ON THE DEFINITION OF THE DUAL LIE COALGEBRA OF A LIE ALGEBRA

BERTIN DIARRA

Abstract _

Let L be a Lie algebra over a field K. The dual Lie coalgebra L° of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L^{*} of L: V is good if ${}^{t}m(V) \subset V \otimes V$, where m is the multiplication of L. We show that $L^{\circ} = {}^{t}m^{-1}(L^{*} \otimes L^{*})$ as in the associative case.

Let L be a Lie algebra over the field K with multiplication $m: L \otimes L \to L$: i.e. m is a linear map and setting $m(x \otimes y) = [x, y]$, one has

$$[x, x] = 0$$

(2)
$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.$$

Let L^* be the dual vector space of L and ${}^tm:L^*\to (L\otimes L)^*$ be the transpose of m. We identify $L^*\otimes L^*$ with a subspace of $(L\otimes L)^*$ and we set $L^{\odot}={}^tm^{-1}(L^*\otimes L^*)$.

Fix $f \in L^*$ and consider the linear map $\gamma_f : L \to L^*$ defined by

(3)
$$\langle \gamma_f(x), y \rangle = \langle f, [x, y] \rangle = \langle tm(f), x \otimes y \rangle, \quad x, y \in L.$$

Setting, as usual, adx(y) = [x, y], one has $\gamma_f(x) = {}^t(adx)(f)$. Sometimes, we shall write $\gamma_f(x) = x \cdot f$.

350 B. Diarra

Lemma 1. For $f \in L^*$, the following statements are equivalent

- (i) $f \in L^{\odot}$
- (ii) The linear map $\gamma_f: L \to L^*$ is of finite rank.

Proof: The equivalence follows readily from (3).

Moreover, since $L^* \otimes L^*$ can be identified with the space of the linear maps of L into L^* of finite rank, via $\iota: L^* \otimes L^* \hookrightarrow \operatorname{Hom}(L, L^*)$ by setting $\iota(f \otimes g)(x) = f(x)g$, one has $f \in L^{\odot}$ iff $\gamma_f = \sum_{j=1}^n f_j \otimes g_j$ iff $tm(f) = \sum_{j=1}^n f_j \otimes g_j$.

Lemma 2. For $f \in L^{\odot}$ and $x \in L$, one has, $\gamma_f(x) = x \cdot f \in L^{\odot}$. Moreover $\gamma_f(L)$ is a vector subspace of L^{\odot} of finite dimension.

Proof: If $f \in L^{\odot}$, then for $x, y \in L$, one has $\langle f, [x, y] \rangle = \langle \gamma_f(x), y \rangle = \sum_{j=1}^{n} \langle f_j, x \rangle \langle g_j, y \rangle$. However, (2) can be written [x, [y, z]] = -[y, [z, x]] - [z, [x, y]]. Therefore, one has

$$\begin{split} \langle \gamma_{x \cdot f}(y), z \rangle &= \langle x \cdot f, [y, z] \rangle \\ &= \langle f, [x, [y, z]] \rangle \\ &= -\langle f, [y, [z, x]] \rangle - \langle f, [z, [x, y]] \rangle \\ &= -\sum_{j=1}^{n} \langle f_j, y \rangle \langle g_j, [z, x] \rangle - \sum_{j=1}^{n} \langle f_j, z \rangle \langle g_j, [x, y] \rangle \\ &= \sum_{j=1}^{n} \langle f_j, y \rangle \langle x \cdot g_j, z \rangle - \sum_{j=1}^{n} \langle x \cdot g_j, y \rangle \langle f_j, z \rangle. \end{split}$$

Hence $\gamma_{x\cdot f}(y) = \sum_{j=1}^n \langle f_j,y\rangle x\cdot g_j - \sum_{j=1}^n \langle x\cdot g_j,y\rangle f_j$. It follows that $\gamma_{x\cdot f}$ is of finite rank, that is $x\cdot f = \gamma_f(x)\in L^\odot$. Then, it is clear that $\gamma_f(L)$ is a vector subspace of L^\odot and finite dimensional. \blacksquare

Note. One deduces from the above proof that if $f \in L^{\odot}$ and ${}^t m(f) = \sum_{j=1}^n f_j \otimes g_j$ then for $x \in L$, one has

$$^{t}m(x\cdot f)=\sum_{j=1}^{n}f_{j}\otimes(x\cdot g_{j})-\sum_{j=1}^{n}(x\cdot g_{j})\otimes f_{j}.$$

Theorem 1. L^{\odot} is a good subspace of L^* i.e. ${}^tm(L^{\odot}) \subset L^{\odot} \otimes L^{\odot}$. Moreover, one has $L^{\odot} = L^{\circ}$.

