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AUTO-APPLICATIONS HOLOMORPHES
PROPRES DES DOMAINES POLYNOMIAUX
RIGIDES DE C?

ABDELAZIZ CHAOUECH

Abstract

We show that proper holomorphic self maps of pseudoconvex rigid
polynomial domains in C? are automorphisms.

0. Introduction

Les seuls exemples connus d’applications holomorphes propres d’un
domaine borné & bord régulier de C™ (n > 1) sur lui-méme sont des
automorphismes. Ce phénomene constraste avec la situation unidimen-
sionnelle et I’on présume son caractere général. Les domaines strictement
pseudoconvexes vérifient cette conjecture: H. Alexander [1] a traité le
cas de la boule euclidienne et S. Pinchuk [13], celui des domaines ar-
bitraires & bord de classe C2. De facon plus générale, K. Diederich et
J. E. Fornaess ont mis en évidence le principe suivant: le lieu de branche-
ment d’une application holomorphe propre d’un domaine pseudoconvexe
borné sur un autre est vide des que I’ensemble des points de faible pseu-
doconvexité de la frontiere du domaine source est assez petit (cf. [10,
Théoreme 3]). Cependant, ce principe ne permet pas de traiter le cas
des domaines faiblement pseudoconvexes dans sa généralité. A ce jour,
seuls quelques cas ont été abordés. Ainsi, E. Bedford et S. Bell [2] ont
considéré le cas des domaines pseudoconvexes bornés a bords analytiques
réels et Y. Pan [12] celui des domaines de Reinhardt de type fini (voir
aussi [9] ol la preuve de Y. Pan est simplifiée et [8] ou F. Berteloot et
S. Pinchuk classifient les applications holomorphes propres entre do-
maines de Reinhardt complets de C?). L’objet de cet article est d’étendre
ce type de résultats a une classe de domaines faiblement pseudoconvexes
non bornés. Notre principal résultat est le suivant:
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Théoreme 1. Soit P(z,Z) un polynéme sous-harmonique sans terme
harmonique. Soit Q@ un domaine de C* défini par Q =: {(w,z) € C?:
Rew+ P(z,%Z) < 0}. Alors toute application holomorphe propre de ) sur
lui-méme est un automorphisme.

Le principe de base de la démonstration est analogue a celui utilisé par
Y. Pan. Nous exploitons simultanément la finitude du type de la frontiere
et I'existence d’un groupe a un parametre d’automorphismes du domaine
afin de préciser la structure du lieu de branchement de ’application.
Cependant, comme les domaines que nous considérons sont non bornés
et présentent moins de symétries que les domaines de Reinhardt, de
nouvelles difficultés surgissent. En particulier, il est impossible d’établir
directement que le lieu de branchement possede au plus un nombre fini de
composantes connexes. Ainsi, aprés avoir montré que le lieu de branche-
ment est contenu dans une réunion dénombrable de droites complexes
(partie 1), nous sommes amenés & analyser certains biholomorphismes
locaux induits par lapplication (partie 2), puis certaines applications
holomorphes propres entre domaines rigides distincts (partie 3). Nous
pouvons ensuite montrer que —génériquement— ’application est con-
juguée par des automorphismes de C? & une application de la forme
(w, h(z)) ou h est une fonction entiere. Nous en déduisons que le nom-
bre de composantes connexes du lieu de branchement est en fait majoré
par le degré du polynéme P (partie 4). Pour mener & bien cette derniére
partie de la démonstration, nous établisons le résultat suivant:

Théoréme 2. Soient 1 et Qy deuzr domaines de la forme €; =
{(w,z) € C? : Rew + Pj(2,Z) < 0} ou Py et Py sont des polynémes
sous-harmoniques sans terme harmonique. Soit f : Q1 — Qo une appli-
cation holomorphe propre telle que:

1) f = (f1, f2) se prolonge en un biholomorphisme local d’un voisi-
nage de lorigine de C? sur un autre.

2) fa(w,0) =0 et f1(0,0) = 0.
L’un des trois cas suivants est alors satisfait:
i) filw,z) =Tw; (I' > 0) et fa(w,z) = fa(z).
it) fi(w,z) =Tw; (I' > 0) et Pa(z,Z) = Pa(|2],]2])-
iii) fi(w,z) = 14{%" (L' > 0,\ € R*) et Py(2,Z) = M|z]*™ avec
M >0, m € N*.

Dans la suite de cet article, P désignera I’ensemble des polynomes
sousharmoniques sans terme harmonique sur C.
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1. La structure du lieu de branchement

L’objet de cette partie est d’établir la proposition suivante ou l'on
décrit le lieu de branchement des applications holomorphes propres du
type de celles considérées dans cet article.

Proposition 1.1. Soient 0 et Qo deux domaines de C? de la forme:
Q;={(w,z) € C? : Rew+ P;(2,Z) < 0} ou Py et Py appartiennent a P.

Pour toute application holomorphe propre de Q1 sur Qo, il existe une
suite (z,)n de nombres complexes telle que:

Vi = Upen{(w,2,) : Rew < —Pi(2,,Zn) }

La démonstration de cette proposition repose essentiellement sur les
deux lemmes énoncés ci-dessous. Le premier précise la structure locale
de VN bQ;. Le second exhibe des fonctions p.s.h. négatives de Q; et
22 qui permettront de déduire la structure de V; de celle que v F 08

Lemme 1.2. Soit f : Q1 — Qo une application holomorphe propre
satisfaisant les hypothéses de la Proposition 1.1 et soit (wo, 20) un point

de bS2;.

Si l'on a

(wo, 20) € Vy N et ( lim )[|f1(w,z)|—|—|f2(w,z)|] < 400

w,z)—(wo,z0

alors l'ensemble {(w, zo) tel que Rew < —Pi(z0,%0)} est contenu dans
Vi.

Lemme 1.3. Soit Q =: {(w,2) € C? : Rew + P(2,2Z) < 0} ou
P € P. Alors il existe une fonction p.s.h. o : Q —] — 00,0], telle que

lim o(w,z) = —oo. De plus, pour toute suite de nombres com-
(lw|+|z))—+o0

plexes (zp)n<1, tout a ¢ {z,;n > 1} et tout (wq,a) € Q, la fonction o
peut étre assujettie a satisfaire les conditions suivantes:

1) o(wa,a) # —oco.

