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THE FREUDENTHAL SPACE
FOR APPROXIMATE SYSTEMS

OF COMPACTA AND SOME APPLICATIONS

Ivan Lončar

Abstract
In this paper we define a space σ(X) for approximate systems
of compact spaces. The construction is due to H. Freudenthal
for usual inverse sequences [4, p. 153–156]. We stablish the fol-
lowing properties of this space: (1) The space σ(X) is a para-
compact space, (2) Moreover, if X is an approximate sequence
of compact (metric) spaces, then σ(X) is a compact (metric)
space (Lemma 2.4). We give the following applications of the
space σ(X): (3) If X is an approximate system of continua, then
X = limX is a continuum (Theorem 3.1), (4) If X is an approx-
imate system of hereditarily unicoherent spaces, then X = limX
is hereditarily unicoherent (Theorem 3.6), (5) If X is an approxi-
mate system of trees with monotone onto bonding mappings, then
X = limX is a tree (Theorem 3.13).

1. Introduction

Let U be any covering of a space X. For any subset Y of X we define
St(Y,U) = ∪{U ∈ U : U ∩ Y �= ∅}.

Similarly, we define StU = {St(U,U) : U ∈ U}. Inductively, for each
positive integer n, Stn U = St(Stn−1 U), where St1 U = StU .

We say that a cover V is a star refinement of a cover U if the cover
StV is a refinement of U .

An open cover W of a space X is normal [3, p. 379] if there exists a
sequence W1,W2, . . . of open covers of the space X such that W1 = W
and Wi+1 is a star refinement of Wi for i = 1, 2, . . . A T1 space X is
paracompact iff each open cover of X is normal [3, Theorem 5.1.12]. A
T1 space X is normal iff each locally finite open cover of X is normal [3,
p. 379].

The set of all normal covers of X is denoted by Cov(X).
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If U , V ∈ Cov(X) and V refines U , we write V ≺ U . If f , g : Y → X
are U-near mappings, i.e. if for any y ∈ Y there exists U ∈ U with f(y),
g(y) ∈ U , we write (f, g) ≺ U .

Approximate inverse systems were introduced by S. Mardešić and
L. R. Rubin [11] for compacta and by S. Mardešić and Watanabe [12]
for general topological spaces.

Definition 1.1. An approximate inverse system X = {Xa,Ua, pab, A}
consists of the following data: A preordered set (A,≤) which is directed
and has no maximal element; for each a ∈ A, a topological space Xa and
a normal covering Ua of Xa (called the mesh of Xa) and for each pair
a ≤ b from A, a mapping pab : Xb → Xa. Moreover the following three
conditions must be satisfied:
(A1) The mappings pabpbc and pac are Ua-near, a ≤ b ≤ c, i.e.

(pabpbc, pac) ≺ Ua.
(A2) For each a ∈ A and each normal cover U ∈ Cov(Xa) there is b ≥ a

such that (pacpcd, pad) ≺ U , whenever a ≤ b ≤ c ≤ d.
(A3) For each a ∈ A and each normal cover U ∈ Cov(Xa) there is b ≥ a

such Uc ≺ p−1
ac (U) = {p−1

ac (U) : U ∈ U} for each c ≥ b.
In the case of metric compact spaces we replace the normal coverings

by real numbers [11].
If the spaces Xa are T1 paracompact, then in the above definition one

can use all open coverings on the spaces Xa, a ∈ A, since in this case
each open cover is normal.

Definition 1.2. An approximate map p = {pa : a ∈ A} : X → Xa

into an approximate inverse system X = {Xa,Ua, pab, A} is a collection
of maps pa : X → Xa, a ∈ A, such that the following condition holds
(AS) For any a ∈ A and any U ∈ Cov(Xa) there is b ≥ a such that

(pacpc, pa) ≺ U for each c ≥ b. (See [12].)

Definition 1.3. Let X = {Xa,Ua, pab, A} be an approximate inverse
system and let p = {pa : a ∈ A} : X → Xa be an approximate map. We
say that p is a limit of X provided it has the following universal property
[12, p. 592]:
(UL) For any approximate map q = {qa : a ∈ A} : Y → Xa of a space

Y there exists a unique map g : Y → X such that pag = qa for
any a ∈ A.

Remark 1.4. If p : X → X is a limit of X, then the space X is
determined up to a unique homeomorphism. Therefore, we often speak
of the limit X of X and we write X = limX.
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Definition 1.5. Let X = {Xa,Ua, pab, A} be an approximate system.
A point x = (xa) ∈

∏
{Xa : a ∈ A} is called a thread of X provided it

satisfies the following condition:

(L) (∀ a ∈ A)(∀U ∈ Cov(Xa))(∃ b ≥ a)(∀ c ≥ b)pac(xc) ∈ st(xa,U).

Remark 1.6. If Xa is a T3.5 space, then the sets st(xa,U), U ∈
Cov(Xa), form a basis of the topology at the point xa. Therefore, for
an approximate system of Tychonoff spaces condition (L) is equivalent
to the following condition:

(L)∗ (∀ a ∈ A) lim{pac(xc) : c ≥ a} = xa.

The following theorem shows that the set of threads is a limit of X.

Theorem 1.7. Let X = {Xa,Ua, pab, A} be an approximate inverse
system. Let X ⊂

∏
Xa be the set of all threads of X and let pa : X → Xa

be the restriction pa = πa|X of the projection πa :
∏
Xa → Xa, a ∈ A.

Then p = {pa : a ∈ A}X → X is a limit of X.

