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ON THE EXCEPTIONAL SET
IN NEVANLINNA’S SECOND
FUNDAMENTAL THEOREM

IN THE UNIT DISC

Arturo Fernández Arias and Francisco Rodŕıguez Mateos

Abstract
A general example of an analytic function in the unit disc possess-
ing an exceptional set in Nevanlinna’s second fundamental theo-
rem is built. It is used to show that some conditions on the size
of the exceptional set are sharp, extending analogous results for
meromorphic functions in the plane.

1. Introduction

We shall use the standard terminology of Nevanlinna theory (see, for
example, [4], [6], [7]). In [3] we prove the following theorems, sharpening
a result of R. Nevanlinna [7, p. 247] and extending to meromorphic
functions in the unit disc analogous results in the plane [1].

Theorem A. Let F be a meromorphic function in the unit disc D =
{z | |z| < 1} and λ ≥ 0 a positive real number. Then the error term
S(r, F ) in Nevanlinna’s second fundamental theorem satisfies

(1.1) S(r, F ) = O(log+ T (r, F )) +O

(
log

1
1 − r

)

as r → 1 outside a set Eλ such that

(1.2)
∫

Eλ

dr

(1 − r)λ
< ∞.

Theorem B. Let F be meromorphic in the unit disc and such that

(1.3) log
(

1
1 − r

)
= o(T (r, F )), as r → 1.
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Then the error term S(r, F ) satisfies

(1.4) S(r, F ) = o(T (r, F ))

as r → 1 outside a set E, independent of λ, such that

(1.5)
∫

E

(
1

1 − r

)λ

dr < ∞

for every λ > 0.

Theorem C. Let F be a meromorphic function in the unit disc sat-
isfying (1.3). Then the error term S(r, F ) satisfies (1.4) outside a set E
which can be contained in a sequence of intervals [rn, rn + δn] such that
rn is increasing and tends to 1 and

(1.6) δn <
1 − rn

eΨ(n)2
, where Ψ(1) = 1, Ψ(n) = eΨ(n−1).

In this paper we show that these results are sharp. To do this, we shall
give an example of a meromorphic function in the unit disc possessing
a suitable exceptional set. The basic ideas of the example go back to
W. K. Hayman [5] and A. Fernández [2], although to obtain the desired
properties a more complicated construction is needed.

2. Statement of the results

Theorem 1. For every function φ(r), 0 ≤ r < 1, such that

(2.1) φ(r)(1 − r)λ → ∞, as r → 1, for all positive λ,

we can construct a meromorphic function F satisfying (1.3) such that

(2.2)
S(r, F )

log
T (r, F )
1 − r

→ ∞

and

(2.3) S(r, F ) > 2T (r, F )

in a set E ⊂ [0, 1] satisfying

(2.4)
∫

E

φ(r) dr = ∞.

This result shows that Theorems A and B are sharp. Next theorem
gives a converse result to Theorem C.
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Theorem 2. Let Ψ(n) be defined as in (1.6). Then for every increas-
ing sequence L(n) such that there is no N in N for which

(2.5) Ψ(n+N) ≥ L(n), n ∈ N,

there is a meromorphic function in the unit disc F , satisfying (1.3), for
which we cannot find a sequence of disjoint intervals [rn, rn + δn] such
that rn is increasing and tends to one and δn satisfies

(2.6) δn <
1 − rn

eL(n)2

and such that S(r, F ) = o(T (r, F )) outside the union
⋃

n[rn, rn + δn].

The proofs of Theorems 1 and 2 rely on the following construction,
which gives an example of a meromorphic function in the unit disc pos-
sessing an exceptional set in Nevanlinna’s second fundamental theorem.

Theorem 3. Suppose that 0 < α < 1 and that {rn} is a sequence of
positive numbers satisfying

(2.7) rn < 1, 1 − rn+1 < α2(1 − rn) n = 1, 2, . . .

Let {λn} be the sequence of integers defined by

(2.8) λn =




1 n = 1[(
1

1 − rn

)λ2
n−1

]
+ 1 n = 2, 3, . . .

and {mn} the sequence of integers

(2.9) mn =




1, n = 1[√
λn(1 − rn−1)

1 − rn

]
, n = 2, 3, . . .