2) Vn > 1, V(wp,z,) € 0, lim o(w,z) = —oo.

(w,2)— (wn,2zn)

(Dans ce cas la fonction o prend ses valeurs dans [—oo,0].

Preuve de la Proposition 1.1: Supposons Vy non vide. Soit

A= {(wo,20) €V yNbQy : lim )[\fl(w,z)|—|—|f2(w,z)|] < +oo}

(w,2)—(wo,z0
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et A, la projection de A sur le plan de la variable z. Le Lemme 1.2 montre
que As est localement fini. En effet, si cela n’était pas, I’ensemble ana-
lytique Vy contiendrait une famille de demi-plans de la forme {(w, zp) :
Rew < —Pi(2p,%p)}, (2p) étant convergente modulo extraction. Ces
demi-plans s’accumuleraient nécessairement sur un demi-plan de la méme
forme. On en déduirait facilement que Vy = €; ce qui est impossible.
Ainsi Ay est dénombrable et nous noterons (zy,),>1 la suite ordonnée de
ses éléments.

Soit C une composante connexe de Vy. Nous achéverons la démonstra-
tion en montrant que C coincide avec un demi-plan de la forme {(w, z,) :
Rew < —Py(2n,2Zn)} OU 2z, € As. Pour cela, procédons par absurde et
supposons qu'il existe (wg,a) € C tel que a ¢ {z,,n > 1}.

Soit o1 une fonction p.s.h. et négative sur {2; associée par le Lemme 1.3
a la suite (z,),>1 et au point (wg,a). D’aprés le méme lemme, il
existe également une fonction oy, p.s.h. négative sur s et telle que

lim o2(w, z) = —oo. Considérons alors la fonction & définie par
(Jwl|+]z])—+o0

& =: exp(o1+0og0f). Cette fonction est p.s.h. sur £; et prend ses valeurs
dans [0, 1]. De plus, elle satisfait les propriétés suivantes:

1) 0< lim g(w,z) < lim e?1(w:2) — (.
(Jw|+]z])—+o0 (lw|+]z])—+o0
(w,z)eC

2) Si (wy,2,) €CNUY et 2z, € Ay alors on a

0< lim o(w,z) < lim e?1(w2) — ),
(w,2) = (Wn,2n) (w,2)—=+(wn,2n)
(w,z)eC

3) Si (wo,20) € CN by et 29 ¢ Ay alors par définition de A, on a:
lim )Hfl(w, 2)| + f2(w, z)] = 400 et donc

(w,z)—(wo,20

0< lim o(w, z) < lim eo2of(w2) — .
(w,2z)—(wo,20) (w,2)—(wo,20)
(w,z)eC

Il résulte des conditions 1), 2) et 3) et du principe du maximum que
la restriction de ¢ a C est identiquement nulle. Ceci est absurde puisque,
par construction, 6(wg,a) > 0. La preuve de la proposition est donc
achevée. B

Preuve du Lemme 1.3: Notons 2m le degré du polynéme P et posons
U1 PP

Q.. (2,2) = P(2 4 2,24 Zn) — 2Re; ﬁ%(zn,zn)zj — P(2n,7%,).
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L’automorphisme de C? défini par @, (w,z) = (w',2') ot w' =
w — 2 Z?Zl %(zn,zn)zj — P(2n,2,) et 2/ = 2z + 2z, réalise un biholo-

morphisme du domaine Q, =: {(w,z) : Rew + Q,, (z,Z) < 0} sur .
Le polynéme @, étant sous-harmonique et sans terme harmonique,
sa partie homogene de plus haut degré ’est également, nous la noterons
H, .
Pour ¢ > 0 fixé, on vérifie sans peine qu’il existe a > 0 tel que
H, (2,%2) — Q.,(2,%Z) < a+ ¢[z|*" pour tout z € C. Ainsi Q. est
contenu dans un domaine D, défini par:

D, = {(w,2):Re(w —a)+ H,, (2,%) —e|z]*™ < 0}.

D’apres E. Bedford et J. E. Fornaess ([3, Main Theorem]), il existe une
fonction g, holomorphe sur D, et continue sur D, satisfaisant les
propriétés suivantes: pour (w,z) € D, et N, € N assez grand on a
i) Bn(lw—al+ [2*™) < gz, (w, 2)[" < An(jw —a| + |2[*™) ol 4,
et B, sont des constantes strictement positives.

s 71'].

ii) argg., (w,2) € [—17 T
Soit g la fonction ainsi obtenue lorsque z, = 0.

En posant o = log ‘% {1 — (Zg:)} ‘ oll & > 0 est assez petit et K > 0
est assez grand, on obtient une fonction p.s.h. dans {2 prenant ses valeurs

dans | — 00, 0[ et telle que lim o(w,z) = —oo.
(Jw|+]z))—+o0

Nous terminons en modifiant la fonction ¢ de fagon a obtenir une fonc-
tion p.s.h. négative sur {2 prenant la valeur —oo sur les droites complexes
{z=2z,}.

Posons, & cet effet, h, (w,z) = %
holomorphe de module strictement inférieur & 1 sur D, . La fonction
h,, =:h;, o ‘I’;n,l est alors holomorphe au voisinage de € et satisfait les
propriétés suivantes:

i) V(w,2)€Q, |h,, (w,2)] < 1.

ii) V(w,2) € Q,onah,, (w,z)=0siet seulement si z = z,.

, on définit ainsi une fonction

Choisissons une suite A, > 0 telle que 3% \,, log |h., (wa, a)| > —o0;
alors 32,727\, log |he,, (w, 2)| définit une fonction p.s.h. négative sur Q et
la fonction

o = log

1 ag—1 =
—|1- 1
K[ (agH)”JrnZlAn ogh., |

remplit les conditions requises. W
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Preuve du Lemme 1.2: Soit ((wn,2n))n>1 une suite de points de
Q; qui converge vers un point (wp, z0) de by. Si Um][|f1(wn, zn)| +
|fo(wn, z,)|]] < +oo alors, lapplication f étant propre, la suite
(f(wn, 2n))n>1 converge vers un point (w(,z) de bQy apres une
éventuelle extraction. Le bord de 2o étant de type fini, un résultat
de F. Berteloot [6] montre que I'application f se prolonge contintiment
a Q sur un voisinage de (wp, zp). Nous aurons également besoin de la
différentiabilité du prolongement de f, celle-ci découle des résultats de
[5].