Proof: See [12, Theorem (1.14)].

The canonical limit of X is the set of all threads of X [12, p. 593].

Theorem 1.8. For any approximate inverse system X the canonical
limit limX is closed in

∏
Xa. Moreover, if all Xa are compact and

non-empty, then limX is compact and non-empty.

Proof: See the proof of Lemma (1.16) and Theorem (4.1) of [12].

Lemma 1.9. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of Tychonoff spaces, let X be the canonical limit of X and let
B ⊆ A be a cofinal subset of A. Then the collection B of all sets of
the form p−1

b (Ub), where b ∈ B and Vb ⊆ Xb is open, is a basis of the
topology for X.

Proof: See [12, (1.18) Lemma].

Theorem 1.10. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of compact Hausdorff spaces with limit X. For each closed F ⊆ X
we have

F =
⋂

{p−1
a (pa(F )) : a ∈ A}.

Proof: It is obvious that F ⊆ p−1
a (pa(F )) for each a ∈ A. Thus, F ⊆

∩{p−1
a (pa(F )) : a ∈ A}. If x /∈ F , then, by Lemma 19 we infer that there

exists an a ∈ A and an open set Ua ⊆ Xa such that x ∈ p−1
a (Va) ⊆ X−F .

This means that pa(x) /∈ pa(F ) and x /∈ p−1
a (pa(F )).
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2. The Freudenthal space σ(X)

The following construction is similar to the construction due to
H. Freudenthal [4, p. 153] for usual inverse sequences. For any usual
inverse system see [10].

Let X = {Xa,Ua, pab, A} be an approximate inverse system of compact
Hausdorff spaces with limit X and the projections pa : X = limX → Xa.
The Freudenthal space σ(X) associated to X is the set

(1) σ(X) = X
⋃ (⋃

{Xa : a ∈ A}
)

where all Xa and their limit X are considered as being disjoint sets [10],
in which a topology is defined as follows. If Ua is an open set in Xa, let

(2) U∗
a =

⋃
{p−1

ab (Ua) : b ≥ a}
⋃
p−1

a (Ua).

Now, we define a topology T on σ(X) by a base [3, p. 27] B which consists
of all open sets Ua in all Xa and all U∗

a for all open sets Ua ⊆ Xa, a ∈ A.
Since the sets p−1

a (Ua) form a basis for X, it follows that B is a cover of
σ(X). By virtue of [3, p. 27] we need to prove that for each x ∈ σ(X)
and each pair B, C ∈ B with x ∈ B ∩ C there is a D ∈ B such that
x ∈ D ⊆ B ∩ C. It suffices to prove this statement if B is some U∗

a

and C is some U∗
b . If x is a point of Xc, then x is contained in a set

p−1
ac (Ua) ∩ p−1

bc (Ub) which is open in Xc and thus belongs to B. If x is a
point of X, then

(3) z ∈ p−1
a (Ua)

⋂
p−1

b (Ub)

i.e., xa = pa(x) ∈ Ua, and xb = pb(x) ∈ Ub. Choose Va ∈ Cov(Xa),
Vb ∈ Cov(Xb) such that

(4) St(xa,Va) ⊆ Ua and St(xb,Vb) ⊆ Ub.

Take Wa ∈ Cov(Xa), Wb ∈ Cov(Xb) such that St2 Wa ≺ Va, St2 Wb ≺
Vb and c ∈ A such that c ≥ a, b, (A2) and (A3) hold for a, b, Wa, Wb

and (L) holds for x, a, b, Wa, Wb. Put

(5) Vc = St(xc,Uc).

Since x ∈ p−1
c (Vc) ⊆ V ∗

c , the proof will be complete if we show that

(5.1) V ∗
c ⊆ U∗

a

⋂
U∗

b .



The Freudenthal space for approximate systems 219

We first prove that

(6) p−1
c (Vc) ⊆ p−1

a (Ua)
⋂
p−1

b (Ub).

Consider a point y = (ya) ∈ p−1
c (Vc). By (5) there is a U1 ∈ Uc such

that

(7) xc, yc ∈ U1.

By the choice of c (property (A3)) Uc ≺ p−1
ac (Wa) and Uc ≺ p−1

bc (Wb).
This means that there is a W1 ∈ Wa and W2 ∈ Wb such that U1 ⊆
p−1

ac (W1) and U1 ⊆ p−1
bc (W2). Thus, (7) implies

(8) pac(xc), pac(yc) ∈W1 and pbc(xc), pbc(yc) ∈W2.

By the choice of c (property (L)), there are W3 ∈ Wa, W4 ∈ Wb such
that

(9) xa, pac(xc) ∈W3 and xb, pbc(xc) ∈W4.

Since y ∈ p−1
b (Ub) ⊆ X, there is a d ≥ c satisfying (L) for y, a, Wa and

for y, b, Wb. Thus, there exist a W5 ∈ Wa, W6 ∈ Wb and U4 ∈ Uc such
that

(10) pad(yd), ya ∈W5 and pbd(yd), yb ∈W6

and

(11) pcd(yd), yc ∈ U4.

By the choice of c (property (A3)), Uc ≺ p−1
ac (Wa) and Uc ≺ p−1

bc (Wb).
Hence, there exist a W7 ∈ Wa and W8 ∈ Wb such that U4 ⊆ p−1

ac (W7)
and U4 ⊆ p−1

bc (W8). By (11) we have

(12) pacpcd(yd), pac(yc) ∈W7 and pbcpcd(yd), pbc(yc) ∈W8.

