ E

⋂
E1

⋂
E′ ⋂E′

1. We

have f(qn) = xnqn = xnpnqn = x′nqn = f(qn). Thus f = f ′ on
∞⋃

n=1

qnT .

In the same way we obtain f1 = f ′
1 on

∞⋃
n=1

Tqn.

Theorem 3.2. The mapping π is a ∗-isomorphism from S(T ) onto
Q.

Proof: Let [f,E, f1, E1] ∈ Q, E =
⋃∞

n=1 enT , E1 =
⋃∞

n=1 Ten, (en) an
SDD,

f(ex) = f(e)x, f1(xe1) = xf1(e1)

for all e ∈ E, e1 ∈ E1, x ∈ T . Put f(en) = yn, f1(en) = zn. Obviously,
ynen = yn, enzn = zn. Set

xn = yn + zn − znen = yn + zn − enyn

so that xnen = yn, enxn = zn for all n ∈ N. It is easy to see that
[xn, en] is MO. Set π(xn, en]) = [g,E, g1, E1], where g(en) = xnen,
g1(en) = enxn. Then g(en) = yn = f(en), g1(en) = zn = f1(en),
hence [f,E, f1, E1] = [g,E, g1, E1]. Thus π is surjective. Now we show
that the mapping π preserves the algebraic operations. Let [xn, en],
[yn, kn] ∈ S(T ). Put

π([xn, en]) = [f,E, f1, E1], π([yn, kn]) = [g, J, g1, J1],

where

E =
∞⋃

n=1

enT, E1 =
∞⋃

n=1

Ten,

J =
∞⋃

n=1

knT, J1 =
∞⋃

n=1

Tkn.

We have (see [9, Section 2])

[f,E, f1, E1] + [g, J, g1, J1] =
[
f + g,E

⋂
J, f1 + g1, E1

⋂
J1

]
,

[xn, en] + [yn, kn] =
[
xn + yn, en

∧
kn

]
.
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Let pn = en

∧
kn and π([xn+yn, en

∧
kn]) = [r, L, r1, L1]. We can regard

that

L =
∞⋃

n=1

pnT, L1 =
∞⋃

n=1

Tpn,

r(pn) = (xn + yn)pn, r1(pn) = pn(xn + yn).

Since (en

∧
kn)T = (enT )

⋂
(knT ) ( see [9]) it follows L = J

⋂
E, L1 =

J1

⋂
E1. In addition

r(pn) = (xn +yn)pn = (f+g)(pn), r1(pn) = pn(xn +yn) = (f1 +g1)(pn).

Consequently

[r, L, r1, L1] =
[
f + g,E

⋂
J, f1 + g1, E1

⋂
J1

]
.

Further, [xn, en][yn, kn] = [xnyn, tn], where tn is a suitable SDD. On the
other hand,

[f,E, f1, E1][g, J, g1, J1] = [fg, g−1E, g1f1, f
−1
1 J1].

We shall establish that
∞⋃

n=1

tnT is an essential subideal in g−1E. By the

definition, tn = hn

∧
gn, where

hn = en

∧
(x∗n)−1(kn), gn = kn

∧
y−1

n (en), g−1E = {x ∈ J : g(x) ∈ E}.
We have tn ≤ gn ≤ kn, therefore tn ∈ J for all n ∈ N. It remains to
prove that g(tn) ∈ E for all n. Really,

g(tn) = g (gn)tn = g(gnkny
−1
n (en))tn = g(kn)y−1

n (en)gntn

= ynkny
−1
n (en)gntn = yny

−1
n (en)kngntn

= enyny
−1
n (en)kngntn = enyny

−1
n (en)tn,

therefore g(tn) ∈ E. So tn ∈ g−1E for all n.

Similarly, we obtain
∞⋃

n=1

Ttn ⊂ f−1J1. Thus

[fg, g−1E, f1g1, f
−1
1 J1] =

[
fg,

∞⋃
n=1

tnT, g1f1,

∞⋃
n=1

Ttn

]
.

It implies
π([xn, en][yn, kn]) = π([xn, en])π([yn, kn]).

Obviously,
π(λ[xn, en]) = λπ([xn, en]).

