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THE FREUDENTHAL SPACE
FOR APPROXIMATE SYSTEMS

OF COMPACTA AND SOME APPLICATIONS

Abstract

IvaAN LONCAR

In this paper we define a space o(X) for approximate systems
of compact spaces. The construction is due to H. Freudenthal
for usual inverse sequences [4, p. 153-156]. We stablish the fol-
lowing properties of this space: (1) The space o(X) is a para-
compact space, (2) Moreover, if X is an approximate sequence
of compact (metric) spaces, then o(X) is a compact (metric)
space (Lemma 2.4). We give the following applications of the
space o(X): (3) If X is an approximate system of continua, then
X =1limX is a continuum (Theorem 3.1), (4) If X is an approx-
imate system of hereditarily unicoherent spaces, then X = lim X
is hereditarily unicoherent (Theorem 3.6), (5) If X is an approxi-
mate system of trees with monotone onto bonding mappings, then
X =limX is a tree (Theorem 3.13).

1. Introduction

Let U be any covering of a space X. For any subset Y of X we define
St(Y,U)=U{U ed : UNY #0}.

Similarly, we define StU = {St(U,U) : U € U}. Inductively, for each
positive integer n, St" U = St(St" " U), where St* U = StU.

We say that a cover V is a star refinement of a cover U if the cover
StV is a refinement of U.

An open cover W of a space X is normal [3, p. 379] if there exists a
sequence Wi, Ws, ... of open covers of the space X such that W; = W
and W;,1 is a star refinement of W; for i = 1,2,... A Ty space X is
paracompact iff each open cover of X is normal [3, Theorem 5.1.12]. A
T) space X is normal iff each locally finite open cover of X is normal [3,

p. 379].

The set of all normal covers of X is denoted by Cov(X).
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IfU, Ve Cov(X) and V refines U, we write V <U. If f, g: Y — X
are U-near mappings, i.e. if for any y € Y there exists U € U with f(y),
gly) € U, we write (f,g9) <U.

Approximate inverse systems were introduced by S. Mardesi¢ and
L. R. Rubin [11] for compacta and by S. Mardesi¢ and Watanabe [12]
for general topological spaces.

Definition 1.1. An approxzimate inverse system X = {Xo,Un, Pap, A}
consists of the following data: A preordered set (A, <) which is directed
and has no maximal element; for each a € A, a topological space X, and
a normal covering U, of X, (called the mesh of X,) and for each pair
a < b from A, a mapping pgp : Xp — X4. Moreover the following three
conditions must be satisfied:

(A1) The mappings pepppe and pe. are Ug-near, a < b < ¢, ie.
(pabpbe:pew) < Uy

(A2) For each a € A and each normal cover U € Cov(X,) thereisb > a
such that (pacped, Pad) < U, whenever a < b < ¢ < d.

(A3) For each a € A and each normal cover U € Cov(X,) thereisb > a
such U, < p;tU) = {p;1(U) : U € U} for each ¢ > b.

In the case of metric compact spaces we replace the normal coverings
by real numbers [11].

If the spaces X, are T} paracompact, then in the above definition one
can use all open coverings on the spaces X,, a € A, since in this case
each open cover is normal.

Definition 1.2. An approzimate map p = {p, : a € A} : X — X,
into an approximate inverse system X = {X,,Uy,, pab, A} is a collection
of maps p, : X — X, a € A, such that the following condition holds

(AS) For any a € A and any U € Cov(X,) there is b > a such that
(PacPe; Pa) < U for each ¢ > b. (See [12].)

Definition 1.3. Let X = {X,,U,, pay, A} be an approximate inverse
system and let p = {p, : a € A} : X — X, be an approximate map. We
say that p is a limit of X provided it has the following universal property
(12, p. 592):

(UL) For any approximate map ¢ = {q, : a € A} : Y — X, of a space
Y there exists a unique map g : Y — X such that p,g = ¢, for
any a € A.

Remark 1.4. If p: X — X is a limit of X, then the space X is
determined up to a unique homeomorphism. Therefore, we often speak
of the limit X of X and we write X = lim X.
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Definition 1.5. Let X = { X, Uy, pap, A} be an approximate system.
A point z = (z,) € [[{X, : a € A} is called a thread of X provided it
satisfies the following condition:

(L) (Vae AU e Cov(X.))(3b > a) (Ve > b)pac(ae) € st(za, U).

Remark 1.6. If X, is a T35 space, then the sets st(z,,U), U €
Cov(X,), form a basis of the topology at the point z,. Therefore, for
an approximate system of Tychonoff spaces condition (L) is equivalent
to the following condition:

(L)* (Va € A)lim{pac(xc) : ¢ > a} = x,.
The following theorem shows that the set of threads is a limit of X.

Theorem 1.7. Let X = {X,,Us, pap, A} be an approximate inverse
system. Let X C [ X, be the set of all threads of X and let p, : X — X,
be the restriction p, = | X of the projection m, : [[ Xo — Xa, a € A.
Then p={p, :a € A} X — X is a limit of X.