By the choice of c (property (A2)), we also have a W9 ∈ Wa and W10 ∈
Wb such that

(13) pacpcd(yd), pad(yd) ∈W9 and pbcpcd(yd), pbd(yd) ∈W10.

Now, (9), (8), (12), (13), (10), St2 Wa ≺ Va and St2 Wa ≺ Vb yield a
V ′ ∈ Va and a V ′′ ∈ Vb such that xa, ya ∈W1∪W3∪W5∪W7∪W9 ⊆ V ′

and xb, yb ∈ W2 ∪ W4 ∪ W6 ∪ W8 ∪ W10 ⊆ V ′′. This and (4) imply
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pa(y) = ya ∈ St(xa,Va) ⊆ Ua and pb(y) = yb ∈ St(xb,Vb) ⊆ Ub. This
means that y ∈ p−1

a (Ua)∩p−1
b (Ub), i.e., (6) is proved. It remains to prove

(14) p−1
cd (Vc) ⊆ p−1

ad (Ua)
⋂
p−1

bd (Ub) ∀ d ≥ c.

Let zd ∈ p−1
cd (Vc). By (5) there is a U11 ∈ Uc such that

(15) xc, pcd(zd) ∈ U11.

By the choice of c (property (A3)) there is a W11 ∈ Wa and a W12 ∈ Wb

such that U11 ⊆ p−1
ac (W11) and U11 ⊆ p−1

bc (W12). Thus, (15) implies

(16) pac(xc), pac(pcd(zd)) ∈W11 and pbc(xc), pbc(pcd(zd)) ∈W12.

By (A2) we infer there are W13 ∈ Wa and W14 ∈ Wb such that

(17) pacpcd(zd), pad(zd) ∈W13 and pbcpcd(zd), pbd(zd) ∈W14.

From (9), (16) and (17) it follows xa, pad(zd) ∈ StVa and xb, pbd(zd) ∈
StVb. By (4) pad(zd) ∈ Ua and pbd(zd) ∈ Ub. We infer that zd ∈
p−1

ad (Ua)∩p−1
bd (Ub) and (14) is proved. Hence, we have x ∈ V ∗

c ⊆ U∗
a ∩U∗

b ,
i.e., (5.1) is proved. This means that B is a basis for some topology T
on σ(X).

Now, we will prove that T is a Hausdorff topology. Let x, y be a pair
of distinct points in σ(X). If x, y /∈ limX, then there exists a pair a,
b ∈ A such that x ∈ Xa, y ∈ Xb. If a = b, then x and y have disjoint
neighborhoods since Xa is a Hausdorff space. If a �= b, then Xa and
Xb are disjoint neighborhoods (in σ(X)) of x and y respectively. Now,
suppose that x ∈ limX and y /∈ limX. Let y ∈ Xb for some b ∈ A.
By virtue of Lemma 1.9 there is a c > b and an open set Uc such that
p−1

c (Uc) is a neighborhood of x in limX. It is clear that Xb and V ∗
c are

disjoint neighborhoods of y and x in σ(X). Finally, let x, y ∈ limX.
Since limX is a Hausdorff space, there are open (in limX) disjoint sets
U and V such that x ∈ U and y ∈ V . By virtue of Lemma 1.9 there
exists a b ∈ A and open sets Ub and Vb such that x ∈ p−1

b (Ub) ⊆ U and
y ∈ p−1

b (Vb) ⊆ V . It follows that Ub and Vb are disjoint since U and V
are disjoint. Hence, U∗

b and V ∗
b are disjoint. Thus, σ(X) is a Hausdorff

space.
A net in a topological space X [3, p. 73] is an arbitrary function from

a non-empty directed set D to the space X. Nets will be denoted by
N = {xd : d ∈ D}. A point x ∈ X is called a limit of a net N = {xd :
d ∈ D} if for every neighborhood U of x there is a d0 ∈ D such that
xd ∈ U for each d ≥ d0. We say that the net N converges to x. A point
x ∈ X is called a cluster point of a net N = {xd : d ∈ D} if for every
neighborhood U of x and every d0 ∈ D there exists a d ≥ d0 such that
xd ∈ U .
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Lemma 2.1. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of non-empty compact Hausdorff spaces with limit X.

1. If A′ is a cofinal subset of A, then each family N = {xa : xa ∈
Xa, a ∈ A′} is a net in σ(X) which has at least one cluster point
x (in the topology T ) such that x ∈ X ⊆ σ(X).

2. Each point x ∈ X is the limit (in the topology T ) of the net
{pa(xa) : a ∈ A}.

Proof: For each a ∈ A we consider the net Na = {pab(xb) : b ∈ A′, b ≥
a}. From the compactness of Xa it follows that the set Ca of all cluster
points of Na is non-empty. Clearly, each Ca is closed and compact in
Xa. First, we prove

(a) For each a ∈ A Ca is a non-empty subset of pa(X).
If we suppose that some ca ∈ Ca\pa(X), then ca and pa(X) respectively,
have disjoint neighborhoods U and V . By virtue of the property (B3)
[12, p. 606, 615] there is a b ≥ a such that pac(Xc) ⊆ V for each c ≥ b,
c ∈ A′. This is impossible since there exists c ≥ b such that pac(xc) ∈ U
(ca is a cluster point of the net Na).