It is sthrightforward to check that π([xn, en]∗) = π([xn, en])∗.
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Corollary 3.3. S(T ) is a Rickart ∗-algebra and ℵ0-continuous ring.

Proof: It follows from Theorem 3.2 and [9, Th. 2.1].

4. Some algebraic properties of S(T ). Cayley transform.

Lemma 4.1. If x = [xn, en] ∈ Q and the xn are all invertible then x
is invertible and x−1 = [x−1

n , hn] for a suitable SDD (hn).

Proof: Set fn = LP (xnen). We show that (fn) is a SDD. If m ≤ n
then fn(xmem) = fnxnem = fnxnenem = xnenem = xmem, fm ≤ fn.
Since xn is invertible then RP (xnen) = en. We have fn ∼ en [1, Th. 2.5].
As p ∼ q implies 1 − p ∼ 1 − q for the projections p and q in a finite
Rickart C∗-algebra, so en+1 − en ∼ fn+1 − fn. Then by ℵ0-additivity,

1 = [sup
n

(en+1 − en)]
∨

e1 ∼
[
sup

n
(fn+1 − fn)

∨
f1

]
= f.

Set yn = x−1
n . If m ≤ n, then ynfm = ymfm. Really,

ynxmem = ynxnem = em = ymxmem,

hence (yn − ym)xmem = 0 and (yn − ym)fm = 0. Similary on setting
gn = LP (x∗nen), we have that (yn) is a SDD and y∗ngm = y∗mgm when
m ≤ n. Put hn = fn

∧
gn, then y = [yn, hn] is MO, and xy = yx = 1.

Corollary 4.2. For any x ∈ S(T ) an element 1 + x∗x is invertible.

Proof: It follows immediately from Lemma 4.1.

Lemma 4.3. If x = x∗, one can write x = [xn, en] with x∗n = xn.

Proof: If x = [yn, fn], then x = 1/2(x∗ + x) = [1/2(y∗n + yn), fn].

Corollary 4.4. If x = x∗, then x + i is invertible.

Proof: Let x = [xn, en], x∗n = xn; then x + i = [xn + i, en] and each
xn + i is invertible.

Theorem 4.5. The formulas

u = (x − i)(x + i)−1, x = i(1 + u)(1 − u)−1

define mutually inverse one-one correspondences between the self-adjoint
elements x ∈ Q, and the unitary elements u for which 1−u is invertible.

Proof: It follows from Corollary 4.4.

We call this u the Cayley transform of x.
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Lemma 4.6. Let x = [xn, en] ∈ S(T ) and xn −→ x in norm, then
x = x.

Proof: Evidently, ‖xen − xnen‖ = ‖xen − xken‖ for all k ≥ n. Then
‖xen − xnen‖ ≤ ‖x− xk‖ for all k ≥ n, ‖xen − xnen‖ = 0, xen = xnen.
In just the same way, enx = enxn.

Lemma 4.7. Let x = [xn, en] ∈ S(T ). Then xen = xnen.

Proof: Obvious.

5. The bounded measurable operators.
Let T be a finite Rickart C∗-algebra, Q = S(T ) denotes a ∗-algebra of

measurable operators of T .
An element x = [xn, en] ∈ Q is bounded, if supn ‖xn‖ ≤ ∞. Let B be

a set of all bounded MO. It is clear that B is ∗-algebra. Since P (Q) ⊂ B
hence B is Rickart ∗-algebra. We define the mapping ‖ · ‖1 : B � x �→
‖x‖1 = inf supn{‖xn‖|(xn, en) ∈ x} ∈ R.

The bounded elements of S(T ) play a crucial role in the following
discussion of the polar decomposition problem (or ℵ0-addability of the
partial isometries, see Introduction) in a finite Rickart C∗-algebra. It is
easy to see that the partial isometries ofB are ℵ0-addable (Corollary 7.3).
On the other hand, it is well known that the algebras B and T coincide
if T is AW ∗-algebra [3]. We shall prove a similar result for a general
Rickart C∗-algebra.

Theorem 5.1. The mapping ‖ · ‖1 is a C∗-norm.