Proof: See [12, Theorem (1.14)]. &
The canonical limit of X is the set of all threads of X [12, p. 593].

Theorem 1.8. For any approrimate inverse system X the canonical
limit lim X s closed in [[ Xo. Moreover, if all X, are compact and
non-empty, then lim X s compact and non-empty.

Proof: See the proof of Lemma (1.16) and Theorem (4.1) of [12]. B

Lemma 1.9. Let X = {X4, U, pas, A} be an approzimate inverse
system of Tychonoff spaces, let X be the canonical limit of X and let
B C A be a cofinal subset of A. Then the collection B of all sets of
the form pgl(Ub), where b € B and Vi, C X is open, is a basis of the
topology for X.

Proof: See [12, (1.18) Lemmal. ®

Theorem 1.10. Let X = {X,, Uy, pav, A} be an approzimate inverse
system of compact Hausdorff spaces with limit X. For each closed F C X

we have
F=(pa"(pa(F)) : a € A}.

Proof: 1t is obvious that F' C p;!(p,(F)) for each a € A. Thus, F C
N{p; L (pa(F)) : a € A}. If z ¢ F, then, by Lemma 19 we infer that there
exists an a € A and an open set U, C X, such that z € p;*(V,) C X —F.
This means that p,(z) ¢ po(F) and x ¢ p; (p.(F)). m
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2. The Freudenthal space ¢(X)

The following construction is similar to the construction due to
H. Freudenthal [4, p. 153] for usual inverse sequences. For any usual
inverse system see [10].

Let X = {X,,Ua, Pap, A} be an approximate inverse system of compact
Hausdorff spaces with limit X and the projections p, : X =limX — X,.
The Freudenthal space o(X) associated to X is the set

(1) oX) = xJ(UtXa:ae 4})

where all X, and their limit X are considered as being disjoint sets [10],
in which a topology is defined as follows. If U, is an open set in X, let

(2) Uz = Hpoy (Ua) - b > a} | oo (Ua).

Now, we define a topology T on ¢(X) by a base [3, p. 27] B which consists
of all open sets U, in all X, and all U} for all open sets U, C X,, a € A.
Since the sets p, 1(U,) form a basis for X, it follows that B is a cover of
o(X). By virtue of [3, p. 27] we need to prove that for each z € o(X)
and each pair B, C € B with x € BN C there is a D € B such that
x € D C BNC. It suffices to prove this statement if B is some U}
and C' is some U,. If z is a point of X., then x is contained in a set
pad(Uy) Np,(Uy) which is open in X, and thus belongs to B. If x is a
point of X, then

(3) zep, ' (U) [\  (Us)

ie, ., = po(x) € Uy, and x, = pp(x) € Up. Choose V, € Cov(X,),
Vy € Cov(Xp) such that

(4) St(zq4,V,) C U, and St(zp, Vy) C Up.

Take W, € Cov(X,), W, € Cov(X,) such that St2W, < V,, StZW, <
Vy and ¢ € A such that ¢ > a, b, (A2) and (A3) hold for a, b, W,, W,
and (L) holds for z, a, b, W,, W;. Put

(5) Ve = St(z¢, Ue).

Since x € p_1(V,) C V¥, the proof will be complete if we show that

(5.1) VeCuUr (U
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We first prove that
(6) P (Ve) € o2 (Ua) 2y (Uy).

Consider a point y = (y,) € p.1(Ve). By (5) there is a U; € U, such
that

(7) Tey Ye € Ul.

By the choice of ¢ (property (A3)) U, < pot(Wa) and U, < p,.-(Ws).
This means that there is a W; € W, and Wy € W, such that U; C
Pat (W) and Uy C p;.t(Wa). Thus, (7) implies

(8) pac(mc)a pac(yc) € Wy and Pbc(l’c), pbc(yc) € Wa.

By the choice of ¢ (property (L)), there are W3 € W,, Wy € W, such
that

(9) Za, Pac(Te) € W3 and xp, ppe(x.) € Wy
Since y € pgl(Ub) C X, there is a d > ¢ satisfying (L) for y, a, W, and

for y, b, Wp. Thus, there exist a W5 € W,, Wi € W, and Uy € U, such
that

(10) Pad(Yd), Ya € W5 and ppa(ya), y» € We
and
(11) pcd(yd)v Ye € Us.