From (a) it easily follows that
(b) For each a ∈ A the set p−1

a (Ca) is non-empty.
By (b) there is ya ∈ p−1

a (Ca) ⊆ limX, a ∈ A′. Since limX is compact,
there is a cluster point y ∈ limX of the net Y = {ya : a ∈ A′}. Let us
prove

(c) pa(y) ∈ Ca, a ∈ A.
It suffices to prove that for each neighborhood Ua of pa(y) and each

b0 there exists a d ≥ b0 such that pad(xd) ∈ Ua. Let U be a normal cover
of Xa such that

(18) St2(pa(y),U) ⊆ Ua.

Let U1 ∈ U be such that pa(y) ∈ U1. Then p−1
a (U1) is a neighborhood

of y. The set B of all b ∈ A′ with yb ∈ p−1
a (U1) is cofinal in A′ since y

is a cluster point of Y. By virtue of (AS) the set B′ ⊆ B of all b ∈ B,
b ≥ b0, such that

(19) (pa, pabpb) ≺ U

is cofinal in A. Similarly, by (A2), the set B′′ ⊆ B′ of all b ∈ B′ such
that

(20) (pac, pabpbc) ≺ U , c ≥ b
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is cofinal in A. Let b ∈ B′′. Then yb ∈ p−1
a (U1). Thus

(21) pa(y), pa(yb) ∈ U1.

By virtue of (19) it follows

(22) pa(yb), pabpb(yb) ∈ U2 ∈ U .
This and (21) imply

(23) pabpb(yb) ∈ St(pa(y),U).

Now, pb(yb) ∈ Cb since yb ∈ p−1
b (Cb). We infer that p−1

ab (St(pa(y),U)) is
a neighborhood of pb(yb). Since pb(yb) is a cluster point of Na there is
a d ≥ b ≥ b0, d ∈ A′ such that pbd(xd) ∈ p−1

ab (St(pa(y),U)). This means
that pab(pbd(xd)) ∈ St(pa(y),U). Using (20), pad(xd) ∈ St2(pa(y),U).
Thus, by (18)

(24) pad(xd) ∈ Ua.

We infer that pa(y) ∈ Ca, i.e., y ∈ p−1
a (Ca) for each a ∈ A.

(d) The point y is a cluster point (in the topology T ) of N .
This follows from (24) since xd ∈ p−1

ad (Ua). This means that for each
neighborhood U∗

a of y and each b0 ∈ A there is a d ≥ b0, d ∈ A′, such
that xd ∈ U∗

a .
The proof of Lemma 2.1 is complete since the second statement easily

follows from the definition of the topology T on σ(X).

Lemma 2.2. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of compact Hausdorff spaces. If U is a neighborhood of X = limX
in σ(X), then there exists a ∈ A such that Xb ⊆ U for each b ≥ a.

Proof: Since X is compact and since the sets (2) form a basis for the
neighborhoods of the points of X, one can find {U∗

ai
: i = 1, . . . , n} such

that

(25) V =
⋃

{U∗
ai

: i = 1, . . . , n}
and X ⊆ V ⊆ U . In order to complete the proof, it suffices to find an
a ∈ A, a ≥ a1, . . . , an such that

(26) Xa ⊆ V
since then we have

(27) Xb ⊆ V ⊆ U, b ≥ a.
Suppose that no a ∈ A satisfies (26). This means that for each a ∈ A
there is xa ∈ Xa − V . We obtain a net {xa : a ∈ A} in σ(X) which has
no cluster point in V ⊇ X. This contradicts Lemma 2.1. The proof is
complete.
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Lemma 2.3. Let X = {Xa,Ua, pab, A} be an approximate inverse sys-
tem of compact Hausdorff spaces. Then σ(X) is paracompact. Moreover,
if X is an approximate sequence, then σ(X) is compact.

Proof: Let V = {Vµ} be any cover of σ(X). Since X is compact, there
is a finite subcollection, consisting of sets Vµ(1), . . . , Vµ(n) which cover
X. Let V be the union of this subcollection. By virtue of Lemma 2.2
there is an a ∈ A such that all Xb, b ≥ a, are in V . Let us recall that
the set X∗

a = (∪{Xb : b ≥ a} ∪X is of type (2) with Ua = Xa and it is
open in σ(X). Now consider the following collection U of open sets of
σ(X): take first the open sets X∗

a ∩ Vµ(1), . . . , X
∗
a ∩ Vµ(n) for members

of U . Furthermore, for each b ∈ A − {c : c ∈ A, c ≥ a} consider the
open covering {Xb ∩Vµ} of Xb and take members of a finite subcovering
as new members of U . This is possible since Xb is compact and open
in σ(X). The family U of open sets of σ(X) is a star-finite covering
of σ(X) which refines the covering V. Moreover, U is a locally finite
refinement of V. The proof of paracompactness is complete. If X is an
approximate sequence, then we obtain a finite subcovering since the set
A− {c : c ∈ A, c ≥ a} is finite. The proof is complete.

Theorem 2.4. Let X = {Xn, εn, pmn, N} be an approximate inverse
sequence of compact metric spaces Xn. Then σ(X) is a compact metric
space.

Proof: Each space Xn has a countable base Bn [3, 4.1.15 Theorem].
It follows that the family B∗ = {U∗ : U ∈ Bn : n ∈ N} is countable. It
is obvious that the union B = {Bn : n ∈ N} ∪ B∗ is a countable base for
topology T . Thus σ(X) is metrizable [3, p. 351].

We close this section with the following theorem which is similar to
the theorem for usual inverse systems of compact Hausdorff spaces due
to S. Mardešić [10, Theorem 4] (see Theorem 4.2 of [12]).