Proof: Let x = [xn, en] ∈ B. Clearly, ‖x‖1 ≥ 0. If ‖x‖1 = 0 then
for any ε ≥ 0 there exists EMO (xn, en) ∈ x such that supn ‖xn‖ ≤ ε.
Let y = [yn, en] ∈ B, supn ‖yn‖ = α. We can choose (x′n, e

′
n) ∈ x with

‖x′n‖ ≤ ε/α for all n ∈ N. Therefore ‖xnyn‖ ≤ ε, ‖xy‖1 = 0.
Now assume that there exists x ∈ B such that x = 0 and ‖x‖1 = 0.

Choose number n such that xen = 0. By Lemma 4.7 xen = xnen. As
it was shown above ‖xen‖1 = ‖xnen‖1 = 0. Let a = xnen. By the
definition of the norm ‖ · ‖1 we have ‖a‖1 = inf supn{‖an‖|(an, kn) ∈ a}.
For any (an, kn) ∈ a there exists an SDD (pn) such that apn = anpn.
Note ‖apn‖ = ‖anpn‖ ≤ ‖an‖. Choose b such that ba = e is a non-zero
projection [4, par. 8]. Since P (T ) is ℵ0-continuous, there exists k ∈ N
such that q = e

∧
pk = 0.

Consequently

1 = ‖q‖ ≤ ‖epk‖ = ‖bapk‖ ≤ ‖apk‖‖b‖,
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hence ‖apk‖ ≥ 1/‖b‖. It follows ‖ak‖ ≥ 1/‖b‖, hence ‖a‖1 = 0, a
contradiction. Thus ‖x‖1 = 0 implies x = 0.

Obviously ‖λx‖1 = λ‖x‖1 for each x ∈ B.
Further, let x, y ∈ B, x = [xn, en], y = [yn, fn]. Then

‖x + y‖1 = inf sup
n
{‖cn‖|(cn, gn) ∈ x + y}

≤ inf sup
n
{‖x′n + y′n‖|(x′n, e′n) ∈ x (y′n, f

′
n) ∈ y}

≤ inf sup
n
{‖x′n‖ + ‖y′‖|(x′n, e′n) ∈ x, (y′n, f

′
n) ∈ y}

= ‖x‖1 + ‖y‖1.

In just the same way, we get

‖xy‖1 ≤ ‖x‖1‖y‖1.

From previous property we have ‖x∗x‖1 ≤ ‖x‖2
1. On the other hand,

let (bn, qn) ∈ x∗x, (sn, kn) ∈ x for a suitable SDD kn.
Hence there exists SDD (pn) such that

npn = s∗nsnpn, pnbn = pns
∗
nsn.

Let tn =pn

∧
kn

∧
qn. Then (tns∗n)(sntn)= tnbntn and so ‖tns∗nsntn‖≤

‖bn‖. In addition, [tns∗n, fn] = [s∗n, kn] for suitable SDD (fn), there-
fore (tns∗n, fn) ∈ x∗. Hence for any EMO (bn, qn) ∈ x∗x there ex-
ists EMO (zn, fn) ∈ x (zn = sntn) such that ‖zn‖2 ≤ ‖bn‖. Thus
‖x‖2

1 ≤ ‖x∗x‖1.

Corollary 5.2. The norms ‖ · ‖ and ‖ · ‖1 coincide on T .

Proof: Let x be a positive element of T . By the definition, we have

‖x‖1 = inf sup
n
{‖xn‖|(xn, en) ∈ x}.

Obviously ‖x‖1 ≤ ‖x‖. Set (xn, en) ∈ x. Then there exists SDD pn such
that xnpn = xpn for all n. Therefore ‖xpn‖ = ‖xnpn‖ ≤ ‖xn‖. Choose
a sequence of the positive numbers εn with εn ↑ ‖x‖. Set {x}′′ = C(K),
for some Hausdorff space K. Put Un = {a ∈ K : x(a) > εn},

bn(a) =




1
x(a)

, a ∈ U

0, otherwise.
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Since Un is clopen [4, par. 8] so bn(a) ∈ C(K) and ‖bn(a)‖ ≤ 1
εn