Proof: Let $f \in L^{\odot}$ and let $(g_j)_{1 \leq j \leq n}$ be a base of $\gamma_f(L) \subset L^{\odot}$. One has $g_j = x_j \cdot f$ and for any $x \in L$, $\gamma_f(x) = \sum_{j=1}^n f_j(x)g_j$; hence ${}^tm(f) = \sum_{j=1}^n f_j(x)g_j$

 $\sum_{j=1}^{n} f_{j} \otimes g_{j}, f_{j} \in L^{*}. \text{ However } m = -m \circ \tau \text{ (skew-symmetry), therefore,}$

one has ${}^t m = -{}^t \tau \circ {}^t m$ and ${}^t m(f) = \sum_{j=1}^n f_j \otimes g_j = -{}^t \tau (\sum_{j=1}^n f_j \otimes g_j) =$

 $-\sum_{j=1}^n g_j \otimes f_j$. Since $(g_j)_{1 \leq j \leq n}$ is free in L^* , there exists for $1 \leq \ell \leq n$

 $y_{\ell} \in L$ such that $\langle g_j, y_{\ell} \rangle = \delta_{j\ell}$. Hence $(y_{\ell} \otimes 1_{L^*})({}^t m(f)) = \sum_{j=1}^n \langle f_j, y_{\ell} \rangle g_j =$

$$-\sum_{j=1}^{n}\langle g_j,y_\ell\rangle f_j=-f_\ell, \text{ that is } f_\ell=-\sum_{j=1}^{n}\langle f_j,y_\ell\rangle g_j\in\gamma_f(L). \text{ It follows}$$

that
$${}^t m(f) = \sum_{j=1}^n f_j \otimes g_j \in \gamma_f(L) \otimes \gamma_f(L) \subset L^{\odot} \otimes L^{\odot}$$
 and $L^{\odot} \subset L^{\circ}$.

On the other hand, it is clear that any good subspace V of L^* is contained in L^{\odot} , therefore $L^{\circ} \subset L^{\odot}$. We have proved that $L^{\odot} = L^{\circ}$.

Note. If $f \in L^{\odot}$ and if $(x_j \cdot f)_{1 \leq j \leq n}$ is a base of $\gamma_f(L)$, one has ${}^t m(f) = \sum_{j=1}^n (y_j \cdot f) \otimes (x_j \cdot f)$ where, for $1 \leq j \leq n$, y_j is such that $\langle f, [x_\ell, y_j] \rangle = \delta_{\ell j}$.

Furthermore, if $x \in L$, one has

$$(4) \quad {}^{t}m(x\cdot f) = \sum_{j=1}^{n} (y_j\cdot f) \otimes [x\cdot (x_j\cdot f)] - \sum_{j=1}^{n} [x\cdot (x_j\cdot f)] \otimes (y_j\cdot f).$$

352 B. Diarra

Remark. Put $\Delta = {}^tm|_{L^{\odot}}: L^{\odot} \to L^{\odot} \otimes L^{\odot}$. Following W. Michaelis [1], (see also [2], [3], [4], [5] and [6]) one obtains a Lie coalgebra (L^{\odot}, Δ) , that is:

$$\Delta = -\tau \circ \Delta$$

if the characteristic of K is different from 2 and $\operatorname{Im} \Delta \subset \operatorname{Im}(1_{L^{\odot}} - \tau)$ otherwise $[\tau(f \otimes g) = g \otimes f]$.

(6)
$$(id_3 + \sigma + \sigma^2) \circ (1_{L^{\odot}} \otimes \Delta) \circ \Delta = 0$$

where $\sigma(f \otimes g \otimes h) = h \otimes f \otimes g$.

This follows from (1) and (2). Notice that (2) is equivalent to $m \circ (1_L \otimes m) \circ (id_3 + \rho + \rho^2) = 0$ where $\rho(x \otimes y \otimes z) = z \otimes x \otimes y$ and one has ${}^t \rho^2|_{L^{\odot}} = \sigma$.

For $A \subset L^{\odot}$, let span(A) be the vector subspace of L^{\odot} spaned by A.

Theorem 2. Let $f \in L^{\odot}$. Put

$$\begin{split} V_0 &= K \cdot f \\ V_1 &= \gamma_f(L) = \{x_1 \cdot f, x_1 \in L\} \\ V_2 &= \mathrm{span}\{x_2 \cdot f_1, \ x_2 \in L, \ f_1 \in V_1\} \\ & \dots \\ V_n &= \mathrm{span}\{x_n \cdot f_{n-1}, \ x_n \in L, \ f_{n-1} \in V_{n-1}\} \end{split}$$

Then $W = \sum_{n\geq 0} V_n$ is a Lie subcoalgebra of L^{\odot} and is the smallest Lie subcoalgebra of L^{\odot} that contains f.