Write

(2.10) F (z) =
∞∑

n=1

mn−1∑
k=0


 1 − rn

exp
(

2kπi
mn

)
− z




λn

.
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Then F (z) is analytic in the unit disc D and satisfies (1.3). Further, if
{sn} is the sequence of positive numbers defined by

(2.11)
1

1 − sn
=

{(
1

1 − rn

)λn

2 (n− 1)λn−1

} 1
λn−λn−1

and

(2.12) s′n = sn + δn, δn = o

(
1 − rn

λn

)
,

then

(2.13)
T (r, F ′)
T (r, F )

→ ∞

and

(2.14)
T (r, F ′)

log
T (r, F )
1 − r

→ ∞

as r → 1 in E =
⋃

n[sn, s
′
n].

3. Proof of Theorem 3

We note that, by (2.7), rn → 1 as n → ∞.
We consider

z ∈ D, z = r eiϑ

such that

(3.1) α (1 − rN ) < 1 − r < 1 − rN

and note that, from (2.7), this implies

1 − rN+1 < α (1 − r).

Next we write
ϑk,n =

2 k π
mn

.

For each n > 1 we can find k0 such that

|ei ϑk0,n − z| ≤ |ei ϑk,n − z|, k = 0, 1, . . . ,mn − 1.
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Then, if we write
(3.2)

αk,n =
{ |ϑ− ϑk,n| if |ϑ− ϑk,n| ≤ π

2π − |ϑ− ϑk,n| if |ϑ− ϑk,n| ≥ π
k = 0, 1, . . . ,mn − 1

we have

αk0,n ≤ π

mn

αk,n ≥ (2 |k − k0| − 1)π
mn

, if 0 < |k − k0| ≤
mn − 1

2

αk,n ≥ (2 (mn − |k − k0|) − 1)π
mn

, if |k − k0| ≥
mn + 1

2

and, in any case, αk,n ≤ π.
Now we consider n given large and, for the sake of simplicity and

without loss of generality, suppose that k0 = 0.
Then we have, for 1 ≤ k ≤ (mn − 1)/2,

αk,n ≥ (2 k − 1)π
mn

≥
√
k π

mn
∼

√
k π (1 − rn)√
λn (1 − rn−1)

,

so that

|eiϑk,n − r eiϑ|2 = 1 + r2 − 2r cos(ϑk,n − ϑ)

= 1 + r2 − 2r cosαk,n > 1 + r2−2r

(
1 −

α2
k,n

2
+
α4

k,n

4!

)

= (1 − r)2 + rα2
k,n

(
1 −

α2
k,n

12

)
(3.3)

≥ (1 − r)2 +
r k π2(1 − rn)2

λn(1 − rn−1)2

(
1 − π2

12

)

= (1 − r)2 +
c r k (1 − rn)2

λn(1 − rn−1)2
, c = π2

(
1 − π2

12

)
.

We note that for (mn +1)/2 ≤ k ≤ mn−1 a similar result holds in terms
of k′ = mn − k, and that for ko �= 0 the only change needed in (3.3) is
writing |k − k0| instead of k.

We have

∣∣∣∣ 1 − rn

ei ϑk,n − z

∣∣∣∣
λn

=
(

1 − rn

1 − r

)λn
(

(1 − r)2

|eiϑk,n − z|2
)λn

2
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and from (3.3)

(
(1 − r)2

|eiϑk,n − z|2
)λn

2

<


 (1 − r)2

(1 − r)2 +
c r k(1 − rn)2

λn(1 − rn−1)2




λn
2

=
(

1 +
c r k(1 − rn)2

λn(1 − rn−1)2(1 − r)2

)−λn
2

.

Next we show that in the sum

mn−1∑
k=0

∣∣∣∣ 1 − rn

eiϑk,n − z

∣∣∣∣
λn

=
∣∣∣∣ 1 − rn

eiϑk0,n − z

∣∣∣∣
λn

+
mn−1∑
k=0
k �=k0

∣∣∣∣ 1 − rn

eiϑk,n − z

∣∣∣∣
λn

for n large the main term is that one corresponding to k0.