By the choice of ¢ (property (A3)), U. < pyt(W,) and U, < p,. (Wy).
Hence, there exist a W7 € W, and Wy € W), such that Uy C p, (W)
and Uy C p;.' (Ws). By (11) we have

(12) pacpcd(yd)a pac(yc) S W7 and pbcpcd(yd)> pbc(yc) S W8-

By the choice of ¢ (property (A2)), we also have a Wy € W, and Wy €
W, such that

(13) DacPed(Yd), Pad(Ya) € Wo and pycpea(ya), poa(ya) € Wio-

Now, (9), (8), (12), (13), (10), St*W, < V, and St> W, < V, yield a
V'€V, and a V" € V, such that z,, y, € W1 UW3UWsUW,UWy C V'
and Ty, Yp € Wo U W4 UWgUWgU Wi C V. This and (4) imply
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Pa(y) = Ya € St(x4,Vs) C U, and pyp(y) = yp € St(xp, Vy) C Up. This
means that y € p;l(Ua)ﬂpb_l(Ub), i.e., (6) is proved. It remains to prove

(14) Ped (Ve) € P (Ua) (N0 (b)Y 2.
Let zq4 € p;dl(Vc). By (5) there is a Uy; € U, such that
(15) Te, Ped(2a) € Uni.

By the choice of ¢ (property (A3)) there is a Wi3 € W, and a Wis € W,
such that U11 g pgcl(Wll) and U11 g pb_cl(le)' Thus, (15) implies

(16) pac(xc)a pac(pcd(zd)) € Wi and pbc(zc)7 pbc(pcd(zd)) € Wia.
By (A2) we infer there are W13 € W, and W4 € W), such that

(17) PacPed(2d), Pad(zda) € Wiz and pyeped(za), pod(za) € Wha.

From (9), (16) and (17) it follows x4, pad(z4) € StV, and xp, ppa(z4) €
StVy. By (4) paa(zq) € U, and ppy(z4) € Up. We infer that z4 €
poq (Ua)Npy (Up) and (14) is proved. Hence, we have z € V} C UrNU},
i.e., (5.1) is proved. This means that B is a basis for some topology T'
on o(X).

Now, we will prove that T is a Hausdorff topology. Let x, y be a pair
of distinct points in o(X). If z, y ¢ lim X, then there exists a pair a,
b € A such that x € X,, y € X;. If a = b, then = and y have disjoint
neighborhoods since X, is a Hausdorff space. If a # b, then X, and
X, are disjoint neighborhoods (in ¢(X)) of = and y respectively. Now,
suppose that € limX and y ¢ imX. Let y € X, for some b € A.
By virtue of Lemma 1.9 there is a ¢ > b and an open set U, such that
p-1(U,.) is a neighborhood of x in lim X. It is clear that X, and V* are
disjoint neighborhoods of y and z in o(X). Finally, let z, y € limX.
Since lim X is a Hausdorff space, there are open (in lim X) disjoint sets
U and V such that x € U and y € V. By virtue of Lemma 1.9 there
exists a b € A and open sets U, and V}, such that = € pgl(Ub) C U and
Yy € pb_l(Vb) C V. It follows that U, and V} are disjoint since U and V'
are disjoint. Hence, Uy and V" are disjoint. Thus, ¢(X) is a Hausdorff
space.

A net in a topological space X [3, p. 73] is an arbitrary function from
a non-empty directed set D to the space X. Nets will be denoted by
N ={z4:d € D}. A point z € X is called a limit of a net N' = {zq :
d € D} if for every neighborhood U of = there is a dy € D such that
xq € U for each d > dg. We say that the net N converges to x. A point
z € X is called a cluster point of a net N' = {4 : d € D} if for every
neighborhood U of = and every dy € D there exists a d > dg such that
xq €U.
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Lemma 2.1. Let X = {X,, Uy, pap, A} be an approximate inverse
system of non-empty compact Hausdorff spaces with limit X .
1. If A’ is a cofinal subset of A, then each family N = {z, : z, €
Xa,a € A’} is a net in 0(X) which has at least one cluster point
x (in the topology T') such that x € X C o(X).
2. Fach point x € X is the limit (in the topology T) of the net
{pa(zq) 1 0 € A}.

Proof: For each a € A we consider the net N, = {pap(zp) : b€ A, b >
a}. From the compactness of X, it follows that the set C, of all cluster
points of N, is non-empty. Clearly, each C, is closed and compact in
X,. First, we prove

(a) For each a € A C, is a non-empty subset of pa(X).

If we suppose that some ¢, € Cy\p,(X), then ¢, and p,(X) respectively,
have disjoint neighborhoods U and V. By virtue of the property (B3)
[12, p. 606, 615] there is a b > a such that p,.(X.) C V for each ¢ > b,
¢ € A’. This is impossible since there exists ¢ > b such that p,.(z.) € U
(cq is a cluster point of the net N,).

From (a) it easily follows that

(b) For each a € A the set p;*(C,) is non-empty.

By (b) there is y* € p;1(C,) ClimX, a € A’. Since lim X is compact,
there is a cluster point y € lim X of the net ) = {y* : a € A’}. Let us
prove

(¢) pa(y) € Ca, a € A.