Theorem 2.5. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of compact Hausdorff spaces and let f : X → R be a mapping of
their limit into a simplicial complex. Then there exists an a ∈ A such
that for each b ≥ a one can define a mapping fb : Xb → R with the
property that fbpb is homotopic to f .

3. Applications

In this section we give some applications of the space σ(X). We start
with
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Theorem 3.1. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of Hausdorff continua. The space X = limX is a continuum.

Proof: By virtue of 1.8 X is a compact. Suppose that X is not con-
nected. There is a pair F , G of non-empty closed (in X) disjoint subsets
of X. Since X is closed in σ(X), the sets F and G are closed in the
normal space σ(X) (Lemma 2.3). There are two disjoint open (in σ(X))
sets U and V which contain F and G. By virtue of Lemma 2.2 there is
a ∈ A such that Xb is contained in U ∪V for each b ≥ a. We shall prove
that Xb intersects U and V for sufficiently large b. If x is a point of F ,
then there is an a1 ∈ A such that for each c ≥ a1 there is an open set
Uc ⊆ Xc for which U∗

c is a neighborhood of x contained in U . Hence,
if b ≥ a, then Xb intersects U . Similarly, there is a2 ∈ A such that
Xb intersects V for each b ≥ a2. Thus, there is a b ∈ A such that Xb

intersects both U and V and is contained in U ∪ V . This is impossible
since Xb is connected.

In the sequel we use the notion of a net of sets in the sense of [13] or
[7, p. 343].

A net of sets {An : n ∈ D} of a topological space X is a function [13]
defined on a directed set D which assigns to each n ∈ D a subset An of
X.

If {An : n ∈ D} is a net of subsets of X, then:

1. The limit inferior LiAn is the set of all points x ∈ X such that
for every neighborhood U of x there exists n0 ∈ D such that U
intersect An for each n ≥ n0.

2. The limit superior LsAn is the set of all points x ∈ X such that
for every neighborhood U of x and each n0 ∈ N there is n ≥ n0

such that U intersect An.

A net {An : n ∈ D} is said to be topologically convergent (to a set A)
if LsAn = LiAn (= A) and in this case the set A will be denoted by
LimAn.

Lemma 3.2. Let {Cn : n ∈ D} be the net of subsets of a space X.
Let U be a neighborhood of LsCn such that X\U is compact. Then there
is a m ∈ D such that Cp ⊆ U for each p ≥ m.

Proof: Suppose, on the contrary, that for each m ∈ D there is a p ∈ D
such that Zp = Cp\U is non-empty. Let zp be any point of Zp and let P
be the set of all such p ∈ D. The net {zp : p ∈ P} has a cluster point z in
X\U . This is impossible since z ∈ LsCn ⊆ U . The proof is complete.
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Lemma 3.3. Let {Cn : n ∈ D} be the net of connected sets Cn of
a normal space X such that LiCn �= ∅. If for each neighborhood U of
LsCn the set X\U is compact, then LsCn is connected.

Proof: Suppose that LsCn is disconnected. This means that there are
disjoint closed nonempty subsets F and G of LsCn such that LsCn =
F ∪ G. The sets are closed in X since LsCn is closed in X. From the
normality of X it follows that there are two disjoint open sets U and
V such that F ⊆ U and G ⊆ V . This means that LsCn ⊆ U ∪ V .
Let LiCn ∩ U �= ∅. By virtue of Lemma 3.2 there is an m ∈ D such
that Cp ⊆ U ∪ V for each p ≥ m. Clearly, there is some p ≥ m such
that Cp intersects U (since LiCn ∩ U �= ∅) and Cp intersects V (since
V ∩LsCn �= ∅). This means that Cp ⊆ U∪V and U∩Cp �= ∅, V ∩Cp �= ∅.
This contradicts the connecteness of Cp.

Lemma 3.4. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of compact Hausdorff spaces. Let {Ca : a ∈ A, Ca ⊆ Xa} be a
net of continua such that LiCa ⊆ σ(X) is non-empty. Then LsCa is a
non-empty subcontinuum of X = limX ⊆ σ(X).

Proof: It is clear that LiCa ⊆ LsCa ⊆ X. Suppose that LsCa is
disconnected. We infer that there is a pair F , G of disjoint nonempty
closed subsets of LsCa such that LsCa = F ∪G. The sets F and G are
closed in X and in σ(X). There are disjoint open sets of σ(X) (since
σ(X) is normal) such that F ⊆ U and G ⊆ V . Let LiCa ∩ U �= ∅. We
claim that there is an a ∈ A such that Cb ⊆ U ∪V for each b ≥ a. In the
opposite case we obtain a net N = {xb : b ∈ A′, xb ∈ Cb\(U ∪V ), b ≥ a}
where A′ is cofinal in A. By virtue of Lemma 2.1 the net N has a cluster
point x in X. Clearly, x /∈ U ∪ V . This is impossible since x ∈ LsCa.
Thus, there is an a ∈ A such that Cb ⊆ U ∪ V , b ≥ a. It is clear that
there is a b ≥ a such that Cb intersects U (since LiCa ∩ U �= ∅) and V
(since V contains a point of LsCa). But, this is impossible since Cb is
connected and Cb ⊆ U ∪ V . The proof is complete.

Lemma 3.5. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of non-empty compact Hausdorff spaces with limit X. For each
closed F ⊆ X we have the net N (F ) = {pa(F ) : a ∈ A} and, for each
a ∈ A, the net Na(F ) = {pabpb(F ) : b ≥ a} such that

1. pa(F ) = LimNa(F ),
2. F = LimN (F ).