Pour tout p € bQ2;, ( =1 ou 2), on note 7(p) l'ordre d’annulation du
déterminant de Levi de 0§); en p. Plus précisément, pour toute fonction

0 pz ]
Pz  Pz;zy
et 7(p) est le plus petit entier m pour lequel existe un opérateur T
tangentiel au bord d’ordre m, tel que T'A,(p) # 0.

p, définissante locale de 0§2; en p, on pose A, = —det [

Alinsi, 7 satisfait les propriétés suivantes (voir [12, page 291]):
1) 7 est indépendant de la fonction définissante choisie.
2) 7 est semi-continue supérieurement (s.c.s.).
3) 7 est invariant par biholomorphisme.
4) Vp € b on a 7(p) > 7(f(p)) et, en outre, 7(p) = 7(f(p)) si et

seulement si p ¢ V.

On remarquera que lorsque 2; est un domaine défini par Q,; ={(w, z) €
C? tel que Rew + Pj(2%) < 0} ou P; € P alors, pour tout (w,z) € b§;,
7(w, z) n’est autre que l'ordre d’annulation du Laplacien de P; au point
2.

Nous sommes maintenant en mesure de terminer la preuve du lemme.
Il suffit d’établir que Jy(wo + it, zo) est identiquement nul au voisinage
de t = 0. Si cela n’était pas, on trouverait une suite (t,)nen telle que
li}znt" =0 et Jy(wo + ity, z0) # 0.

Pour tout n > 1, on aurait alors 7[f(wo +ity, 20)] = T[(wo +itn, 20)] =
T(wo, z0) et T étant s.c.s., T(wo, z0) < 7(f(wo, 20)). Comme, par ailleurs,
on a7(f(wg, 20)) < 7(wo, 20), il en résulterait que 7( f (wo, 20)) =7 (wo, 20)
et donc que J¢(wo, z9) # 0, ce qui est contraire aux hypotheses. B

2. Etude de certains biholomorphismes locaux

Nous étudions ici les biholomorphismes locaux échangeant deux ger-
mes d’hypersurfaces analytiques réelles, rigides et de type finis. Nous
supposons en outre que ces biholomorphismes préservent une droite com-
plexe transverse aux hypersurfaces. La proposition suivante résume les
résultats de cette partie.
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Proposition 2.1. Soit f = (f1, f2) un biholomorphisme local d’un
voisinage V. de l'origine dans C? sur un autre et tel que f1(0,0) = 0,
fa(w,0) = 0.

Soient deux hypersurfaces Hy et Hy définies par:

Hy = {p1(w, 2) = Rew + ¢(z,%) = 0}
Hy = {p2(w,z) =: Rew + ¥(2,z) = 0}.

ou ¢ et VU sont des fonctions analytiques reelles sous-harmoniques défi-
nies au voisinage de l'origine, telles que: 8—;,@(0 0) =0, %Z\P (0,0) =0
pour tout k > 0 et gzg'z, E)azéi s’annulent a un ordre fini en 0. On suppose

que f(HyNV) C Hy. Alors:
a) f1 ne dépend que de w.
b) Si, de plus, fi(w) =Tw (I' > 0) alors:

I« ( w) L5 9 1 B(z )6— ot B est une fonction holomorphe
en z telle que B(O) =0 et B'(0) =48, 8 € R. La fonction B est
identiquement nulle, si et seulement si B'(0) = 0.

Preuve de a): Notons u et v les parties réelles et imaginaires de la
variable w. Soit A(v,z) =: (—p(z) + iv, z) un paramétrage de H;. Le
champ de vecteurs L défini par L = —g—za—w + 55 est tangent a H;
et donc L( p2o f)=0sur H NV. En posant g(w,z) = a%(pg of) =

é%{; + 90 (‘I’ o fa), on obtient:

0 110 ov 0
W (-5)-woar+5 3L eas Totron) Hos] =0

au voisinage de v =0, z = 0.

La démonstration consiste a dériver (1) par rapport a z a un ordre
arbitraire.

Comengons par quelques préliminaires. En observant que, d’apres la
définition de A, I'on a

0 — _ df; &F’
&(fQOA)——<a—EOA> N

0 . 0f2 dp 8f2

et
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on obtient
A o\ 0
() {wo(fzoA)] = {821“ (szA)] [6@2 OA}

s oy af, .\ tlw
"9 Kaw OA)'asz O(fZOAH(%OA) 2027 ° 2o A

On montre maintenant par récurrence que

® o [Grotoa)] =[St e (fzoA>] %0 a]

+Z[ ( fQOA))+hjg—]:|.

Les fonctions g; et h; sont analytiques réelles au voisinage de (0,0) mais
nous ne cherchons pas a les expliciter.

Pour k = 1, il s’agit de la formule (2) avec j = 1 et g; = 0. En utilisant
(2), on voit immédiatement que

&[S (Gheten) ens

Il reste donc a noter que:
o [[otw ofs 1"
5{[—azk+1 oo [52 o4
o (91w of 1"
=[5 (G o) | T2 o4

o1y 9 [0fs F
+{8zk“ O(fQOA)] %(EOA}

D’autre part, une récurrence immédiate donne:

0" [0fs L L
) P {a_A] = <azk+l °A> +Z<w) &
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La encore, les [; sont des fonctions que nous n’explicitons pas. En
utilisant Phypothese f2(w,0) =0, on tire de (3) et (4):

k
(5) % [%—\Ij o(fao A)] (iv,0) =0, pour k > 0;
o [0 : MR
(6) pws [% o ] (iv,0) = aTJrfll(w,O), pour k > 0;

En apphquant a I’équation (1) et en tenant compte de (5), (6), on
trouve alors %(zu 0) = 0 pour k£ > 0, ce qui établit a).
Passons maintenant a la preuve de b).

Preuve de b): Nous utiliserons des champs de vecteurs holomorphes
tangents aux hypersurfaces H;, ce qui désignera ici des champs de la
forme a(w, 2) a%—i—b(w, z) 6% ou les fonctions a, b sont holomorphes et dont
les parties réelles sont des champs tangents au sens usuel. Rappelons que
cette classe de champs de vecteurs est stable par image directe par un
biholomorphisme ainsi que par crochet de Lie. La proposition suivante,
extraite de [4], sera utile & la démonstration. Pour la commodité de
lecteur, nous en donnerons la preuve a la fin de cette partie.