It suffices to prove that for each neighborhood U, of p,(y) and each
bo there exists a d > by such that pyq(xq) € U,. Let U be a normal cover
of X, such that

(18) St*(pa(y),U) C Ua.
Let Uy € U be such that p,(y) € Ur. Then p,*(U;) is a neighborhood
of y. The set B of all b € A’ with y* € p;*(U;) is cofinal in A’ since y

is a cluster point of ). By virtue of (AS) the set B’ C B of all b € B,
b > bg, such that

(19) (paapabpb) <U

is cofinal in A. Similarly, by (A2), the set B” C B’ of all b € B’ such
that

(20) (pampabpbc) <U, c>b
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is cofinal in A. Let b € B”. Then y® € p;}(U;). Thus

(21) Pa(y), Pa(y’) € Ur.

By virtue of (19) it follows

(22) Pa(y”), Paspu(y”) € Uz € U.
This and (21) imply

(23) Pasps(y”) € St(pa(y), U).

Now, py(y°) € Cj since y* € p, *(Cy). We infer that p_,' (St(pa(y),U)) is
a neighborhood of p,(y?). Since py(y°) is a cluster point of A, there is
ad>b>by,de A such that ppa(za) € p,; (St(pa(y),U)). This means
that pas(pra(za) € St(paly),U). Using (20), paa(za) € SE(pa(y),U).
Thus, by (18)

(24) Pad(Td) € U,.
We infer that p,(y) € Cq, i.e., y € p;1(C,) for each a € A.

(d) The point y is a cluster point (in the topology T) of N

This follows from (24) since x4 € p,;(U,). This means that for each
neighborhood U} of y and each by € A there is a d > by, d € A’, such
that x4 € U;.

The proof of Lemma 2.1 is complete since the second statement easily
follows from the definition of the topology T on ¢(X). ®

Lemma 2.2. Let X = {X,, Uy, pap, A} be an approximate inverse
system of compact Hausdorff spaces. If U is a neighborhood of X = lim X
in 0(X), then there exists a € A such that X, C U for each b > a.

Proof: Since X is compact and since the sets (2) form a basis for the
neighborhoods of the points of X, one can find {U; :i=1,...,n} such
that

(25) V= U i=1,... 0}

and X CV C U. In order to complete the proof, it suffices to find an
a€ A, a>ay,...,a, such that

(26) X.CV
since then we have
(27) X, CVCU b>a.

Suppose that no a € A satisfies (26). This means that for each a € A
there is x, € X, — V. We obtain a net {z, : a € A} in ¢(X) which has
no cluster point in V' O X. This contradicts Lemma 2.1. The proof is
complete. W
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Lemma 2.3. Let X = {X,, Uy, pab, A} be an approzimate inverse sys-
tem of compact Hausdorff spaces. Then o(X) is paracompact. Moreover,
if X is an approzimate sequence, then o(X) is compact.

Proof: Let V = {V,,} be any cover of ¢(X). Since X is compact, there
is a finite subcollection, consisting of sets V,(1),... , V) which cover
X. Let V be the union of this subcollection. By virtue of Lemma 2.2
there is an a € A such that all X, b > a, are in V. Let us recall that
the set X = (U{X}p : b > a} U X is of type (2) with U, = X, and it is
open in o(X). Now consider the following collection I of open sets of
o(X): take first the open sets X NV, 1),... , X; NV, for members
of U. Furthermore, for each b € A — {c: ¢ € A, ¢ > a} consider the
open covering {X; NV, } of X} and take members of a finite subcovering
as new members of /. This is possible since X} is compact and open
in 0(X). The family & of open sets of o(X) is a star-finite covering
of o(X) which refines the covering V. Moreover, U is a locally finite
refinement of V. The proof of paracompactness is complete. If X is an
approximate sequence, then we obtain a finite subcovering since the set
A—{c:ce A, ¢>a} is finite. The proof is complete. B

Theorem 2.4. Let X = {X,,, €n, Dmn, N} be an approximate inverse
sequence of compact metric spaces X,,. Then o(X) is a compact metric
space.

Proof: Each space X, has a countable base B,, [3, 4.1.15 Theorem].
It follows that the family B* = {U* : U € B,, : n € N} is countable. It
is obvious that the union B = {B,, : n € N} U B* is a countable base for
topology T. Thus o(X) is metrizable [3, p. 351]. W

We close this section with the following theorem which is similar to
the theorem for usual inverse systems of compact Hausdorff spaces due
to S. Mardesi¢ [10, Theorem 4] (see Theorem 4.2 of [12]).

Theorem 2.5. Let X = {X,,Uq, Pap, A} be an approzimate inverse
system of compact Hausdorff spaces and let f: X — R be a mapping of
their limit into a simplicial complex. Then there exists an a € A such
that for each b > a one can define a mapping f, : Xp — R with the
property that fypy is homotopic to f.

3. Applications

In this section we give some applications of the space o(X). We start
with
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Theorem 3.1. Let X = {X,,Uy,pab, A} be an approzimate inverse
system of Hausdorff continua. The space X =limX is a continuum.