Proof: From the definition of thread it follows that pa(F ) ⊆ LiNa(F ).
On the other hand, from property (B2) [12, p. 601, 615] we infer that
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if x /∈ pa(F ), then x /∈ LsNa(F ). Thus, pa(F ) ⊇ LsNa(F ) ⊇ LiNa(F ).
Therefore, LimNa(F ) = pa(F ). From 2 of Lemma 2.1 we have F ⊆
LiN (F ). On the other hand, for each point y ∈ X\F there is a b ∈ A
such that pb(y) and pb(F ) have disjoint neighborhoods Ub and Vb. It
follows that U∗

b ∩ pc(F ) = ∅ for each c ≥ b. This means that y /∈ LsN ,
i.e., LsN ⊆ F . Finally, we have F = LsN = LiN = LimN and the
proof is complete.

We say that a space X is hereditarily unicoherent if for each pair C, D
of closed connected subsets of X the intersection C∩D is connected. For
continua this definition is equivalent (see [1, p. 187]) to the following:

D1. A Hausdorff continuum is hereditarily unicoherent if every two
points of it can be joined by exactly one irreducible continuum
between them.

Theorem 3.6. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of hereditarily unicoherent compact Hausdorff spaces. Then X =
limX is hereditarily unicoherent.

Proof: Let C, D be a pair of subcontinua of X. We must prove that
C∩D is connected. By virtue of the above lemma we have C = LimN (C)
and D = LimN (D). Each Fa = pa(C) ∩ pa(D) is connected since Xa is
hereditarily unicoherent. By virtue of 2 of Lemma 2.1 each point x of
C ∩D is a limit of the net {pa(x) : a ∈ A}. Thus, ∅ �= LiFa ⊇ C ∩D.
On the other hand for each y ∈ X\C ∩D we have y /∈ C or y /∈ D. Let
y /∈ C. By virtue of the definition of a base in X (Definition 1.9) there
is a b ∈ A such that pb(y) and pb(C) have disjoint neighborhoods Ub and
Vb. From 1 of the above lemma it follows that there is a c ≥ b such that
pbdpd(C) ⊆ Vb, d ≥ c. This means that U∗

b ∩ pd(C) = ∅, d ≥ c. We
infer that y /∈ LsFa. Thus, LsFa ⊆ C ∩D. From this and the relation
LiFa ⊇ C ∩D it follows C ∩D = LiFa. Similarly, C ∩D = LsFa. By
virtue of Lemma 3.4 LsFa is connected. Thus, C ∩D is connected and
the proof is complete.

By the same method of proof as in the proof of Theorem 3.6 we have

Theorem 3.7. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of Hausdorff continua. If all the spaces Xa are unicoherent and
if all pab are onto, then X = limX is unicoherent.

Remark 3.8. Without ontoness of the bonding mappings the approx-
imate limit of unicoherent continua need not be unicoherent since this is
not true for usual inverse limits [14, p. 228, Remark]. If X = {Xa, pab, A}
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is a usual inverse system of metric locally connected unicoherent con-
tinua, then the usual limit is unicoherent (without assuming the bond-
ing maps are onto) [14, p. 228, Remark]. This means that the following
question is natural:

Is it true that the approximate limit of an approximate system of met-
ric locally connected unicoherent continua and into bonding mappings is
unicoherent?

Now we give an affirmative answer to the above question. Firstly, we
give some necessary definitions.

Let S be the circle |z| = 1 in the complex plane. The space of the real
numbers we denote by R.

A continuous mapping f : X → S is said to be equivalent to 1 on a set
Y ⊆ X, written f ∼ 1 on Y , provided there exists a continuous mapping
φ : Y → R such that [17, p. 220] f(x) = eiφ(x), x ∈ Y .

Two mappings f1, f2 : X → S will be said to be exponentially equiv-
alent or simply equivalent on a set Y ⊆ X provided their ratio f1/f2 is
∼ 1 on Y [17, p. 225].

A space X will be said to have property (b) provided every mapping
f : X → S is ∼ 1 [17, p. 226].

A mapping f : X → S homotopic to the mapping f0 : X → S,
f0(x) = 1 for all x ∈ X, is said to be homotopic to 1 , f � 1.

In the sequel we need the following facts: (a) In order that a mapping
f : X → S be ∼ 1 it is necessary and sufficient that f be homotopic to 1
[17, p. 226]. (b) In order that two mappings f1, f2 : X → S be equivalent
onX it is necessary and sufficient that they be homotopic [17, p. 226]. (c)
Every connected space X having property (b) is unicoherent [17, p. 227].
(d) In order that a locally connected continuum have property (b) it is
necessary and sufficient that it be unicoherent [17, p. 228]. (e) IfX is any
space and f , g : X → Sn are two maps such that for each x ∈ X, f(x)
and g(x) are not antipodal, then f � g. In particular, a nonsurjective
f : X → Sn is always nullhomotopic [2, p. 316].

Theorem 3.9. Let X = {Xa, εa, pab, A} be an approximate inverse
sequence of locally connected unicoherent metric continua. Then X =
limX is unicoherent.

Proof: Let us prove that X has property (b). Let f : X → S be any
mapping. By virtue of Lemma 2.5 there is a a ∈ A such that for each
b ≥ a there is a mapping g : Xb → S such that gpb and f are homotopic.
Since Xb has property (b), then g � 1 and hence f � 1. This shows that
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X has property (b). By Theorem 3.1, X is a continuum. Hence by (c),
X is unicoherent.

A Hausdorff continuum is a tree if each pair of points is separated
by third point [16]. A Hausdorff continuum X is a tree iff X is locally
connected and hereditarily unicoherent [16].