Proposition 2.2. Soit X = h(w, z)% un champ de vecteur holomor-
phe tangent a Hs défini au voisinage de l’origine et non identiquement
nul. Alors la partie homogéne de plus bas degré de h en z est égale 6 i3z
(B €R*) et celle de W a M|z|*™, avec M > 0 et m € N*.

Notons f(w,z) =: (Tw, fa(w, z)) et considérons le champ de vecteur
holomorphe tangent & Hy ¢’est-a-dire fi (%) =: A(w, z)% + B(w, z)a%

- 0 _ :0f1 & Ofa 8 31
On a [f* (Z%)] f(w,z) 181; dw + 2815 oz d’ou

(7) B(Tw, fa(w,2)) = i%(w, z) et A=l

Puisque I‘i% est tangent a Ha, B(w, z)% lest également.

Supposons B non identiquement nul. Alors en appliquant la Propo-
sition 2.2 aux champs B(w,z)a% et [iaw B(w, Z)Bz] = zg—ga—, on voit
que le développement de B est de la forme suivante:

(8) B(w,z) = zﬁz—i—Zb + aw z—i—Zb}czk

k>2 k>2

—i—Zcqwq z—&—Zbsz ,

q>2 k>2
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ou (3 et o sont des réels qui ne sont respectivement nuls que si B = 0 ou
9B _
w =

Ecrivons le développement de fao(w, z) sous la forme suivante

9) folw,2) = az—f—Za%zk +w bz—i—Zaizk

k>2 k>2
+w? | ez + E aizk | + E w? | dgz + E alzk
k>2 >3 k>2

En identifiant les termes en z puis en wz dans chacun des deux mem-
bres de (7), on obtient: ib = ifa et 2ic = i3b+ al'a puis donc b = [a et
¢ ="a, ol v = (8% —ial).

Traduisons maintenant I'inclusion f(H;) C Ha:
(10) U[f2(=p +iv,2)] = Tp(z,2).
Les termes de degré 1 en z dans fo(—¢ + v, z) proviennent de:

az +b(—p +iv)z + c(—p + iv)?z + Z dg(—p +iv)iz.
q=3

La partie de degré 1 en z dans fa(—¢ + iv, 2) est donc égale a: az(1 +
Biv — yv? + o(v?)).

D’apres la Proposition 2.2, la partie homogene de plus bas degré dans
U est égale & B|z|?™ (B > 0). Par symétrie, celle de ¢ est égale & A|z|?™
(A > 0). L’identité des termes de degré 2m en z dans (10) donne alors:

Blal™ |21 + Biv — 102 + o(v?)P™ = T AJz[2™,

d’ou:
11+ Biv —yv* + o(v?) > = 1,

et donc: (8% — 27)v? + o(v?) = ial'v? + o(v?) = 0.
Il s’ensuit que o = 0 et donc g—f} = 0. Ceci acheve la preuve de la
Proposition 2.1. &

Nous terminons cette partie en donnant la démonstration de la Propo-
sition 2.2. Cette derniere résulte du lemme technique suivant:
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Lemme 2.3. Soit Q(z,%) un polynéme a valeurs réelles homogéne de
degré 2m, sans terme harmonique, et soit (A k) € R x N.

1) SiIm (zk%—?) = ARe (zk%—cj); alors:
i) Sik=1, onaQ=M|z]?" (M >0) et \=0.
i) Sik#1ona@Q=0.

2) SiRe (zk%) =0, alors Q@ = 0.

Comengons par la preuve du Lemme 2.3.

Preuve du Lemme 2.3: Notons:

_ oQ
Q= Z ApgZPZP et Q1 = B
pt+g=2m
p,q>1

On a alors, en posant [ = k — 1,

Q= Z pAp 2Pzl

p+g=2m
p,q>1

et
Elez Z ququEq+l.

p+q=2m
P,q=1

On a, par hypothese:

— A _
Q- Q) = 5@ + 7))

ou encore:
(11) > P = N)Apg2PTE = Y g(14 i) Apg2PF T
p+gq=2m p+qg=2m
p,q=>1 p,g>1

Lorsque k # 1 (i.e. I # 0), on voit directement sur (11) que Q = 0.
En effet, si po = min{p € [1,2m — 1] tels que 4,4, # 0, ¢+ p = 2m}
alors les termes de plus petit degré en z de chacun de deux membres
de (11) sont respectivement égaux & po(1 — Ai)Ap,q, 2P0 129 et go(1 +
Xi) Apygo 270297 0t go = 2m — py.

Lorsque k =1 (i.e. I =0) (11) devient:

D [p(1 = Xi) — q(1 + Ni)]ApgzPZ? = 0,

p+q=2
p,q>1
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d’ott Apqg =0 pour p#qet,siQ@#0, A=0.

Ceci établit la premiere assertion. La seconde s’obtient de fagon ana-
logue. ®

Preuve de la Proposition 2.2: Soit () la partie homogene de plus bas
degré dans le développement de ¥ au voisinage de l'origine. En vertu des
hypotheses sur ¥, Q(z,Z) est un polynéme de degré 2m sous-harmonique
et sans terme harmonique.

Donnons & w (et w) le poids 2m et & z (et Z) le poids 1. Ainsi le poids
d’un monéme wF1w*2 29179 est égal & (k1 + ko)2m + (q1 + ¢o).

Soit B(w, z) la partie homogene de plus bas poids dans le développe-
ment de h au voisinage de (0,0). Le champ h(w, z)% est holomorphe
tangent a Hy c’est-a-dire:

(13) Re |h(—¥(z,2) —&—iv,z)%—f(z,z) =0.

En notant @)1 = %, et en collectant les termes de plus bas degré en
z dans (13), on obtient:

(14) Re[B(—Q + iv, z)@1] = 0.

Supposons que B soit de poids ¢ ou ¢ € {0,...,2m — 1}. On a
donc B(w,z) = vz o v = o+ i # 0 et (14) donne: aRe(27Q;) =
BIm(22Q1). Le Lemme 2.3 montre alors que ¢ = 1, a = 0 et Q =
M|z|?™.