Proof: We have seen that if $f \in L^{\odot}$, then $\Delta(f) = \sum_{j=1}^{n} (y_j \cdot f) \otimes (x_j \cdot f)$.

It follows that $\Delta(V_0) \subset V_1 \otimes V_1$. Furthermore $V_1 \subset L^{\odot}$, and by induction one has $V_n \subset L^{\odot}$. On the other hand, if $x_n \in L$, $f_{n-1} \in V_{n-1}$, $n \geq 1$, one has by (4)

$$\Delta(x_n \cdot f_{n-1}) = \sum_{j=1}^m (y_{nj} \cdot f_{n-1}) \otimes [x_n \cdot (x_{nj} \cdot f_{n-1})]$$
$$- \sum_{j=1}^m [x_n \cdot (x_{nj} \cdot f_{n-1})] \otimes (y_{nj} \cdot f_{n-1}) \in V_n \otimes V_{n+1} + V_{n+1} \otimes V_n.$$

Therefore, $\Delta(V_n) \subset V_n \otimes V_{n+1} + V_{n+1} \otimes V_n \subset W \otimes W$, $n \geq 1$, and since $\Delta(V_0) \subset V_1 \otimes V_1 \subset W \otimes W$, one has $\Delta(W) \subset W \otimes W$, i.e. W is a Lie subcoalgebra of L^{\odot} .

Let V be a Lie subcoalgebra of L^{\odot} . For any $h \in V$ and $x \in L$, one has $\Delta(h) = \sum_{j=1}^n h_j^1 \otimes h_j^2 \in V \otimes V$ and $x \cdot h = \gamma_h(x) = \sum_{j=1}^n \langle h_j^1, x \rangle h_j^2 \in V$. Therefore, if V contains f, one has $V_0 \subset V$ and $V_1 = \gamma_f(L) \subset V$. It is readily seen by induction that $V_n \subset V$ for all $n \geq 0$. It follows that $W = \sum_{n \geq 0} V_n$ is contained in V.

Note.

- (i) One can prove, by induction, that the above V_n , $n \geq 0$, are finite dimensional.
- (ii) One has for $n \geq 1$, $V_n = \operatorname{span}\{^t ad \ x_1 \circ ^t ad \ x_2 \circ \ldots \circ ^t ad \ x_n(f), x_1, \ldots, x_n \in L\}$.

Therefore, if L is nilpotent of class k, then for any $f \in L^{\odot}$, the associated sequence of subspaces $(V_n)_{n \geq 0}$ is such that $V_n = (0)$, for $n \geq k$. It follows that f belongs to the finite dimensional Lie subcoalgebra $W = \sum_{n=0}^{k-1} V_n$ of L^{\odot} . Hence, one has $L^{\odot} = \text{Loc}(L^{\odot})$ the sum of the finite dimensional Lie subcoalgebras of L^{\odot} . In particular, if L is abelian, one has $V_n = (0)$, $n \geq 1$, and $L^{\odot} = L^*$.

More generally, one sees that $L^{\odot} = \operatorname{Loc}(L^{\odot})$ iff for each $f \in L^{\odot}$ the above associated Lie subcoalgebra W of L^{\odot} is finite dimensional; in this case, there exists k such that $W = \sum_{n=0}^k V_n$. Question : what is the class of all Lie algebras L such that $L^{\odot} = \operatorname{Loc}(L^{\odot})$?

References

- 1. W. MICHAELIS, Lie coalgebras, Advances in Math. 38 (1980), 1–54.
- 2. W. MICHAELIS, An example of a non-zero Lie coalgebra M for which Loc(M) = (0), J. Pure Appl. Algebra **68** (1990), 341–348.
- 3. W. D. NICHOLS, The structure of the dual Lie coalgebra of the Witt algebra, *J. Pure Appl. Algebra* **68** (1990), 359–364.
- 4. W. D. Nichols, On Lie and associative duals, *J. Pure Appl. Algebra* 87 (1993), 313–320.
- 5. E. J. Taft, Witt and Virasoro algebras as Lie bialgebras, *J. Pure Appl. Algebra* 87 (1993), 301–312.

354 B. Diarra

6. E. J. Taft, Algebraic aspect of linearly recursive sequences, in "Advances in Hopf algebras," edited by J. Bergen, S. Montgomery, Marcel Dekker, New-York, 1994, pp. 299–317.

 $Keywords. \ \, \mbox{Lie coalgebras} \\ 1991 \ \, \textit{Mathematics subject classifications} : 16 \mbox{W} 30$

Mathématiques Pures Complexe Scientifique des Cézeaux 63177 Aubière Cedex FRANCE

e-mail: diarra@ucfma.univ-bpclermont.fr

Primera versió rebuda el 16 de Març de 1995, darrera versió rebuda el 17 de Maig de 1995