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ON THE DEFINITION
OF THE DUAL LIE COALGEBRA

OF A LIE ALGEBRA

Bertin Diarra

Abstract

Let L be a Lie algebra over a field K. The dual Lie coalgebra L◦

of L has been defined by W. Michaelis to be the sum of all good
subspaces V of the dual space L∗ of L: V is good if tm(V ) ⊂
V ⊗ V , where m is the multiplication of L. We show that L◦ =
tm−1(L∗ ⊗ L∗) as in the associative case.

Let L be a Lie algebra over the field K with multiplication m : L⊗L →
L: i.e. m is a linear map and setting m(x ⊗ y) = [x, y], one has

(1) [x, x] = 0

(2) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Let L∗ be the dual vector space of L and tm : L∗ → (L ⊗ L)∗ be the
transpose of m. We identify L∗ ⊗ L∗ with a subspace of (L ⊗ L)∗ and
we set L� = tm−1(L∗ ⊗ L∗).

Fix f ∈ L∗ and consider the linear map γf : L → L∗ defined by

(3) 〈γf (x), y〉 = 〈f, [x, y]〉 = 〈tm(f), x ⊗ y〉, x, y ∈ L.

Setting, as usual, adx(y) = [x, y], one has γf (x) = t(adx)(f). Sometimes,
we shall write γf (x) = x · f .
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Lemma 1. For f ∈ L∗, the following statements are equivalent

(i) f ∈ L�

(ii) The linear map γf : L → L∗ is of finite rank.

Proof: The equivalence follows readily from (3).

Moreover, since L∗ ⊗L∗ can be identified with the space of the linear
maps of L into L∗ of finite rank, via ι : L∗ ⊗ L∗ ↪→ Hom(L, L∗) by

setting ι(f ⊗ g)(x) = f(x)g, one has f ∈ L� iff γf =
n∑

j=1

fj ⊗ gj iff

tm(f) =
n∑

j=1

fj ⊗ gj .

Lemma 2. For f ∈ L� and x ∈ L, one has, γf (x) = x · f ∈ L�.
Moreover γf (L) is a vector subspace of L� of finite dimension.

Proof: If f ∈ L�, then for x, y ∈ L, one has 〈f, [x, y]〉 = 〈γf (x), y〉 =
n∑

j=1

〈fj , x〉 〈gj , y〉. However, (2) can be written [x, [y, z]] = −[y, [z, x]] −

[z, [x, y]]. Therefore, one has

〈γx·f (y), z〉 = 〈x · f, [y, z]〉
= 〈f, [x, [y, z]]〉
= −〈f, [y, [z, x]]〉 − 〈f, [z, [x, y]]〉

= −
n∑

j=1

〈fj , y〉〈gj , [z, x]〉 −
n∑

j=1

〈fj , z〉〈gj , [x, y]〉

=
n∑

j=1

〈fj , y〉 〈x · gj , z〉 −
n∑

j=1

〈x · gj , y〉 〈fj , z〉.

Hence γx·f (y) =
n∑

j=1

〈fj , y〉x · gj −
n∑

j=1

〈x · gj , y〉fj . It follows that γx·f

is of finite rank, that is x · f = γf (x) ∈ L�. Then, it is clear that γf (L)
is a vector subspace of L� and finite dimensional.
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Note. One deduces from the above proof that if f ∈ L� and tm(f) =
n∑

j=1

fj ⊗ gj then for x ∈ L, one has

tm(x · f) =
n∑

j=1

fj ⊗ (x · gj) −
n∑

j=1

(x · gj) ⊗ fj .

Theorem 1. L� is a good subspace of L∗ i.e. tm(L�) ⊂ L� ⊗ L�.
Moreover, one has L� = L◦.

Proof: Let f ∈ L� and let (gj)1≤j≤n be a base of γf (L) ⊂ L�. One

has gj = xj · f and for any x ∈ L, γf (x) =
n∑

j=1

fj(x)gj ; hence tm(f) =

n∑

j=1

fj ⊗ gj , fj ∈ L∗. However m = −m ◦ τ (skew-symmetry), therefore,

one has tm = −tτ ◦ tm and tm(f) =
n∑

j=1

fj ⊗ gj = −tτ(
n∑

j=1

fj ⊗ gj) =

−
n∑

j=1

gj ⊗ fj . Since (gj)1≤j≤n is free in L∗, there exists for 1 ≤ � ≤ n

y� ∈ L such that 〈gj , y�〉 = δj�. Hence (y�⊗1L∗)(tm(f)) =
n∑

j=1

〈fj , y�〉gj =

−
n∑

j=1

〈gj , y�〉fj = −f�, that is f� = −
n∑

j=1

〈fj , y�〉gj ∈ γf (L). It follows

that tm(f) =
n∑

j=1

fj ⊗ gj ∈ γf (L) ⊗ γf (L) ⊂ L� ⊗ L� and L� ⊂ L◦.