We recall that, from Euler’s summation formula, we have for any real
function f possessing continuous derivative f ′ in the interval [y, x], 0 <
y < x,

∑
y<k≤x
k∈N

f(k) =
∫ x

y

f(t) dt+
∫ x

y

(t− [t])f ′(t) dt

+ f(x)([x] − x) − f(y)([y] − y),

so that taking in this formula

f(t) =
(

1 +
c r t(1 − rn)2

λn(1 − rn−1)2(1 − r)2

)−λn
2

y = 1, x =
[
mn − 1

2

]

and noting that for this election

[x] − x = [y] − y = 0
f ′(t) < 0 for t > 0
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we have

x∑
k=2

f(k) ≤ 2λn(1 − r)2(1 − rn−1)2

(λn − 2) c r(1 − rn)2

(
1+

c r(1 − rn)2

λn(1 − rn−1)2(1 − r)2

)−λn
2 +1

,

so that

x∑
k=1

f(k) <
(

1 +
c r(1 − rn)2

λn(1 − rn−1)2(1 − r)2

)−λn
2

{
1 +

2λn(1 − r)2(1 − rn−1)2

(λn − 2) c r(1 − rn)2

(
1 +

c r(1 − rn)2

λn(1 − rn−1)2(1 − r)2

)}
.

From (3.1) we see that N → ∞ is equivalent to r → 1 and then, since
(2.7) and (2.8) imply that λn(1 − rn−1)2 → ∞ as n → ∞, we have

c r(1 − rN )2

λN (1 − rN−1)2(1 − r)2
→ 0, as r → 1.

We also have
2λN (1 − r)2(1 − rN−1)2

(λN − 2) c r(1 − rN )2
→ 0

and (
1 +

c r(1 − rN )2

λN (1 − rN−1)2(1 − r)2

)−λN
2

→ 0,

so that we obtain, recalling that we are supposing that k0 = 0,

(3.4)
mN−1∑
k=1

∣∣∣∣ 1 − rN

eiϑk,N − z

∣∣∣∣
λN

∼ 2

[
mN −1

2

]∑
k=1

(
1 − rN

1 − r

)λN
∣∣∣∣ (1 − r)2

|eiϑk,N − z|2
∣∣∣∣

λN
2

< 2
(

1 − rN

1 − r

)λN x∑
k=1

f(k) = o

{(
1 − rN

1 − r

)λN
}
.

We also have ∣∣∣∣1 − rN

1 − z

∣∣∣∣
λN

<

(
1 − rN

1 − r

)λN

,
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so that

(3.5)
mN−1∑
k=0

∣∣∣∣ 1 − rN

eiϑk,N − z

∣∣∣∣
λN

<

(
1 − rN

1 − r

)λN

(1 + o(1)).

Next we consider r sufficiently close to 1 so that

mN−1∑
k=0

∣∣∣∣ 1 − rN

eiϑk,N − z

∣∣∣∣
λN

< 2
(

1 − rN

1 − r

)λN

.

We write
F (z) =

∑
1

+
∑
2

+
∑
3

where

(3.6)

∣∣∣∣∣
∑
1

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
n=1

mn−1∑
k=0

(
1 − rn

eiϑk,n − z

)λn

∣∣∣∣∣
≤

N−1∑
n=1

mn−1∑
k=0

(
1 − rn

1 − r

)λn

=
N−1∑
n=1

mn

(
1 − rn

1 − r

)λn

<

N−1∑
n=1

mn

(
1

1 − r

)λn

< (N − 1)mN−1

(
1

1 − r

)λN−1

∼ (N − 1)

√
λN−1 (1 − rN−2)

(1 − rN−1)

(
1

1 − r

)λN−1

< (N − 1)
√
λN−1

(
1

1 − r

)λN−1+1

,

since, for n large, mn is increasing by (2.8) and (2.9), and by (2.7) and
(3.1) we have (1 − rN−1) > (1 − r).