Si maintenant B est de degré ¢ > 2m, on a B(w, z) =bgz9+bjwz?~2m+
oo+ bsw® 2972 Péquation (14) devient:

(15) Re[Q1(boz? 4 b1 277 2™ (—Q +iv) + - - - + b2 2™ (—Q +iv)*)] = 0.
Supposons d’abord s > 0, en derivant s fois I’équation (15) par rapport
a v, on obtient:

Re[b,!i*2772™5Q1] = 0
et le Lemme 2.3 montre que:
(16) Q = M|z|*™;q = 2ms + 1 et bys!i® =i\, ot A € R*.

Dérivons maintenant (s — 1) fois I’équation (15) par rapport a v, on
obtient:

Re { {bs_lis_l(s — )10 2m=D g p sl (—Q + iv)zq_zms} Ql} =0
d’ot, en tenant compte de (16):
Refbs_1i* 7 (s — 1)12*™(mM|z])*™) — AmM?|2|*™ + Xiv(mM|z|*™)] = 0.

On a alors Am - M? = 0, ce qui est absurde puisque bs # 0. Lorsque
s = 0, la contradiction découle immédiatement du Lemme 2.3. Ceci
termine la preuve de la Proposition 2.2. B
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3. Applications holomorphes propres
entre domaines polynomiaux rigides
et fixant une droite complexe

Dans cette partie, nous étudions la forme des applications holomorphes
propres entre deux domaines polynomiaux rigides de C? qui fixent une
droite de la forme {z = cte} non contenue dans le lieu de branchement.
Nous établisons la proposition suivante.

Proposition 3.1. Soient )y et Qo deux domaines de la forme: €; =
{(w, z) € C*: Rew + Pj(2,%) < 0} ot Py et P appartiennent a P.
Soit f:Qy — Qo une application holomorphe propre telle que:

1) f = (f1,f2) se prolonge en un biholomorphisme local d’un voisi-
nage Uy de Uorigine de C? sur un autre, noté Us.
2) fo(w,0) =0 et f1(0,0) = 0.
Alors l'une des trois possibilités suivantes est vérifiée:
i) fi(w,z) =Tw; (T > 0) et fa(w,z) = fa(2).
11) fl(wvz) = Fw; (F > O) et PQ(Z7E) = P2(|Z|7 |Z|)
iil) fi(w,z) = 1_&%, (T >0etAeR) et Po(2,2) = M|z|*™ +Q
avec M >0, m € N* et Q =0 ou Q ne contient que des termes
de degré > 2m.

On améliorera le contenu de cette proposition en établisant le
Théoréme 2 (cf. Section 4).

Dans cette partie, nous adoptons les notations suivantes:
Soit P(z,Z) € P, P(z,Z) peut s’écrire sous la forme P(z,Z) =

N 2|2 Re Vi (2) ol Vi(2) = Ny a;127. Notons alors
l=m 7=0 "7

V(z) =: Vin(2).
V*(z) =1 V(z) = V(0).
ov

Lorsque la partie homogene de plus bas degré de P n’est pas équilibrée
(et donc Re V(0) = 0) on dira que P € P, “est équilibrée” veut dire “est
de la forme M|z|*™, M € R*, m € N*”.

La proposition résultera des deux lemmes techniques suivants:

Lemme 3.2. Soient v € R, P(2,%Z) € P et A(z) une fonction holo-
morphe nulle a l'origine.



54 A. CHAOUECH

Si les termes de la forme |z|*™2zP ou |z|*™z9 ou (p,q > 0) sont iden-
tiquement nuls dans l’expression

(*) —vP(z,Z) + Re (A(z) . 8—]; z,E)) )

on a alors:

2y —ma)V*(z) +2m-aReV(0)

AR =2 V() + 2Re V(0))

, avec a = A’(0).

Lemme 3.3. Soit f : Q1 — Qo une application holomorphe propre
satisfaisant les hypothéses de la Proposition 3.1 et soit X = f, (i%).

Supposons que sur un voisinage Uy de l’origine le champ X soit donné
par: Xy, .y = A(w)a% + B(z)(aw + b)a%, ou (a,b) € C?, A étant une
fonction entiére et B une fraction rationnelle. Alors B est un polynéme

holomorphe.

Ces deux lemmes seront démontrés ultérieurement.

Preuve de la Proposition 3.1: Comengons par montrer que f1 est de
la forme générale f; = 1{% oul' > 0et A € R. Dapres la Propo-
sition 2.1, on a f1(w,z) = fi(w). Notons D =: {w € C: Rew < 0};
f étant un biholomorphisme local au voisinage de 'origine, d’apres la
Proposition 1.1, on a Jy(w,0) # 0 pour tout w € D. Donc f; est un
biholomorphisme local sur D. D’autre part, f; est une application holo-
morphe propre de D sur lui-méme et donc f; est un revétement fini de
D sur lui-méme. Comme D est simplement connexe, f; est donc un
automorphisme de D. Il s’ensuit que fi(w) = % oul'>0et A€ R
puisque f1(0) = 0.

Passons maintenant & la preuve de i) et ii). D’aprés ce qui précede, si
A=0,0na fi(w) =Tw, (T' > 0). Notons dans ce cas f = (Tw, fa(w, 2))
et considérons le champ f, (iZ). C’est un champ de vecteurs holo-
morphe défini sur Us et tangent a b{ly. D’apres la Proposition 2.1,
I« (ia%) est de la forme [f* (za%)} = ifa% + B(z) 9 ou B

(w,z) 9z
est une fonction holomorphe dans un voisinage de l'origine, et on a
B(z)=ifz+---+ (8 € R) avec 8 # 0 si et seulement si B # 0.

= ZT% + i%fz (w,2) 2, d’ott (B o

D’autre part, on a [f* (z%)] 52 527
. OF-
fo)(w, z) = za—{j(w,z).
Si B =0, alors %(w, z) =0et fo(w,z) = fo(z) ce qui correspond au
cas i). Supposons maintenant B # 0. Puisque ZT‘% est tangent a b{)s,
B(z)% Pest également.

f(w,2)
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Cela se traduit par: Re (B(z)%(ReuH—Pg(z,E))) = 0 pour tout
(w, 2) tel que Rew + P2(z,%Z) = 0 ou encore par:

(1) Re {B(z) : @(z,i)} —0,

0z
pour z assez voisin de l'origine.

D’apres le Lemme 3.2, on a alors,

V*(2) + 2Re V(0)

Or, d’apres le Lemme 3.3, B est un polynome et, comme d°V* = d°W,
on a B(z) =10z, f € R*.