. As
it was shown in Theorem 5.1, we can obtain that for each n ∈ N there
exists a number m(n) such that ‖xm‖ ≥ 1/‖bn‖ ≥ εn if m ≥ m(n).
Therefore supm ‖xm‖ ≥ εn for all n. It follows that ‖x‖1 ≥ εn for all
n ∈ N. Therefore ‖x‖1 ≥ ‖x‖. Thus ‖x‖1 = ‖x‖ for all positive x ∈ T .
For arbitrary x ∈ T we have ‖x‖2

1 = ‖x∗x‖1 = ‖x∗x‖ = ‖x‖2.
We shall use a notation B̃ for a completion of B in the norm ‖ · ‖1. In

this connection x̃ is an image of x ∈ B in B̃.

Lemma 5.3. If x ∈ B and ‖x‖1 < 1 then the series
∑

n≥0 xn con-
verges to (1 − x)−1 ∈ B in the norm ‖ · ‖1.

Proof: We can choose (xn, en) ∈ x such that supn ‖xn‖ < 1. Then all
the 1−xn are invertible. By Lemma 5.2 it follows that 1−x is invertible
in Q and (1 − x)−1 = [(1 − xn)−1, kn] for suitable SDD (kn). Observe

‖(1 − xn)−1‖ ≤
∑
k≥0

‖xk
n‖ ≤

∑
k≥0

µk < ∞

for all n, where µ = supn ‖xn‖ < 1. Thus (1 − x)−1 ∈ B. Identifying x

and (1 − x) with their images x̃ and ˜(1 − x)
−1

in C∗-algebra B̃, we get
the statement of Lemma.

Lemma 5.4. If x ∈ B then ρ(x) = sup{|λ||λ ∈ σ(x)} ≤ ‖x‖1, where
σ(x) is a spectrum of x.

Proof: Let |λ| > ‖x‖1, then applying Lemma 5.3 we obtain that the
series λ−1

∑
m≥0(xλ

−1)m converges to (λ1−x)−1 in the norm ‖ · ‖1 and
lemma follows.

Lemma 5.5. Let u be a unitary element in B. Then

σ(u) ⊂ {λ ∈ C|λ| = 1}.

Proof: By Lemma 5.4 σ(u) ⊆ {λ ∈ C||λ| ≤ 1. Since u is invertible we
have σ(u) = σ(u∗) = σ(u)−1. It follows that σ(u) ⊆ {λ ∈ C||λ| = 1}.

Lemma 5.6. If x ∈ B, x = x∗ then σ(x) ⊆ [−‖x‖1, ‖x‖1].

Proof: The proof is similar to the case of C∗-algebras.
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6. Module of a self-adjoint element from B.
We call an element x ∈ B positive, x ≥ 0, if x̃ ≥ 0.
The goal of this section is to prove that for any self-adjoint element

x ∈ B there exists an unique positive y ∈ B such that y2 = x2.

Theorem 6.1. Let u be a unitary element of B. Then the mapping
T � x �→ uxu∗ ∈ B is a ∗-automorphism of a finite Rickart C∗-algebra
T .

Proof: Set A = uTu∗. Obviously A is a ∗-algebra with a C∗-norm
‖ · ‖1. Let {xn} be a ‖ · ‖1-fundamental sequence in A. Then there exists
a sequence {tn} such that xn = utnu∗. Since

‖tn − tm‖ = ‖tn − tm‖1 = ‖u∗(utnu∗ − utmu∗)u‖1 ≤ ‖xn − xm‖1,

hence the sequence {tn} is fundamental in T . Let t = lim
n→∞

tn. Then

clearly that the sequence {utnu∗} converges to utu∗ in the norm ‖ · ‖1.
Thus A is a C∗-algebra. Clearly, that P (A) ⊂ P (Q). On the other
hand, any projection e ∈ P (T ) can be written as u(u∗eu)u∗. Since
u∗eu ∈ P (Q) = P (T ) ([9]) we conclude that P (A) = P (T ). By spectral
theory, it follows that A = T .

The next Corollary is a key result in proving an existence of a module
of self-adjoint element of B.

Corollary 6.2. Let u be a unitary element of B, t ∈ T . Then tu ∈ T
implies ut ∈ T .