A continuum X is smooth at a point p [15] provided that for each
subcontinuum K of X such that p ∈ K and for each open set V which
included K, there is an open connected set U such that K ⊆ U ⊆ V .
Clearly, if X is smooth at a point p ∈ X, then X is locally connected at
p. Moreover, X is locally connected if and only if X is smooth at each
of its points [9, p. 84]. A continuum I is irreducible between its points a
and b if no proper subcontinuum of I contains them. In the sequel we
use the following lemma which is part of Proposition 1 [15].

Lemma 3.10. Let p be a point of a Hausdorff continuum X. The
following conditions are equivalent:

(i) X is smooth at p,
(ii) for each convergent net xa ∈ X with limxa = x and for each

continuum I(p, x) irreducible between p and x there are continua
I(p, xa) each one irreducible between p and xa such that
Lim I(p, xa) = I(p, x).

Lemma 3.11. Let f : X → Y be a monotone surjection. If X and
Y are hereditarily unicoherent Hausdorff continua and if I(a, b) is irre-
ducible between a, b, then f(I(a, b)) is irreducible between f(a) and f(b),
i.e., I(f(a), f(b)) = f(I(a, b)).

Proof: Now, f−1(I(f(a), f(b))) is a continuum since f is monotone.
An application of D1 shows that f−1(I(f(a), f(b))) ⊇ I(a, b). Thus,
f(I(a, b)) ⊆ I(f(a), f(b)). On the other hand, f(I(a, b)) ⊇ I(F (a), f(b))
since I(f(a), f(b)) is irreducible between f(a) and f(b). Thus,
f(I(a, b)) = I(f(a), f(b)) and the proof is complete.

The following lemma is a generalization of Lemma 2.2 of [9].

Lemma 3.12. Let {Cn : n ∈ D} be a net of subcontinua of a Haus-
dorff continuum X. If x, y ∈ LiCn and the continuum LsCn is irre-
ducible between x and y, then the net {Cn : n ∈ D} is convergent.

Proof: Suppose, on the contrary, that the net {Cn : n ∈ D} is not
convergent, i.e., there is a c ∈ LsCn\LiCn. From c /∈ LiCn it follows
that there is a neighborhood U of c such that for each n ∈ D there is
m ∈ D, m ≥ n, such that Cm ∩ U = ∅. Let M be the set of all m ∈ D
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such that Cm ∩ U = ∅. The collection {Cm : m ∈ M} is a net in X\U
and a subnet of {Cn : n ∈ D}. This means that L = Ls{Cm : m ∈M} is
a nonempty subset of X\U and c ∈ U ⊆ X\L. Since Li{Cm : m ∈M} ⊇
Li{Cn : n ∈ D} by Lemma 3.3 L is connected, i.e., is a subcontinuum
of X. Moreover, x, y ∈ L since L = Ls{Cm : m ∈ M} ⊇ Li{Cm : m ∈
M} ⊇ Li{Cn : n ∈ D}. On the other hand, L ⊆ LsCn. From x, y ∈ L
and from the irreducibility of LsCn, it follows that L = LsCn. This is
impossible since c ∈ LsCn\LiCn = L\LiCn, and c /∈ L. The proof is
complete.

Now, we prove the main theorem of this section.

Theorem 3.13. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of trees and monotone onto bonding mappings. Then X = limX
is a tree.

Proof: The proof is broken into severals steps.

Step 1. The limit X is a continuum and the projections are onto.
See Theorem 3.1 and [12, (4.5) Corollary].

Step 2. By virtue of Theorem 3.6 X is hereditarily unicoherent.

Step 3. The limit X is locally connected.
We shall use Lemma 3.10 to prove that X is smooth at each point

y ∈ X. Let {xµ : µ ∈ M} be a net which converges to a point x ∈ X.
The irreducible subcontinua I(y, x) and I(y, xµ), µ ∈ M , needed in
Lemma 3.10, are unique since X is a Hausdorff hereditarily unicoherent
continuum. For each a ∈ A we have also uniquely determined subcon-
tinua I(ya, xa), I(ya, xµ

a), µ ∈ M , irreducible between ya = pa(y) and
xµ

a = pa(xµ) since Xa is hereditarily unicoherent. It is obvious that each
net {xµ

a : µ ∈ M} converges to xa. Moreover, from the smoothness of
Xa (Xa is locally connected) and Lemma 3.10 it follows that the net
{I(ya, xµ

a) : µ ∈ M} of subcontinua converges to I(ya, xa). By virtue
of Lemma 3.10 we must prove I(y, x) = Lim{I(y, xµ) : µ ∈ M} (see
Step 3.4). We start with auxiliary Steps 3.1-3.3.

Step 3.1. Ls{I(ya, xµ
a) : a ∈ A} = Kµ = I(y, xµ), µ ∈M .

By virtue of Lemma 3.4 each net {I(ya, xµ
a) : a ∈ A} has a non-

empty and connected Ls{I(ya, xµ
a) : a ∈ A} = Kµ. Clearly, Kµ ⊇

I(y, xµ) since I(y, xµ) is the unique subcontinuum irreducible between
y, xµ and {y, xµ} ⊆ Kµ. By virtue of Lemma 3.5 we have I(y, xµ) =
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Lim{pa(I(y, xµ)) : a ∈ A}. Since each pa(I(y, xµ)) contains I(ya, xµ
a),

we infer that Kµ ⊆ I(y, xµ). Finally, we have Kµ = I(y, xµ).