L’équation (1) devient Re [ifz-22(2,Z)] = 0, ce qui entraine
Py(z,Z) = Pa(|z], |2|) puisque

a0 - i8 -
Re zﬁz& Z Ap 2Pzl = ) Z Ape(p — q)2PZ1.

p,q>1 p,q>1

Pour la preuve de iii), nous allons montrer que si A # 0, alors P»(z,%)
n’appartient pas a P. Nous procédons par 'absurde et supposons que
P5(z,%z) € P. Rappelons qu’au voisinage de 'origine, on a

f(w7z) = (fl(UJ),fQ(U),Z)
FHw,2) = (Fi(w), Pa(w, 2))

avec fi(w) = 15% et Fi(w) = 7%z

Considérons le champ de vecteurs holomorphe

AN R
X = f. (za—w> =: A(w,z)a —i—B(w,z)aZ.

w
On 2 of1 0 Ofs 0
X 9 929
1w =0 gw T ow 02
d’ott A(w,2) = i(% o F) (w) = &(I" — i\w)?. Les champs X et ia%
sont holomorphes tangents (dans le sens évoqué juste avant la Proposi-
tion 2.2) & b€y donc les crochets de Lie [)_(',z%} et H)?,z%} ,i%} le
sont également.
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- 0 Ai .0 0B 0
|:X,Z—:| —QF(F—)\Zw)a—w-f-la—w&

et
2 2
200 0] N0 _oBo
ow|’ Ow I' Ow 0Ow?0z
9°B 8
~ ow? 9z N
par hypotheses, P, € P, la Proposition 2.2 montre alors que 2713 = 0.
On a ainsi:

Puisque 22”\?2% est tangent a b{)s, lest également. Comme

B(w,z) = A1(z)-w+ Ag(z) ol Ag et Ay sont deux fonctions holomor-
phes au voisinage de ’origine.

Le champ X étant holomorphe tangent a b2y, on a:
Re(X (Rew+Py(z,%))) = 0 pour tout (w, z) tel que Re w—+Py(z,Z) =0

c’est-a-dire Re [55 (I — idw)? + (A1(z) - w + Ao(z))aa%(z,z)} = 0 pour
w = —Pa(z,Z)+iv, (2,v) variant dans un voisinage de (0,0) dans C x R.

Cela se traduit par:

1) v <%2P2(z,2) +Re [iAl(z) : %(z,?)])
— APy(2,%) + Re {(Ao(z) - Al(z)Pg(z,Z))%(z,E)} =0
et 'on en déduit:
(2) _A;PQ(Z,E) +Re {iAl(z) : %(z,?)] =0
et
(3)  —APy(2,%) +Re [(Ao(z) - Al(z)Pg(z,E))%(z,E)] =0.

Désignons par Ha,,(2,Z) la partie homogene de plus bas degré dans
P5(z,Z). De (2), on tire: Re [iAl(O)Gg%(z,E)] = 0. Ceci, d’apres le
Lemme 2.3, entraine A;(0) = 0. On peut alors appliquer le Lemme 3.2

a Péquation (2) et en déduire que:

. 222 . V*(2) R o
4)  Ai(z)=—i <T + zmal) z Wi T mv () ou a; = Aj(0)

(on a utilisé le fait que Re V(0) = 0 puisque Py € P).
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D’autre part, B(f1(w), fo(w, 2)) = i%(w, z) donc B(0,0) = 0 puisque
f2(w,0) = 0 et f1(0) = 0. On a donc Ag(0) = 0. En observant que les
termes de la forme |2[*™2P ou [2]|?"Z? du membre gauche de (3) ne
peuvent provenir que de —AP5(z,Z) + Re [Ao(z) 68122 (z,?)], on peut a
nouveau utiliser le Lemme 3.2 et obtenir

V*(2)

(5) Ao(Z) = (2)\ — mao)Zm

olt ag = Ag(0).

En définitive f, (i%) est donné par:

.0 i ) 0 V*(z) 0
6 i) = =(T — Niw)* =— b))z —
© 7 (Z ) I‘( w) w +(aw+ )ZW(Z) +mV*(z) 0z
ol a et b sont des constantes complexes. Nous pouvons donc appliquer le
Lemme 3.3 et en déduire que ZW};&.(Z) est un polynéme holomorphe.

Comme V* et W ont méme degré, ce polynoéme est de la forme az, a € C.
De (4) et (5), on tire alors:

(7) Ap(z) = apz et A1(z) = aq 2.
Pour terminer, nous revenons a l'identité (2). Tenant compte de (7), on
a:

A2 _ . 0Py, ]
(8) —?Pg(z, Z) + Re [mlzg(z, z)] =0.

Posons Pa(z,2) = > ApqzPZ%; en reportant dans (8), on obtient:

p,q>1

A2 . _
(9) Z Apg {—2? —(p+¢)Ima; +i(p—q)Re al] 2Pz9=0.

p,q>1

Comme A # 0 par hypothese, on obtient facilement de (9) que P» est

homogene c’est-a-dire Py = Ha,,. Tenant compte de (7), 'identité (3)

devient alors

8H2m
z

(10) —AH3p,(2,Z) + Re [z(ao — a1 Hap(2,%)) (z,E)} =0.

On en déduit que:

(11) —AH3p(2,Z) + Re (aoz

OHom .\ _
o (z,z)):O
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et

(12) Hom(2,%) Re <a1zag§m (z,z>> 0.

D’aprés le Lemme 2.3, (12) force Hy,, a étre équilibré. Ce qui est ab-
surde. W

Preuve du Lemme 3.2: On pose
—+oo
A(z) = z(a+ S(z)) ot S(z) = Zakzk_l.
k=2

En tenant compte des notations adoptées, les termes de la forme
|22 2P ou |2]?*™2z? (p,q > 0) dans (x) ne peuvent provenir que de:

(13) —v(|z]*" ReV(2)) + Re {A(z) . %(|z|2m Re V(z))} .

Par ailleurs, on a:
(14) A(z) - %(|z|2m ReV(z)) = |2|*™(a + S) (mReV + %W)
et

(15) Re {(a +5) <m ReV + %Wﬂ

= (Rea+¥> x <m <¥ +ReV(0)> Fa +W)>

Les termes harmoniques de (15) sont:

2Re E(mv* +2mReV(0) + W) + %W

(Rea)ReV(0)

+%(Rea)~v*+m 5

} —: 2Re[K (2)].