Proof: By virtue of 1.8 X is a compact. Suppose that X is not con-
nected. There is a pair F, G of non-empty closed (in X) disjoint subsets
of X. Since X is closed in o(X), the sets F' and G are closed in the
normal space 0(X) (Lemma 2.3). There are two disjoint open (in (X))
sets U and V which contain F' and G. By virtue of Lemma 2.2 there is
a € A such that X} is contained in U UV for each b > a. We shall prove
that X} intersects U and V for sufficiently large b. If x is a point of F,
then there is an a1 € A such that for each ¢ > a; there is an open set
U. C X, for which U} is a neighborhood of x contained in U. Hence,
if b > a, then X, intersects U. Similarly, there is as € A such that
X, intersects V for each b > as. Thus, there is a b € A such that X,
intersects both U and V and is contained in U U V. This is impossible
since X, is connected. W

In the sequel we use the notion of a net of sets in the sense of [13] or
[7, p. 343].
A net of sets {A,, : n € D} of a topological space X is a function [13]

defined on a directed set D which assigns to each n € D a subset A,, of
X.

If {A, :n € D} is a net of subsets of X, then:

1. The limit inferior Li A, is the set of all points x € X such that
for every neighborhood U of x there exists ng € D such that U
intersect A,, for each n > ng.

2. The limit superior Ls A,, is the set of all points € X such that
for every neighborhood U of z and each ng € N there is n > ng
such that U intersect A,,.

A net {A,, : n € D} is said to be topologically convergent (to a set A)
if Ls A,, = LiA,, (= A) and in this case the set A will be denoted by
Lim A,,.

Lemma 3.2. Let {C,, : n € D} be the net of subsets of a space X.
Let U be a neighborhood of Ls C,, such that X\U is compact. Then there
is am € D such that C, CU for each p > m.

Proof: Suppose, on the contrary, that for each m € D thereisap € D
such that Z, = C,\U is non-empty. Let z, be any point of Z, and let P
be the set of all such p € D. The net {z, : p € P} has a cluster point z in
X\U. This is impossible since z € Ls C;, C U. The proof is complete. ®
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Lemma 3.3. Let {C,, : n € D} be the net of connected sets C,, of
a normal space X such that 1iC,, # 0. If for each neighborhood U of
LsC,, the set X\U is compact, then LsC,, is connected.

Proof: Suppose that Ls C), is disconnected. This means that there are
disjoint closed nonempty subsets F' and G of LsC,, such that LsC, =
F UG. The sets are closed in X since Ls C,, is closed in X. From the
normality of X it follows that there are two disjoint open sets U and
V such that FF C U and G C V. This means that LsC,, C U U V.
Let LiC, NU # (. By virtue of Lemma 3.2 there is an m € D such
that C, € U UV for each p > m. Clearly, there is some p > m such
that C), intersects U (since LiC,, N U # () and C,, intersects V' (since
VNLs Cyp, # 0). This means that C,, C UUV and UNC, # 0, VNC, # 0.
This contradicts the connecteness of C,. W

Lemma 3.4. Let X = {X,,U,,pap, A} be an approximate inverse
system of compact Hausdorff spaces. Let {C, : a € A, C; C X,} be a
net of continua such that LiC, C o(X) is non-empty. Then LsC, is a
non-empty subcontinuum of X =limX C o(X).

Proof: Tt is clear that LiC, C LsC, C X. Suppose that LsC, is
disconnected. We infer that there is a pair F', G of disjoint nonempty
closed subsets of Ls C, such that LsC, = F'U G. The sets I’ and G are
closed in X and in o(X). There are disjoint open sets of o(X) (since
0(X) is normal) such that F C U and G C V. Let LiC, NU # 0. We
claim that there is an a € A such that C, C UUV for each b > a. In the
opposite case we obtain anet N = {z, : b€ A, x, € C,\(UUV), b > a}
where A’ is cofinal in A. By virtue of Lemma 2.1 the net A has a cluster
point z in X. Clearly, x ¢ U U V. This is impossible since x € LsC,.
Thus, there is an a € A such that C, CU UV, b > a. It is clear that
there is a b > a such that Cj, intersects U (since LiC, N U # ) and V
(since V' contains a point of LsC,). But, this is impossible since Cj is
connected and C, C U U V. The proof is complete. B

Lemma 3.5. Let X = { X4, U, pap, A} be an approximate inverse
system of non-empty compact Hausdorff spaces with limit X. For each
closed F C X we have the net N(F) = {po(F) : a € A} and, for each
a € A, the net No(F) = {pasps(F) : b > a} such that

1. pa(F) = Lim N, (F),
2. F = LimN(F).