(3.7)

∣∣∣∣∣
∑
2

∣∣∣∣∣ =

∣∣∣∣∣
mN−1∑
k=0

(
1 − rN

eiϑk,N − z

)λN

∣∣∣∣∣
≤

(
1 − rN

1 − r

)λN

(1 + o(1)) ≤ 2
(

1 − rN

1 − r

)λN

.
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(3.8)

∣∣∣∣∣
∑
3

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

mn−1∑
k=0

(
1 − rn

eiϑk,n − z

)λn

∣∣∣∣∣
≤

∞∑
n=N+1

mn

(
1 − rn

1 − r

)λn

∼
∞∑

n=N+1

√
λn (1 − rn−1)

(1 − rn)

(
1 − rn

1 − r

)λn

<
1

1 − r

∞∑
n=N+1

√
λn

(
1 − rn

1 − r

)λn−1

<
1

1 − r

∞∑
n=N+1

(λn − 1)αλn−1

<
1

1 − r

∞∑
n=1

nαn =
c1

1 − r
, c1 =

α

(1 − α)2
,

since from (2.7) and (3.1) we have

1 − rn

1 − r
< α, n = N + 1, N + 2, . . .

From (3.6), (3.7) and (3.8) we conclude that F (z) converges in any com-
pact subset of D, so that it is analytic in D.

Writing

f(z) = F ′(z) =
∑
1

′ +
∑
2

′ +
∑
3

′

we have, as in (3.6) and (3.8),

(3.9)

∣∣∣∣∣
∑
1

′

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
n=1

λn

mn−1∑
k=0

(
1 − rn

eiϑk,n − z

)λn 1
eiϑk,n − z

∣∣∣∣∣
≤

N−1∑
n=1

λnmn

(
1 − rn

1 − r

)λn 1
1 − r

< (N − 1)λN−1mN−1

(
1

1 − r

)λN−1 1
1 − r

< (N − 1)λ3/2
N−1

(
1

1 − r

)λN−1+2

(1 + o(1)).
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(3.10)

∣∣∣∣∣
∑
3

′

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

λn

mn−1∑
k=0

(
1 − rn

eiϑk,n − z

)λn 1
(eiϑk,n − z)

∣∣∣∣∣
≤

∞∑
n=N+1

λnmn

(
1 − rn

1 − r

)λn 1
1 − r

∼
∞∑

n=N+1

λn

√
λn (1 − rn−1)

(1 − rn)

(
1 − rn

1 − r

)λn 1
1 − r

<
1

(1 − r)2

∞∑
n=N+1

λn(λn − 1)αλn−1

<
1

(1 − r)2

∞∑
n=1

n (n− 1)αn−1

=
c2

(1 − r)2
, c2 =

α

(1 − α)3
.

For sn as defined in (2.11) we have

(3.11)
(

1 − rn

1 − sn

)λn

= 2 (n− 1)λn−1

(
1

1 − sn

)λn−1

and sn > rn. Next we show that

(3.12)
1

1 − sn
∼ 1

1 − rn
, as n → ∞,

i.e.

lim
n→∞

(
1

1 − rn

) λn
λn−λn−1

(2 (n− 1))
1

λn−λn−1 λn−1

1
λn−λn−1

1
1 − rn

= 1.

The logarithm of the left hand side is(
λn

λn − λn−1
− 1

)
log

(
1

1 − rn

)
+

log(2(n− 1))
λn − λn−1

+
log λn−1

λn − λn−1
.

Since λn−1
λn

and n
λn

tend to zero as n tends to infinity by (2.8), the last
two terms tend to zero. The first term satisfies

(
λn

λn − λn−1
− 1

)
log

(
1

1 − rn

)
=

λn−1 log
(

1
1−rn

)
λn − λn−1

<
log λn

λn − λn−1
→ 0,
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as n → ∞, by (2.8).
Next we show that if r ∈ [sN , s

′
N ] for N large then r satisfies (3.1).

We have

rN ≤ sN ≤ r < sN + δN

1 − sN − δN < 1 − r ≤ 1 − rN

1 − sN − 1−rN

λN

1 − rN
≤ 1 − r

1 − rN
≤ 1

but
1 − sN ∼ 1 − rN

and
1 − rN

λN
→ 0,

so that we can find ε > 0 such that 1 − ε > α and N0 such that for
N ≥ N0

1 − rN > 1 − r ≥ (1 − ε)(1 − rN ) > α (1 − rN ).

Next we prove that as r → 1 through the intervals [sn, s
′
n] we have

(3.13)
(

1 − rn

1 − r

)λn

∼
(

1 − rn

1 − sn

)λn

,

or equivalently (
1 − s′n
1 − sn

)λn

→ 1.