Donc les termes de la forme |z|*™2zP ou |2|?*™Z? (p,q > 0) dans (13)
sont: |z|*™ Re[—V (2) + 2K (2)]. Par hypothese, ils sont identiquement
nuls, d’ou:

(16) -4V (2) + 2K (z) = —yV(0) + 2K(0).
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En remplagant K par son expression et V par V* 4+ V(0) dans (16),
on obtient:

(17) g(mv* +2mRe V(0) + W) + gW—FV*(mRea—'y) =0

2(mRea —v)V*(z) + aW(z)
W(z) +mV*(z) + 2mRe V(0)"
Puisque A(z) = z(a + S(z)), on a donc:

(2v — ma)V*(z) + 2maRe V(0)
W(z) + mV*(z) +2mRe V(0)

S(z)=-—

Alz) =2 ota=A0). m

Preuve du Lemme 3.3: Supposons que B ait des poles.

Soit & l'ensemble des poles de B dans s, c’est-a-dire S = 5 N
(B™(00)).

Soient z1 un élément de S, wy un nombre complexe tel que (wy,21) € S
et, en outre, aw; + b # 0. (Ce dernier choix est toujours possible quitte
a faire une translation en Imw;.)

Soit (wo, z0) un point fixé dans Us\ f(Vy); puisque Q\(f(Vy) US) est
connexe et dense dans {2g, il existe un chemin continu 7 : [0, 1] — 5 tel
que: ¥(0) = (wo, 20); Y(1) = (w1, 21) et Vt € [0,1[, v(¢) ¢ f(V) US.

L’application f étant holomorphe propre, f : Qi \f7'[f(Vy)] —
Q2\ f(Vy) est un revétement fini, il existe donc 4 : [0,1[— £;\V; un
relevement de v par f c’est-a-dire V¢ € [0, 1[, (f o 7)(t) = v(¢).

Par hypothese, au voisinage de I'origine le champ de vecteurs holomor-
phes X = f, (ia%) est de la forme: X(w,z) = A(w)a% + B(2)(aw + b)%
ou A est une fonction entiere et B est une fraction rationnelle.

L’existence du relevement 7 permet de Rrolonger holomorphiquement

fe (z%) le long de ~([0,1[) en un champ X tel que
oo (;2 L LRSS RN
Ve 006 Ko = |1, (@}() =i %G L %250 2

Par ailleurs, puisque ([0, 1[) C 22\S, le champ A(w)% + B(2)(aw +
b)% est également un prolongement de X le long de ~([0, 1]).

Par unicité du prolongement, on a donc:

(19) Vi€ 0,11 i (5(0) = Al (0)

et

(19)  vtelo,1f: i%(’v(t)) = B(72(t))(a71(t) + b) ot ¥ = (71,72)-

Comme (aw; +b) # 0, on déduit immédiatement de (19) que |B(z1)| <
400 ce qui est impossible. W
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4. Preuve des Théorémes 1 et 2

Preuve du Théoréme 2: On se place dans le cas iii) de la Proposi-
tion 3.1. La partie homogene de plus bas degré de P est égale & M|z|*™
(M > 0) et comme le montre un calcul élémentaire celle de P; est aussi
égale & M'|z|*™ (M’ > 0). Notons 2k le degré du polynome P et Hoy
sa partie homogene de plus haut degré, il nous faut montrer que k = m.

Nous utiliserons pour cela la méthode de dilatation des coordonnées.
Considérons a cet effet la suite de points de 2 : (—% + %, O), la suite de
points de Qs : f (=1 +1,0) = (-4 — 2%,0) et deux suites de dilata-
tions (Sy)n, et (A,) définies par:

Sp(w, z) = <nwzn_m) .
An(w, 2) :%2<“’ z )

— 1
n n2k

Soit h I’application holomorphe propre de €2; sur €2, donnée par:

hlﬂlﬂﬂg
1 I'z

On définit alors une suite d’applications holomorphes propres (F},),
de S, (1) sur A, (Q) par F,, = A, 0ho S,
On vérifie sans peine que:
1) Fa(w,2) = (3,403 fo (2 + 4,079 ) ).
2) Pour tout n : F,(w,0) = (£,0) et F,(—1,0) = (—1,0).
3) Pour tout n, la multiplicité de F,, est égale & celle de f.
4) S,(Q4) converge vers D =: {(w,z) € C? : Rew + M'|z|*™ < 0}.
5) A, () converge vers Do =:{(w, z) € C%:Re w+(§)2k71H2k(z, Z)<
0}.

D’autre part, d’apreés ([7, Lemme 2.3]) et apres une éventuelle extrac-
tion, la suite (Fy,), converge uniformémemnt sur tout compact de D

vers une application holomorphe: F': D1 — D> telle que:
a‘) F(U)7 Z) = (%7F2(wa Z))
b) Fa(w,z) = 0.
Admettons momentanément que pour w, fixé, Fa(w,-) est surjective
finie. Il en va alors de méme pour F'. Montrons que F' est propre. Posons:

p1(w, z) =: Rew + M'|z|*™

2k—1
pa(w,z) =: Rew + (X) Hyp(2,%).
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On a:
Dy = {(w,2) € C*: py(w, z) < 0}
Dy = {(’LU,Z) € 02 : pl(wvz) < O}
sur Do, on définit la fonction o(w, z) =: sup p1(u,v). Puisque F

F(u,v)=(w,z)

est surjective et finie o est p.s.h. et strictement négative sur Ds.

Supposons qu’il existe une suite (wy,, z, ), de points de Dy qui converge
vers un point de bD; et telle que (F(wsy, 2,))n converge vers un point de
Dy. Deux cas sont a distinguer. Commencons par supposer que la limite
de (wn,, z,) est finie, soit (wo, 20) cette limite et soit (w1, z1) la limite de
(F(wny 20))n. On a: o(F(wn, zn)) = p1(wn, 2,), et puisque o est (s.c.s.)
o(wi,z1) > p1(wo, 2z0) = 0. Ce qui est absurde puisque o est strictement
négative. Supposons maintenant que (|wy, |+|z,|) — +00, (wy, 2n)n étant
dans D; on a |w,| — 400 et d’aprés a) F(wy, z,) — (0, 2), par hypothese
(0,z) € Dy donc il existe N € N* tel que pour n > N : (0,2) € A, (Q).
Comme F), est propre, il existe (u,v) € S,(Q1) tel que F,(u,v) = (0, z),
d’apres 1) ceci est impossible. Nous avons donc montré que F' est propre.
Etablissons maintenant que m > k.