Proof: From the definition of thread it follows that p,(F') C LiN,(F).
On the other hand, from property (B2) [12, p. 601, 615] we infer that
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if x ¢ po(F), then z ¢ Ls N, (F). Thus, p,(F) 2 Ls N (F) 2 LiN,(F).
Therefore, Lim N, (F) = po(F). From 2 of Lemma 2.1 we have F C
LiN(F). On the other hand, for each point y € X\F there isa b € A
such that py(y) and py(F') have disjoint neighborhoods U, and V. It
follows that U Np.(F) = O for each ¢ > b. This means that y ¢ Ls N/,
ie., LsN C F. Finally, we have F = Ls N = LiN = Lim AN and the
proof is complete. H

We say that a space X is hereditarily unicoherent if for each pair C, D
of closed connected subsets of X the intersection CN D is connected. For
continua this definition is equivalent (see [1, p. 187]) to the following;:

D1. A Hausdorff continuum is hereditarily unicoherent if every two
points of it can be joined by exactly one irreducible continuum
between them.

Theorem 3.6. Let X = {X,, Uy, pap, A} be an approzimate inverse
system of hereditarily unicoherent compact Hausdorff spaces. Then X =
lim X is hereditarily unicoherent.

Proof: Let C, D be a pair of subcontinua of X. We must prove that
CND is connected. By virtue of the above lemma we have C' = Lim A/(C)
and D = Lim N(D). Each F, = p,(C) N p,(D) is connected since X, is
hereditarily unicoherent. By virtue of 2 of Lemma 2.1 each point = of
CN D is a limit of the net {p,(z) : a € A}. Thus, § #LiF, D CND.
On the other hand for each y € X\C N D we have y ¢ C or y ¢ D. Let
y ¢ C. By virtue of the definition of a base in X (Definition 1.9) there
is a b € A such that p,(y) and pp(C) have disjoint neighborhoods U, and
Vp. From 1 of the above lemma it follows that there is a ¢ > b such that
prapa(C) C Vi, d > c. This means that Uf N pa(C) = 0, d > c. We
infer that y ¢ Ls F,. Thus, Ls F,, C C N D. From this and the relation
LiF, D CnND it follows CND = LiF,. Similarly, CN D = LsF,. By
virtue of Lemma 3.4 Ls F, is connected. Thus, C N D is connected and
the proof is complete. B

By the same method of proof as in the proof of Theorem 3.6 we have

Theorem 3.7. Let X = {X,, Uy, pap, A} be an approzimate inverse
system of Hausdorff continua. If all the spaces X, are unicoherent and
if all pay are onto, then X = lim X is unicoherent.

Remark 3.8. Without ontoness of the bonding mappings the approx-
imate limit of unicoherent continua need not be unicoherent since this is
not true for usual inverse limits [14, p. 228, Remark]. If X = {X,, pap, A}
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is a usual inverse system of metric locally connected unicoherent con-
tinua, then the usual limit is unicoherent (without assuming the bond-
ing maps are onto) [14, p. 228, Remark]. This means that the following
question is natural:

Is it true that the approximate limit of an approximate system of met-
ric locally connected unicoherent continua and into bonding mappings is
unicoherent?

Now we give an affirmative answer to the above question. Firstly, we
give some necessary definitions.

Let S be the circle |z| = 1 in the complex plane. The space of the real
numbers we denote by R.

A continuous mapping f : X — S is said to be equivalent to 1 on a set
Y C X, written f ~ 1 on Y, provided there exists a continuous mapping
¢:Y — R such that [17, p. 220] f(z) = @), z € Y.

Two mappings f1, fo : X — S will be said to be exponentially equiv-
alent or simply equivalent on a set Y C X provided their ratio f1/fs is
~1lonY [17, p. 225].

A space X will be said to have property (b) provided every mapping
f: X —Sis~1][17, p. 226].

A mapping f : X — S homotopic to the mapping fy : X — S,
fo(x) =1 for all x € X, is said to be homotopic to 1, f ~ 1.

In the sequel we need the following facts: (a) In order that a mapping
f: X — S be ~1itis necessary and sufficient that f be homotopic to 1
[17, p. 226]. (b) In order that two mappings fi, f2 : X — S be equivalent
on X it is necessary and sufficient that they be homotopic [17, p. 226]. (c)
Every connected space X having property (b) is unicoherent [17, p. 227].
(d) In order that a locally connected continuum have property (b) it is
necessary and sufficient that it be unicoherent [17, p. 228]. (e) If X is any
space and f, g : X — S™ are two maps such that for each x € X, f(x)
and g(z) are not antipodal, then f ~ g. In particular, a nonsurjective
f: X — 8™ is always nullhomotopic [2, p. 316].

Theorem 3.9. Let X = {X,, €4, Pap, A} be an approzimate inverse
sequence of locally connected unicoherent metric continua. Then X =
lim X is unicoherent.

Proof: Let us prove that X has property (b). Let f: X — S be any
mapping. By virtue of Lemma 2.5 there is a a € A such that for each
b > a there is a mapping g : X — S such that gp, and f are homotopic.
Since X}, has property (b), then g ~ 1 and hence f ~ 1. This shows that
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X has property (b). By Theorem 3.1, X is a continuum. Hence by (c),
X is unicoherent. W

A Hausdorff continuum is a tree if each pair of points is separated
by third point [16]. A Hausdorff continuum X is a tree iff X is locally
connected and hereditarily unicoherent [16].