In fact

(
1 − sn − δn

1 − sn

)λn

=





1 − 1

1 − sn

δn




1−sn
δn




δn
λn

1−sn

→ e0 = 1

by (2.12) and (3.12). We also have for r ∈ [sn, s
′
n](

1 − rn

1 − r

)λn−1

∼
(

1 − rn

1 − sn

)λn−1

.

From (3.11) and (3.13) we deduce

(3.14)
(

1 − rn

1 − r

)λn

∼ 2 (n− 1)λn−1

(
1

1 − r

)λn−1

.
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We have seen that if z = r eiϑ and r ∈ [sN , s
′
N ] for N large r satisfies

(3.1) and we can apply (3.6), (3.7) and (3.8) to obtain

|F (z)| < 4 (N − 1)λN−1

(
1

1 − r

)λN−1+1

(1 + o(1)).

Hence

(3.15) T (r, F ) < λN−1 log
(

1
1 − r

)
(1 + o(1)).

Next we consider z satisfying

(3.16) αk0,N ≤ π (1 − rN−1)
mN

.

Then

∣∣eiϑk0,N − z
∣∣2 = 1 + r2 − 2 r cosαk0,N

< 1 + r2 − 2 r

(
1 −

α2
k0,N

2

)
= (1 − r)2 + r α2

k0,N

< (1 − r)2 +
r π2(1 − rN−1)2

m2
N

∼ (1 − r)2 +
r π2(1 − rN−1)2 (1 − rN )2

λN (1 − rN−1)2

= (1 − r)2
(

1 +
r π2

λN

(
1 − rN

1 − r

)2
)

< (1 − r)2
(

1 +
r π2

λNα2

)
,

since, by (3.1), (1 − r) > α(1 − rN ). Thus, for N large we obtain
(3.17)(

(1 − r)2∣∣eiϑk0,N − z
∣∣2

)λN
2

>


 (1 − r)2

(1 − r)2
(
1 + rπ2

λN α2

)



λN
2

=
(

1 +
r π2

λNα2

)−λN
2

> exp
(
− π2

2α2

)
= K,
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so that

λN

∣∣∣∣ 1 − rN

eiϑk0,N − z

∣∣∣∣
λN 1∣∣eiϑk0,N − z

∣∣
= λN

(
1 − rN

1 − r

)λN
(

(1 − r)2∣∣eiϑk0,N − z
∣∣2

)λN
2 1∣∣eiϑk0,N − z

∣∣
> λN

(
1 − rN

1 − r

)λN
(

1 +
r π2

λNα2

)−λN
2 1

(1 − r)
√

1 + r π2

λN α2

,

and from (3.17) and the fact that

r π2

λNα2
→ 0

we can find for N large a constant K1 > 0, independent of N , such that

(3.18) λN

∣∣∣∣ 1 − rN

eiϑk0,N − z

∣∣∣∣
λN 1∣∣eiϑk0,N − z

∣∣ > K1
λN

1 − r

(
1 − rN

1 − r

)λN

.

From (3.4) we have

(3.19)

∣∣∣∣∣∣λN

∑
k �=k0

(
1 − rN

eiϑk,N − z

)λN 1
(eiϑk,N − z)

∣∣∣∣∣∣
≤ λN

1 − r

∑
k �=k0

∣∣∣∣ 1 − rN

eiϑk,N − z

∣∣∣∣
λN

=
λN

1 − r
o

(
1 − rN

1 − r

)λN

,

so that from (3.18) and (3.19) we obtain

(3.20)

∣∣∣∣∣
∑
2

′

∣∣∣∣∣ =

∣∣∣∣∣λN

mN−1∑
k=0

(
1 − rN

eiϑk,N − z

)λN 1
(eiϑk,N − z)

∣∣∣∣∣
≥ λN

∣∣∣∣ 1 − rN

eiϑk0,N − z

∣∣∣∣
λN 1∣∣eiϑk0,N − z

∣∣
−

∣∣∣∣∣∣
∑
k �=k0

λN

(
1 − rN

eiϑk,N − z

)λN 1
(eiϑk,N − z)

∣∣∣∣∣∣
≥ K1

λN

1 − r

(
1 − rN

1 − r

)λN

− o

{
λN

1 − r

(
1 − rN

1 − r

)λN
}

∼ K1
λN

1 − r

(
1 − rN

1 − r

)λN

.
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For r ∈ [sN , s
′
N ] and z = r eiϑ satisfying (3.16) we have for N large,

from (3.9), (3.10) and (3.20),

|f(z)| ≥ K1
λN

1 − r

(
1 − rN

1 − r

)λN

(1 + o(1)).