Step 3.2. For each a ∈ A and each µ ∈M we have pa(Kµ) = I(ya, xµ
a).

Clearly, pa(Kµ) ⊇ I(ya, xµ
a). Suppose that there is an a ∈ A and a

point za ∈ pa(Kµ)\I(ya, xµ
a). This means that there are disjoint open

sets Ua and Va such that za ∈ Va and I(ya, xµ
a) ⊆ Ua. From the local

connectedness of Xa it follows that there is an open and connected set
Wa such that I(ya, xµ

a) ⊆ ClWa ⊆ Ua. From the definition of thread it
follows that there is a b ∈ A such that pac(yc) and pac(xµ

c ) are in Wa for
each c ≥ b. This means that pac(I(yc, xµ

c )) ⊆ ClWa since pac(I(yc, xµ
c ))

is irreducible between pac(xc) and pac(xµ
c ) (see Lemma 3.11). It follows

that U∗
a is a neighborhood of a point z ∈ K, pa(z) = za, such that

U∗
a ∩ I(yc, xµ

c ) = ∅. This means that z /∈ Ls{I(ya, xµ
a) : a ∈ A} = Kµ.

This is impossible since z ∈ Kµ. By Theorem 1.10 it follows that Kµ =
∩{p−1

a (I(ya, xµ
a)) : a ∈ A}. Similarly, we have K = ∩{p−1

a (I(ya, xa)) :
a ∈ A}, where K = Ls{I(ya, xa) : a ∈ A}.

Step 3.3. Ls{Kµ : µ ∈M} = Ls{I(y, xµ) : µ ∈M} = I(y, x).
It is obvious that Ls{I(y, xµ) : µ ∈ M} ⊇ I(y, x) since Ls{I(y, xµ) :

µ ∈M} contains x and y and I(y, x) is irreducible between x and y. Now
we prove that Ls{I(y, xµ) : µ ∈ M} ⊆ I(y, x). Let z be any point in
X − I(y, x). By virtue of the definition of a base in X, there is an a ∈ A
such that pa(z) = za /∈ pa(I(y, x)) = (by Steps 3.1 and 3.2) I(ya, xa).
This means that there is a neighborhood Ua of za and a neighborhood Va

of pa(I(y, x)) such that Ua ∩Va = ∅. By Step 3.2 pa(I(y, x)) = I(ya, xa).
Since I(ya, xa) = Lim{I(ya, xµ

a) : µ ∈M} we infer that there is a µ0 ∈M
such that, for each µ ≥ µ0, Ua and I(ya, xµ

a) are disjoint. From 3.2
it follows that p−1

a (Ua) and I(y, xµ) are disjoint. Since p−1
a (Ua) is a

neighborhood of z, we infer that z /∈ Ls{I(y, xµ) : µ ∈ M}. Thus,
Ls{I(y, xµ) : µ ∈M} = I(y, x) and 3.3 is proved.

Step 3.4. I(y, x) = Lim{I(y, xµ) : µ ∈M}.
Apply Step 3.3 and Lemma 3.12.
By virtue of Lemma 3.10 and Step 3.4 it follows that X is smooth at

y. We infer that X is smooth in any of its point y. This means that X
is locally connected. The proof of Theorem 3.13 is complete.

A Hausdorff continuum X with precisely two nonseparating points is
called a generalized arc. A continuum X is said to be an arc if X is a
metrizable generalized arc. A tree X is a generalized arc if and only if
X is atriodic.
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Theorem 3.14. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of generalized arcs. Then X = limX is atriodic.

Proof: Suppose that T is a subcontinuum of X which is a triod. This
means that T is the sum of three generalized arcs Cx, Cy, and Cz, such
that the common part of each two of them is the common part of all
three of them and is a point. Let x ∈ Cx−(Cy ∪ Cz), y ∈ Cy−(Cx ∪ Cz),
z ∈ Cz−(Cx ∪Cy) and t = Cx ∩Cy ∩Cz. By virtue of the definition of a
basis in X, there exist a ∈ A and open sets Vx, Vy, Vz of Xa which are
pairwise mutually exclusive and which contain xa, ya, za, respectively,
so that

p−1
a (Vx)

⋂
Cy = ∅ = p−1

a (Vx)
⋂
Cz,

p−1
a (Vy)

⋂
Cx = ∅ = p−1

a (Vy)
⋂
Cz,

p−1
a (Vz)

⋂
Cy = ∅ = p−1

a (Vz)
⋂
Cx.

Now, one of xa, ya or za lies between ta and one of xa, ya or za. Suppose
that ta ≺ xa ≺ ya. Then pa(Cy) intersects ta and ya and hence xa, but
pa(Cy) does not intersect Vx. This is a contradiction. So X contains no
triod.

Theorem 3.15. Let X = {Xa,Ua, pab, A} be an approximate inverse
system of generalized arcs with limit X. If the bonding mappings are
monotone and onto, then X is a generalized arc.

Proof: By virtue of Theorem 3.13 X is a tree. From 3.14 it follows
that X is atriodic. Thus X is a generalized arc.

Corollary 3.16. Let X = {Xn, εn, pmn, N} be an approximate in-
verse sequence of arcs and monotone onto mappings. Then X = limX
is an arc.

Proof: Now, from 3.15, it follows that X is a generalized arc. More-
over, X is a metrizable generalized arc. Thus, X is an arc.
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11. Mardešić S. and Rubin L. R., Approximate inverse systems of

compacta and covering dimension, Pacific J. Math. 138(2) (1989),
129–144.
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