A continuum X is smooth at a point p [15] provided that for each
subcontinuum K of X such that p € K and for each open set V' which
included K, there is an open connected set U such that K C U C V.
Clearly, if X is smooth at a point p € X, then X is locally connected at
p. Moreover, X is locally connected if and only if X is smooth at each
of its points [9, p. 84]. A continuum [ is irreducible between its points a
and b if no proper subcontinuum of I contains them. In the sequel we
use the following lemma which is part of Proposition 1 [15].

Lemma 3.10. Let p be a point of a Hausdorff continuum X. The
following conditions are equivalent:

(i) X is smooth at p,

(ii) for each convergent net v, € X with limz, = x and for each
continuum I(p,x) irreducible between p and x there are continua
I(p,z,) each one irreducible between p and x, such that
Lim I(p,z,) = I(p, ).

Lemma 3.11. Let f : X — Y be a monotone surjection. If X and
Y are hereditarily unicoherent Hausdorff continua and if I(a,b) is irre-
ducible between a, b, then f(I(a,b)) is irreducible between f(a) and f(b),

i-e., 1(f(a), f(b)) = f(I(a,])).

Proof: Now, f~Y(I(f(a), f(b))) is a continuum since f is monotone.
An application of D1 shows that f=*(I(f(a), f(b))) 2 I(a,b). Thus,
f(I(a,b)) C I(f(a), f(b)). On the other hand, f(I(a,b)) D I(F(a), f(b))
since I(f(a), f(b)) is irreducible between f(a) and f(b). Thus,
fI(a,b)) = I(f(a), f(b)) and the proof is complete. W

The following lemma is a generalization of Lemma 2.2 of [9].

Lemma 3.12. Let {C), : n € D} be a net of subcontinua of a Haus-
dorff continuum X. If z, y € LiC,, and the continuum LsC), is irre-
ducible between x and y, then the net {C,, : n € D} is convergent.

Proof: Suppose, on the contrary, that the net {C,, : n € D} is not
convergent, i.e., there is a ¢ € Ls C,,\ LiC,,. From ¢ ¢ LiC, it follows
that there is a neighborhood U of ¢ such that for each n € D there is
m € D, m > n, such that C,, NU = 0. Let M be the set of all m € D



THE FREUDENTHAL SPACE FOR APPROXIMATE SYSTEMS 229

such that C,, N U = 0. The collection {C,, : m € M} is a net in X\U
and a subnet of {C), : n € D}. This means that L = Ls{C,,, : m € M} is
a nonempty subset of X\U and ¢ € U C X\ L. Since Li{C},, : m € M} D
Li{C,, : n € D} by Lemma 3.3 L is connected, i.e., is a subcontinuum
of X. Moreover, z, y € L since L = Ls{C,, : m € M} D Li{C,, : m €
M} D Li{C, : n € D}. On the other hand, L C LsC,,. From z, y € L
and from the irreducibility of Ls C,, it follows that L = LsC),. This is
impossible since ¢ € Ls C,\LiC,, = L\LiC,, and ¢ ¢ L. The proof is
complete. W

Now, we prove the main theorem of this section.

Theorem 3.13. Let X = {X,,Us, Pap, A} be an approzimate inverse
system of trees and monotone onto bonding mappings. Then X = lim X
15 a tree.

Proof: The proof is broken into severals steps.

Step 1. The limit X is a continuum and the projections are onto.
See Theorem 3.1 and [12, (4.5) Corollary].

Step 2. By virtue of Theorem 3.6 X is hereditarily unicoherent.

Step 3. The limit X is locally connected.

We shall use Lemma 3.10 to prove that X is smooth at each point
y € X. Let {z* : u € M} be a net which converges to a point x € X.
The irreducible subcontinua I(y,x) and I(y,z*), p € M, needed in
Lemma 3.10, are unique since X is a Hausdorff hereditarily unicoherent
continuum. For each ¢ € A we have also uniquely determined subcon-
tinua I(Ya, o), I(Ya,zt), 1 € M, irreducible between y, = p,(y) and
= p,(aH) since X, is hereditarily unicoherent. It is obvious that each
net {z# : u € M} converges to x,. Moreover, from the smoothness of
Xo (X, is locally connected) and Lemma 3.10 it follows that the net
{I(yq, ") : p € M} of subcontinua converges to I(y,,2,). By virtue
of Lemma 3.10 we must prove I(y,z) = Lim{I(y,a*) : p € M} (see
Step 3.4). We start with auxiliary Steps 3.1-3.3.

Step 3.1. Ls{I(yq,2#):a € A} = KV =1I(y,z"), p € M.

By virtue of Lemma 3.4 each net {I(y,,z¥) : a € A} has a non-
empty and connected Ls{I(y,,z%) : a € A} = K*. Clearly, K* D
I(y,z") since I(y,z") is the unique subcontinuum irreducible between
y, " and {y,a*} C K*. By virtue of Lemma 3.5 we have I(y,z*) =
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Lim{p,(I(y,z")) : a € A}. Since each p,(I(y,z*)) contains I(ys,z"),
we infer that K* C I(y,«*). Finally, we have K* = I(y, z").