For every z = r eiϑ we can find k0 ∈ {0, 1, . . . ,mN − 1} such that

αk0,N ≤ π

mN

and, for |z| = r, k0 is the same for every z = r eiϑ in an arc of amplitude
2π/mN around r eiϑk0,N . For (3.16) to hold it is sufficient that z be in
an arc of amplitude 2π(1−rN−1)

mN
centered at r eiϑk0,N . Therefore

(3.21)

T (r, f) =
1
2π

∫ 2π

0

log+ |f(reiϑ)| dϑ

=
1
2π

mN−1∑
k=0

∫ ϑk+1,N

ϑk,N

log+ |f(reiϑ)| dϑ

≥ 1
2π

mN−1∑
k=0




∫ ϑk,N+
π(1−rN−1)

mN

ϑk,N

log |f(reiϑ)| dϑ

+
∫ ϑk+1,N

ϑk+1,N−π(1−rN−1)
mN

log |f(reiϑ)| dϑ




≥ 1
2π

mN−1∑
k=0

2π(1 − rN−1)
mN

{
log λN + log

(
1 − rN

1 − r

)λN

+ log
(

1
1 − r

)
+ logK1

}

∼ (1 − rN−1)
{
λ2

N−1 log
(

1
1 − r

)
+ λN−1 log

(
1

1 − r

)

+ log(2NλN−1) + log
(

1
1 − r

)}

∼ (1 − rN−1)λ2
N−1 log

(
1

1 − r

)
,

since from r ∈ [sN , s
′
N ] and (3.12) we deduce(

1
1 − rN

)
∼

(
1

1 − r

)
.
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Hence, from (3.15) and (3.21) we obtain

T (r, f)
T (r, F )

>
(1 − rN−1)λ2

N−1 log
(

1
1−r

)
λN−1 log

(
1

1−r

) = (1 − rN−1)λN−1 → ∞

by (2.8), as r tends to one in E =
⋃

N [sN , s
′
N ].

Since from (3.21) we have

log
(

1
1 − r

)
= o (T (r, f))

as r → 1 in E, we also have

T (r, f)

log
T (r, F )
1 − r

→ ∞

as r → 1 in E.
Finally we show that F (z) satisfies (1.3). In fact, from (3.6) and

(3.8), and with the same arguments used to obtain (3.20), we deduce for
z = reiϑ satisfying (3.1) and (3.16) and N large

|F (z)| ≥ K2

(
1 − rN

1 − r

)λN

− (N − 1)
√
λN−1

(
1

1 − r

)λN−1+1

− C1

1 − r

for a certain constant K2 > 0 independent of N .
Then, for r ∈ [sN , s

′
N ] we obtain, from (3.14) and following similar

computations to those in (3.21)

(3.22) T (r, F ) ≥ (1 − rN−1)λN−1 log
(

1
1 − r

)
.

For s′N < r < rN+1 we have

(
1 − rN

1 − r

)λN

=
(

1 − rN

1 − s′N

)λN
(

1 − s′N
1 − r

)λN

∼ 2(N − 1)λN−1

(
1

1 − s′N

)λN−1
(

1 − s′N
1 − r

)λN

> 2(N − 1)λN−1

(
1

1 − r

)λN−1
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and we also obtain (3.22).
Finally, for rN < r < sN we have

T (r, F ) ≥ T (rN , F ) ≥ (1 − rN−2)λN−2 log
1

1 − rN

≥ (1 − rN−2)λN−2 log
1

1 − r
− (1 − rN−2)λN−2 log

1 − rN

1 − sN
,

but

(1 − rN−2)λN−2 log
1 − rN

1 − sN

=
(1 − rN−2)λN−2

λN − λN−1

{
λN−1 log

1
1 − rN

+ log (2(N − 1)λN−1)
}
,

so that this term tends to zero as N tends to infinity.
Thus we conclude that for any r close enough to 1 we have

T (r, F ) ≥
{

(1 − rN−2)λN−2 log
1

1 − r

}
(1 + o(1)),

and therefore

lim
r→1

T (r, F )

log
1

1 − r

≥ lim
r→1

(1 − rN−2)λN−2 = ∞.