Proof: Since ut = u(tu)u∗, by using Theorem 6.1 we have ut ∈ T .

Proposition 6.3. Let x ∈ B and SDD (en) such that xen, enx ∈ T
for all n ∈ N. Then x = [yn, en], where yn = xen + enx − enxen.

Proof: Let x = [xn, pn], qn = pn

∧
en. By using Lemma 4.7,

xnqn = xqn = (xen + enx − enxen)qn = ynqn, xnqn = ynqn.

In analogy, qnxn = qnyn.

Lemma 6.4. Let u = [un, en] be a unitary element of B. Then for
any k ∈ N one can write uk = [xn, en] for a suitable sequence {xn}.

Proof: By Lemma 4.7, uen = unen for all n. Let f = uenu∗, then
fu ∈ T . By using Corollary 6.2 we obtain that uf ∈ T . Therefore
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u2en = ufu = uffu ∈ T . Now let g = ufu∗. Obviously gu ∈ T . By
Corollary 6.2 it follows ug ∈ T . Hence

u3en = uu2en = uufu = ugufu ∈ T .

Inductively, applying the same k times, we obtain that uken ∈ T and so
(Corollary 6.2) enuk ∈ T for all n.

Now we can get the sequence {xn}. As it was shown above,

uken + enuk − enuken ∈ T .

Put xn = uken + enuk − enuken, where xn ∈ T . By Proposition 6.3,
[xn, en] = uk.

Lemma 6.5. Let {x(k)} be a ‖ · ‖-fundamental sequence in B. And
let a SDD (en) such that x(k)en, enx(k) ∈ T for all n and k. Then the
sequence {x(k)} converges to some element x ∈ B in the norm ‖ · ‖1.

Proof: Let ‖x(k) − x(l)‖1 ≤ ε/3. By Proposition 6.3, x(k) = [y(k)
n , en],

where y(k)
n = x(k)en + enx(k) − enx(k)en. For fixed n, we have

‖y(k)
n − y(l)

n ‖ = ‖y(k)
n − y(l)

n ‖1

= ‖(x(k) − x(l))en + en(x(k) − x(l)) − en(x(l) − x(k))en‖1 ≤ ε.

Thus, {y(k)
n }k is fundamental in T . Set yn = limk→∞ y

(k)
n . Now we show

that [yn, en] is a MO. Let m ≤ n, then

‖ynem−ymem‖ = ‖(yn−y(k)
n )em+(y(k)

n −y(k)
m )em+(y(k)

m −ym)em‖ ≤ δ(k).

Since ‖(ynem − ymem‖ das not depend on k we can conclude ‖ynem −
ymem‖ = 0, ynem = ymem. In just the same way, emyn = emym. Put
x = [yn, en]. It remains to prove that the sequence x(k) converges to x
in the norm ‖ · ‖1. We have

‖x − x(k)‖1 = ‖[yn − y(k)
n , en]‖1 = ‖[ynen − y(k)

n en, pn]‖1

for a suitable SDD (pn). Note that y(k)
n en = x(k)en. Identifying y(k)

n , en,
yn and x(k) with their images ỹn

(k)
, ẽn, ỹn and x̃(k) in B̃, we obtain the

following relations:

ỹn
(k)
ẽn = x̃(k)ẽn, ỹnẽn = ‖ · ‖1 − lim

k→∞
ỹn

(k)
ẽn.



Polar decomposition in Rickart C∗-algebras 17

Since {x̃(k)} is a ‖ · ‖1-fundamental, there exists ỹ ∈ B̃ such that ỹ =
‖ · ‖1 − lim

k→∞
ỹ(k). Hence,

ỹnẽn = ‖ · ‖1 − lim
k→∞

ỹn
(k)
ẽn = ‖ · ‖1 − lim

k→∞
x̃(k)ẽn = ỹẽn.

It yields

‖x − x(k)‖1 ≤ sup
n

‖ynen − y(k)
n en‖

= sup
n

‖ỹnẽn − ỹn
(k)
ẽn‖1 = sup

n
‖ỹẽn − x̃(k)ẽn‖

≤ sup
n
{‖ỹ − x̃(k)‖1‖en‖} = ‖ỹ − x̃(k)‖1 → 0

for k → ∞.