Step 3.2. For each a € A and each u € M we have p, (K*) = I(y,, z").

Clearly, p,(K*) D I(ya,z"). Suppose that there is an a € A and a
point z, € pa(K*)\I(yq,x#). This means that there are disjoint open
sets U, and V, such that z, € V,, and I(y,,z") C U,. From the local
connectedness of X, it follows that there is an open and connected set
W, such that I(y,,z*) C CIW, C U,. From the definition of thread it
follows that there is a b € A such that pac(y.) and pec(z#) are in W, for
each ¢ > b. This means that pec((ye, z#)) C CIW, since pae(I(ye, z4))
is irreducible between pyc(x.) and pgc(a#) (see Lemma 3.11). It follows
that U} is a neighborhood of a point z € K, p,(z) = z,, such that
U N I(ye,z) = 0. This means that z ¢ Ls{I(yq,x*) : a € A} = KM
This is impossible since z € K*. By Theorem 1.10 it follows that K* =
N{p, ' (I(ya,z#)) : a € A}. Similarly, we have K = N{p; ' (I(ya,a)) :
a € A}, where K = Ls{I(yq,x,) : a € A}.

Step 3.8. Ls{K* :pe M} =Ls{I(y,z"): p e M} = I(y, x).

It is obvious that Ls{I(y,z") : p € M} D I(y,x) since Ls{I(y,z") :
w € M} contains x and y and I(y, ) is irreducible between x and y. Now
we prove that Ls{I(y,z") : p € M} C I(y,z). Let z be any point in
X — I(y,z). By virtue of the definition of a base in X, there is an a € A
such that p,(z) = 24 ¢ pa(I(y,x)) = (by Steps 3.1 and 3.2) I(yq,xq)-
This means that there is a neighborhood U, of z, and a neighborhood V,
of pa(I(y, )) such that U, NV, = 0. By Step 3.2 p,(I(y,z)) = I(Ya, Ta)-
Since I(yq, To) = Lim{I(yq, z#) : 1 € M} we infer that thereis a ug € M
such that, for each p > po, U, and I(y,,z#) are disjoint. From 3.2
it follows that p;!(U,) and I(y,z*) are disjoint. Since p;1(U,) is a
neighborhood of z, we infer that z ¢ Ls{I(y,2*) : p € M}. Thus,
Ls{I(y,z*): p€ M} = I(y,z) and 3.3 is proved.

Step 3.4. I(y,x) = Lim{I(y,a") : p € M}.
Apply Step 3.3 and Lemma 3.12.
By virtue of Lemma 3.10 and Step 3.4 it follows that X is smooth at

y. We infer that X is smooth in any of its point y. This means that X
is locally connected. The proof of Theorem 3.13 is complete. B

A Hausdorff continuum X with precisely two nonseparating points is
called a generalized arc. A continuum X is said to be an arc if X is a
metrizable generalized arc. A tree X is a generalized arc if and only if
X is atriodic.
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Theorem 3.14. Let X = {X,,Uy,, pav, A} be an approzimate inverse
system of generalized arcs. Then X = lim X is atriodic.

Proof: Suppose that T is a subcontinuum of X which is a triod. This
means that 1" is the sum of three generalized arcs Cy, Cy, and C, such
that the common part of each two of them is the common part of all
three of them and is a point. Let z € C,- (C, UC.), y € Cy- (C, UC),
z€(C,-(C,Uly) and t = C, NCy NC,. By virtue of the definition of a
basis in X, there exist a € A and open sets V,, V,,, V. of X, which are
pairwise mutually exclusive and which contain x,, ¥4, 24, respectively,
so that

pgl(VI)mCy =0 pz;l(Vx)ma
pgl(vy)mcw :(Z) p(;l(Vy)mCZ;
P (Vo) [()Cy = 0= (Vo)) Co

Now, one of z,, y, or z, lies between t, and one of x,, y, or z,. Suppose
that t, < 24 < ya. Then p,(C,) intersects t, and y, and hence z,, but
pa(Cy) does not intersect V. This is a contradiction. So X contains no
triod. H

Theorem 3.15. Let X = {X,,Us,, pav, A} be an approzimate inverse
system of generalized arcs with limit X. If the bonding mappings are
monotone and onto, then X s a generalized arc.

Proof: By virtue of Theorem 3.13 X is a tree. From 3.14 it follows
that X is atriodic. Thus X is a generalized arc. B

Corollary 3.16. Let X = {X,,, €y, Pmn, N} be an approzimate in-
verse sequence of arcs and monotone onto mappings. Then X = lim X
s an arc.

Proof: Now, from 3.15, it follows that X is a generalized arc. More-
over, X is a metrizable generalized arc. Thus, X is an arc. B
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