This completes the proof of Theorem 3.

4. Proof of Theorem 1

Since to prove Theorem 1 we shall make use of Theorem 3, we first
show that the set E is in fact exceptional for the function F (z).

We make use of the following two inequalities

(4.1) S(r, F ) ≥ m(r,
F ′

F
)

(4.2) m(r, F ′) ≤ m(r,
F ′

F
) +m(r, F ),

so that by (2.13) we deduce

(4.3)
S(r, F ) ≥ m(r, F ′) −m(r, F )

= T (r, F ′) − T (r, F ) = T (r, F ′)(1 + o(1))
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for r ∈ [sn, sn + δn] and n large, and we deduce from (2.14) and (4.3)

S(r, F )

log
T (r, F )
1 − r

≥ T (r, F ′)(1 + o(1))

log
T (r, F )
1 − r

→ ∞

as n → ∞, which is (2.2).
From (2.13) we also have, for r ∈ [sn, sn + δn] and n large,

m(r, F ′) = T (r, F ′) ≥ 3T (r, F ) = 3m(r, F )

and, from (4.1) and (4.2), we conclude

S(r, F ) ≥ m(r,
F ′

F
) ≥ 2m(r, F ) = 2T (r, F )

which is (2.3).
We can assume without loss of generality that φ(r) is increasing for r

close to 1. In fact, by (2.1), for every positive integer N there exists tN
such that

φ(r) ≥
(

1
1 − r

)N

, r ≥ tN ,

where we can clearly assume that 1 − tN+1 ≤ α(1 − tN ), for a certain
0 < α < 1. Then, if we define

φ1(r) =
(

1
1 − r

)N

, tN ≤ r < tN+1,

for r ≥ t1, φ1(r) is increasing and satisfies (2.1) and also φ1(r) ≤ φ(r).
Hence it is enough to prove (2.4) with φ1(r) instead of φ(r).

We have shown that the function F (z) defined in (2.10) satisfies (2.2)
and (2.3) as r tends to 1 through the sequence of intervals [sn, sn + δn]
defined by (2.11) and (2.12). Thus it is enough to prove (2.4) for the set
E =

⋃
n[sn, sn + δn] and for this it is enough to show that

(4.4)
∑

n

φ(sn)δn = ∞,

as this implies (2.4) since φ is increasing.
Next we show that we can choose {rn} and {δn} in Theorem 3 so that

(4.5) φ(sn)δn ≥ 1
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and so (4.4) holds.
We can take {λn} as in (2.8) and

(4.6) δn =
(1 − rn)2

λn
.

Then, for n large,

(4.7) φ(sn)δn ∼ φ(sn)(1 − rn)2(
1

1 − rn

)λ2
n−1

>
φ(sn)(
1

1 − rn

)2λ2
n−1

.

Let us assume that r1, . . . , rn−1, λ1, . . . , λn−1 and therefore
δ1, . . . , δn−1 have already been defined. Then we define rn such that
(2.7) is satisfied and such that

(4.8)
φ(r)(

1
1 − r

)2λ2
n−1

≥ 1, r ≥ rn,

which is possible by (2.1).
Once rn has been defined, we obtain λn, sn and δn by (2.8), (2.11)

and (4.6). So we have a well-defined function F (z), analytic in the unit
disc, satisfying (2.2) and (2.3) in the set E =

⋃
n[rn, rn + δn]. Since

(4.5) follows from (4.7) and (4.8) and (4.5) implies (2.4), the proof of
Theorem 1 is complete.

5. A preliminary result to Theorem 2

The following result will be used in the proof of Theorem 2.

Theorem 4. We define the sequence {rn} by

(5.1)
1

1 − rn
= φ(n) = Ψ(n)1/3,

where Ψ(1) = 1, Ψ(n) = exp(Ψ(n − 1)) as in (1.6). Then the function
defined by (2.10) satisfies

S(r, F ) ≥ 2T (r, F )

for r in a sequence of intervals (tn, tn + βn) such that

(5.2) βn ≥ 1
Ψ(n)

for large n.
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Proof: The sequence rn given by (5.1) satisfies (2.7) for a certain α;
hence F (z) is a well-defined function.