Theorem 6.6. If x = x∗ ∈ B, then there exists a positive element
a ∈ B such that a2 = x2.

Proof: We have x = i(1+u)(1−u)−1, where u = [un, en] is the Cayley
transform of x. Then x2 = xx∗ = (2 + u + u∗)(2 − u − u∗)−1. Observe
the sequence

y(l) = ‖2 + u + u∗‖
1
2
1

(
1 +

l∑
k=1

ck(1 − (2 + u + u∗)/‖2 + u + u∗‖1)k

)
,

where ck are coefficients of Taylor series for a function f(a) =
√

1 − a on

[0, 1]. Since ˜(2 + u + u∗) ≥ 0 the sequence {ỹ(l)} is ‖ · ‖1-fundamental
in B̃ and therefore so is {y(l)} in B. But all the members of the sum

l∑
k=1

ck(1 − (2 + u + u∗)/‖2 + u + u∗‖1)k

are linear combinations of the degrees of u, u∗ and 1. By combining
Lemma 6.4 and Lemma 6.5 the sequence {y(l)} ‖ · ‖1-converges to some

element y ∈ B. Clearly that ỹ2 = ˜(2 + u + u∗), hence y2 = 2 + u + u∗.
Similarly, we can find an element z ∈ B such that z2 = 2−u−u∗. Note

that all elements y, (2−u−u∗), z, (2+u+u∗), (2−u−u∗)−1 mutually
commute. Consequently, zz(2 − u − u∗)−1 = z(2 − u − u∗)−1z = 1, i.e.
z is invertible. Finally, puting a = yz−1, we obtain a2 = x2. Evidently,
that a ∈ B and such a is positive and unique.
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7. Polar decomposition.
In this section we prove the main result of the paper: all Rickart C∗-

algebras satisfy polar decomposition.

Theorem 7.1. Let T be a finite Rickart C∗-algebra. Then the alge-
bras B and T coincide.

Proof: We shall prove this statement as a spectral theorem for self-
adjoint element of B. Each operator x = x∗ ∈ B will be approximated
(in norm ‖ · ‖1) by means of simple operators of T .

For self-adjoint x ∈ B write |x| = (x2)
1
2 , x+ = (|x| + x)/2, x− =

(|x| − x)/2. Note that x+ − x− = x, x+ + x− = |x|, x+x− = 0. If
x = x∗ ∈ B then {x}′′

B = A is a commutative Rickart ∗-algebra (see [4,
p. 17] with C∗-norm ‖ · ‖1. It is easy to see that |x|, x+, x− ∈ A.

Lemma 7.2. Let x ∈ B, x = x∗. The family of the projections
eλ = s[(λ1 − x)+] holds the following properties:

(a) eµ ≥ eλ for µ ≥ λ;
(b) supλ eλ = 1;
(c) infλ eλ = 0;
(d) If µ1 ≥ µ2 ≥ λ1 ≥ λ2 then (eµ1 − eµ2)(eλ1 − eλ2) = 0.

Proof: (a) Let λ ≤ µ, then λ1 − x ≤ µ1 − x. Set {x}′′

B = A, a =
(λ1 − x)+, b = (µ1 − x)+. Then a, b ∈ A. Put s(a) = e, s(b) = f . By
[4, p. 17], e, f ∈ A. Since Ã is commutative C∗-algebra we have a ≤ b.
Observe,

a(1 − f) = (1 − f)a(1 − f) ≤ (1 − f)b(1 − f) = 0,

hence f ≥ e.
(b) Let e = supλ eλ. Then λ(1 − e) ≤ λ(1 − eλ) for all λ ∈ R+.

Further,
λ1 − x = (λ1 − x)+ − (λ1 − x)− ≤ (λ1 − x)+.

In addition,

eλ(λ1 − x) = eλ[(λ1 − x)+ − (λ1 − x)−] = (λ1 − x)+.