On the other hand, it is clear that any good subspace V of L∗ is
contained in L�, therefore L◦ ⊂ L�. We have proved that L� = L◦.

Note. If f ∈ L� and if (xj · f)1≤j≤n is a base of γf (L), one has

tm(f) =
n∑

j=1

(yj · f) ⊗ (xj · f) where, for 1 ≤ j ≤ n, yj is such that

〈f, [x�, yj ]〉 = δ�j .
Furthermore, if x ∈ L, one has

(4) tm(x · f) =
n∑

j=1

(yj · f) ⊗ [x · (xj · f)] −
n∑

j=1

[x · (xj · f)] ⊗ (yj · f).
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Remark. Put ∆ = tm|L� : L� → L� ⊗ L�. Following W. Michaelis
[1], (see also [2], [3], [4], [5] and [6]) one obtains a Lie coalgebra (L�,∆),
that is :

(5) ∆ = −τ ◦ ∆

if the characteristic of K is different from 2 and Im ∆ ⊂ Im(1L� − τ)
otherwise [τ(f ⊗ g) = g ⊗ f ].

(6) (id3 + σ + σ2) ◦ (1L� ⊗ ∆) ◦ ∆ = 0

where σ(f ⊗ g ⊗ h) = h ⊗ f ⊗ g.
This follows from (1) and (2). Notice that (2) is equivalent to m ◦

(1L ⊗m) ◦ (id3 + ρ + ρ2) = 0 where ρ(x⊗ y⊗ z) = z ⊗x⊗ y and one has
tρ2|L� = σ.

For A ⊂ L�, let span(A) be the vector subspace of L� spaned by A.

Theorem 2. Let f ∈ L�. Put
V0 = K · f
V1 = γf (L) = {x1 · f, x1 ∈ L}
V2 = span{x2 · f1, x2 ∈ L, f1 ∈ V1}
...................................................
Vn = span{xn · fn−1, xn ∈ L, fn−1 ∈ Vn−1}
...............................................................

Then W =
∑

n≥0

Vn is a Lie subcoalgebra of L� and is the smallest Lie

subcoalgebra of L� that contains f .

Proof: We have seen that if f ∈ L�, then ∆(f) =
n∑

j=1

(yj ·f)⊗ (xj ·f).

It follows that ∆(V0) ⊂ V1⊗V1. Furthermore V1 ⊂ L�, and by induction
one has Vn ⊂ L�. On the other hand, if xn ∈ L, fn−1 ∈ Vn−1, n ≥ 1,
one has by (4)

∆(xn · fn−1) =
m∑

j=1

(ynj · fn−1) ⊗ [xn · (xnj · fn−1)]

−
m∑

j=1

[xn · (xnj · fn−1)] ⊗ (ynj · fn−1) ∈ Vn ⊗ Vn+1 + Vn+1 ⊗ Vn.

Therefore, ∆(Vn) ⊂ Vn ⊗ Vn+1 + Vn+1 ⊗ Vn ⊂ W ⊗W , n ≥ 1, and since
∆(V0) ⊂ V1 ⊗ V1 ⊂ W ⊗ W , one has ∆(W ) ⊂ W ⊗ W , i.e. W is a Lie
subcoalgebra of L�.
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Let V be a Lie subcoalgebra of L�. For any h ∈ V and x ∈ L, one

has ∆(h) =
n∑

j=1

h1
j ⊗ h2

j ∈ V ⊗ V and x · h = γh(x) =
n∑

j=1

〈h1
j , x〉h2

j ∈ V .

Therefore, if V contains f , one has V0 ⊂ V and V1 = γf (L) ⊂ V . It
is readily seen by induction that Vn ⊂ V for all n ≥ 0. It follows that
W =

∑

n≥0

Vn is contained in V .

Note.

(i) One can prove, by induction, that the above Vn, n ≥ 0, are finite
dimensional.

(ii) One has for n ≥ 1, Vn = span{tad x1 ◦ tad x2 ◦ . . . ◦ tad xn(f),
x1, . . . , xn ∈ L}.

Therefore, if L is nilpotent of class k, then for any f ∈ L�, the associated
sequence of subspaces (Vn)n≥0 is such that Vn = (0), for n ≥ k. It follows

that f belongs to the finite dimensional Lie subcoalgebra W =
k−1∑

n=0

Vn

of L�. Hence, one has L� = Loc(L�) the sum of the finite dimensional
Lie subcoalgebras of L�. In particular, if L is abelian, one has Vn = (0),
n ≥ 1, and L� = L∗.

More generally, one sees that L� = Loc(L�) iff for each f ∈ L� the
above associated Lie subcoalgebra W of L� is finite dimensional; in this

case, there exists k such that W =
k∑

n=0

Vn. Question : what is the class

of all Lie algebras L such that L� = Loc(L�)?
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