In the proof of Theorem 1 we have shown that S(r, F ) ≥ 2T (r, F ) for
r sufficiently close to 1 in a sequence of intervals [sn, sn + δn], where sn

and δn are given by (2.11) and (2.12). We choose in particular

δn =
(1 − rn)2

λn
.

It remains to verify (5.2).
We shall show by induction that there is N ∈ N such that

(5.3)
λn

(1 − rn)2
≤ φ(n+N) ≤ Ψ(n+N)

for every n ∈ N. We assume n so large that φ(n) is much bigger than n
and log φ(n); for such an n we find N so large that (5.3) holds. Then we
prove that this inequality is true for all the following terms.

In fact by (2.8) we have

λn+1

(1 − rn+1)2
=

{[(
1

1 − rn+1

)λ2
n

]
+ 1

}
1

(1 − rn+1)2

≤
(

1
1 − rn+1

)2 λ2
n

= exp
{

2λ2
n log

(
1

1 − rn+1

)}

≤ exp
{

1
3
φ(n+N)3

}
= φ(n+N + 1)

≤ Ψ(n+N + 1),

since by our hypothesis on n

2λ2
n log

(
1

1 − rn+1

)
= 2λ2

n log φ(n+ 1)

≤ 1
3
φ(n+N)3.

This proves the inductive step, so that (5.3) holds for all large n. By
increasing N if necessary, we ensure that (5.3) is true for all n. Thus we
obtain

δn =
(1 − rn)2

λn
≥ 1

Ψ(n+N)

for some positive integer N and all n. We conclude that (5.2) holds,
writing

tn = sn−N , βn = δn−N , n > N.
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6. Proof of Theorem 2

For the function F of Theorem 4 there is a sequence of intervals
(tn, tn + βn) such that for large n we have

(6.1) βn ≥ 1
Ψ(n)

and S(r, F ) ≥ 2T (r, F ) for r > r0 in
⋃

n(tn, tn +βn). If Theorem 2 were
false, we could find a sequence of disjoint intervals [rn, rn +δn] satisfying

(6.2) δn <
1 − rn

eL(n)2

and such that S(r, F ) = o(T (r, F )) outside the union
⋃

n[rn, rn + δn].
Then we should have for a certain N1 ∈ N

⋃
n>N1

(tn, tn + βn) ⊂
⋃
k

[rk, rk + δk],

and, since we are considering sequences of disjoint intervals, we should
conclude that

(6.3) (tn, tn + βn) ⊂ [rkn
, rkn

+ δkn
] n > N1.

By the way we constructed the intervals (tn, tn + βn) we can assume

(6.4) 1 − tn+1 < α(1 − tn)

for a certain 0 < α < 1.
We note that since tn → 1 as n tends to infinity we also have rkn

→ 1,
so that kn also tends to infinity as n → ∞.

From (6.2), (6.3) and (6.4) we have

tn+1 − tn > (1 − α) (1 − tn) > (1 − α) (1 − rkn − δkn)

> (1 − α)
(
eL(kn)2 − 1

)
δkn .

Since kn → ∞ as n → ∞ and, from (2.5), L(kn) also tends to infinity,
we can find N2 ∈ N such that

(1 − α)
(
eL(kn)2 − 1

)
> 1, n > N2,
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so that
tn+1 − tn > δkn , n > N = max(N1, N2).

Therefore, for n > N , each interval [rkn , rkn + δkn ] cannot meet more
than one of the intervals (tn, tn + βn). Hence the sequence kn is strictly
increasing for n > N .

Now using (6.1), (6.2) and (6.3) we must have that, for n large,

1
Ψ(n)

≤ βn ≤ δkn ≤ 1 − rkn

eL(kn)2
≤ 1

L(kn)
≤ 1

L(n−N)

since kn ≥ n−N . Hence there is n0 ∈ N such that

Ψ(n) ≥ L(n−N), n > max(n0, N),

that is
Ψ(n+N) ≥ L(n), n > n0.

Then we should have

Ψ(n+N + n0) ≥ L(n+ n0) ≥ L(n), n ∈ N,

which contradicts (2.5). This completes the proof of Theorem 2.
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Primera versió rebuda el 30 de Maig de 1995,
darrera versió rebuda el 30 d’Octubre de 1995