Hence λ(1 − eλ) ≤ (1 − eλ)x and thus λ(1 − e) ≤ (1 − eλ)x.
Note since

(1 − eλ)x ≤ ‖x‖1,
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consequently, 1 − e ≤ ‖x‖
λ . If e = 1 then

1 = ‖1 − e‖ ≤ ‖|x|‖1/λ

for all λ > 0, a contradiction.
(c) Using the inequality |λ|eλ ≤ eλx, repeat the proof of (b).
(d) It follows immediatly from (a).

Now one can begin to approximate an operator x.
By Lemma σ(x) ⊆ [−‖x‖1, ‖x‖1]. Let α ∈ R, ‖x‖1 ≤ α. Take an

arbitrary partition of the segment [−α, α]:

−α = λ1 ≤ λ2 ≤ · · · ≤ λk−1 ≤ λk = α.

Consider the elements un = λn(eλn − eλn−1). Observe that

λ(eµ − eλ) ≤ (eµ − eλ)x ≤ µ(eµ − eλ)

for µ ≥ λ. It follows that

un − x(eλn − eλn−1) ≤ δ(eλn − eλn−1),

where δ = maxk{λi − λi−1}. Note un − x(eλn − eλn−1) ≥ 0. Construct
an integral sum

σ =
k∑

n=1

λn(eλn − eλn−1).

Set λ ≥ α, then λ1− x ≥ ε1 for some ε ≥ 0. Consequently, (λ1− x)+ =
λ− x. Since λ ∈ σ(x), we obtain s((λ− x)+) = 1. So eλ = 1 for λ ≥ α.
In analogy, eλ = 0 for λ ≤ −α. We have,

σ − x =
k∑

n=1

(un − x(eλn − eλn−1)) ≤
k∑

n=1

δ(eλn−eλn−1) = δ1.

Therefore, 0 ≤ σ − x ≤ δ1, so ‖σ − x‖1 ≤ δ. Thus, each self-adjoint
operator x ∈ B can be approximated by the simple elements from T
in the norm ‖ · ‖1. It follows that T is dense in B and therefore these
C∗-algebras coincide.

Corollary 7.3. The partial isometries are ℵ0-addable.

Proof: Let (ei) and (fi) are sequences of ortogonal projections such
that ei = uiu

∗
i and fi = u∗i ui. Put

vn =
n∑

i=1

ui, kn =
n∑

i=1

ei, tn =
n∑

i=1

fi, e =
∨
i

ei, f =
∨
i

fi.

Then the sequences (pn = e⊥ + kn) and (qn = f⊥ + tn) are SDD. Set
dn = pn

∧
qn. Clearly that v = [vn, dn] is MO from B. By previous

theorem, there exists v ∈ T such that v = v. It is easy to see that
vu∗i ui = ui, uiu

∗
i v = ui for all i ∈ N.
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Corollary 7.4. All Rickart C∗-algebras satisfy polar decomposition.

Proof: By [1, Th. 3.4], this assertion is reduced to a finite case. Now
combine Corollary 7.3 and [1, Prop. 2.1] and the Corollary follows.

Corollary 7.5. Let T be a Rickart C∗-algebra, then the matrix alge-
bras Mn(T ) over T are also Rickart C∗-algebras for all n ∈ N.

Proof: See [1, Th. 3.5].

8. Axiom (PSR) in Q.
Using Theorem 7.1 and the methods of [3], [11] or [6], we can describe

the self-adjoint elements in Q.

Theorem 8.1. Let x = x∗ ∈ Q, u = u (u ∈ T ) its Cayley transform.
One can write x = [xn, en] with xn, en ∈ {u}′′, x∗n = xn, xnen = xn,
x2

n ↑.

Proof: See [3, Th. 4.2].

An element x ∈ Q is positive, written x ≥ 0, if x = y∗y for some
y ∈ Q.

Theorem 8.2. Let x = x∗ ∈ B, u = u its Cayley transform. The
following conditions are equivalent:

a) x ≥ 0;
b) one can write x = [yn, fn] with yn ≥ 0;
c) the spectrum of u contained in {eiΘ : −π ≤ Θ ≤ 0};
d) one can write x = [xn, en] with xn, en ∈ {u}′′, xn ≥ 0, xnen =

xn.

Proof: See [3, Th. 6.1].

Corollary 8.2. Q satisfies axiom (PSR).

Proof: See [3, Cor. 6.2].
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