Soit (wy,0) une suite de points de D; qui converge vers un point
(wp,0) de bDy ott wg # 0. La suite (F(wy,0)), converge vers le point
(wLO,O) de bDs, le bord de Dy étant de type fini, on sait d’apres [6]

que Papplication F se prolonge continiment & D; sur un voisinage de
(wg, 0), et d’apres Bell et Catlin [5] F' se prolonge différentiablement a
D, sur un voisinage de (wp,0). Donc si 7, (respectivement 7) désigne
la fonction type de bD; (respectivement de bDs) alors:

1(wo, 0) = m2(F(wo,0)) = 72 <i70) ,

d’ou m > k.
Ceci termine la preuve du Théoréme 2. H
Montrons maintenant que pour w fixé, Fy(w,-) est finie.
On vérifie facilement que:

S, (1) = {(w, 2) € C? : Rew + M'|2]*™ + Q,(2,%) < 0}

et

2%k—1
Ap(Q2) =: {(w,z) € C?:Rew + (g) How(2,2) + Qu(2,%) < 0}
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ol Qn(2,%) et Qn(2,Z) sont des polynémes qui convergent uniformément
sur tout compact de C vers le polynéme nul.
Soit w € C*, un point fixé tel que Rew < 0. On notera:

Qnw = {z € C: M|z’ + Q,(2,%) < — Rew}.
r 2k—1 _ Rew
D,, ., =: o - H z Z)< =70 (-
n,w {Z eC ()\) 2k(2,2) + Qn(2,%2) < e
Qoo = {2 € C: M'|2]*™ < —Rew}.

2! _ Rew
Doo,w =: {Z eC: (X) sz(Z,Z) < _W .

A(0,R) =:{z € C:|z| < R}.

F, = (%, Fn_rg) la suite d’applications holomorphes propre de S, (€21)
sur A, (Q2).

Soit R > 0 tel que Rew + R?*™ > 0. Pour n assez grand, on a
Q.wN{|z] = R} = 0, on en déduit que la composante connexe de l'origine
de ., est contenue dans {|z| < R}. Notons ) ,, cette composante, il
est clair que Q%,w converge vers ) ,,. La composante connexe, Dg}w,
de Porigine dans D,, ,, conincide avec Fn(Q%w). En observant que Do 4
est connexe (6toilé par rapport & I’origine) on vérifie facilement que D2
converge vers D . 7

Ainsi la suite d’applications holomorphes propres

.00 0
hy 2 2y — Dy oy

z+— Fp2(w, 2)

est telle que (modulo extraction)
1) ha(0) =0, Vn.
2) hy, est de multiplicité finie.
3) hy,, converge vers Fo(w, ) : Qoo yp — Doo,yy uniformément sur tout
compact, et il existe R > 0 tel que Q) ,, C {|z| < R} pour tout n.
On en déduit par des arguments standards que Fa(w, ) est surjective
et finie.

Preuve du Théoréme 1: Nous supposons Vy # () et montrons que cela
conduit & une contradiction, nous procédons en trois étapes.

1ére étape: 11 existe deux automorphismes de C2, @1 et s tels que
I’application f =] Lo f o ¢y satisfait les hypotheses du Théoreme 2.

Pour tout z € C, notons 7, le demi-plan {(w,z) : w € C} N, et
désignons par f la ni®™e itérée de f. Comme V; est supposé non vide,
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la Proposition 1.1 assure I'existence d’un demi-plan 7, contenu dans V.
En utilisant l'inclusion f~ (V) C Vint1 et le fait que, toujours d’apres
la. Proposition 1.1, Vy» est une réunion de demi-plan, on construit par
récurrence une suite (z,,), de nombres complexe telle que:

i) Vn>1:m,, C Vin.

ii) Vn>1: f(r,,,) C 7.

On observera pour cela que: si (Wy41,2p41) € f~ 1 (72,) N2, alors
f(72,,,) C 72, . En effet, dans le cas contraire, w,, 41 serait un zéro isolé
de fo(w, znt1) — zn et (Wpt1, 2nt1) serait un zéro isolé de fo(w, z) — 2,
puisque f~ (7., ) est contenu dans une réunion de demi-plan 7.

Notons 7, la valeur de 7 sur le bord de 7. Il résulte de ii) et des
propiétés de T que la suite (7,,),>1 est croissante. Comme les valeurs
de 7 sont entieres et majorées par le degré de P. Il existe ng € N*
tel que Tpy41 = Tp,. Pour fixer les idées, nous supposons que ng = 1.
Alors f(m,,) C m,, et, puisque 7o = 7y, m,, ¢ V. Quitte & composer
f avec des translations (w, z) — (w + itg,2), on peut supposer que f
induit un difféomorphisme local sur b2 au voisinage de (—P(z2), 22) et
que f(—P(z2),22) = (—=P(z1),21). Définissons les automorphismes de
C2, o1 et o, par:

¥j (w7 Z) = (w/7 ZI)

10'P -
w =w— P(2,%;) 22@' 62’ zj, 25)2"
2=z + 2.

Ils induisent des automorphismes de €2; sur €2 ol

Q; = {(w,2) € C*: Rew + Q;(2,%) < 0},
2m o,

_ _ = _ P
Q(2,%Z) =P(z+2,Z+7Z;) — P(2,Z;) — 2Rez W(zj,zj)z .
i=1

Par construction, ’application f = gpfl o f oo est propre de g sur
Qy, fixe la droite complexe z = 0 et I'origine (0,0). D’apres [11], f se
prolonge en un biholomorphisme local au voisinage de (0, 0).

2¢éme étape: Vy est contenu dans une réunion d’au plus (2m) = deg P
droites complexes.

Soit f lapplication fournie par la premitre étape. D’apres le
Théoreme 2, deux cas sont a distinguer. Commencgons par supposer
que f est de la forme (Dw, f3(2)). Alors f; est une fonction entitre telle



64 A. CHAOUECH

que f2(0) =0 et %—J}(O) = A # 0. L’inclusion f(bQy) C bQ; se traduit au
voisinage de 'origine par 'identité:

(20) I'Q2(2,%) = Q1 0 fa(2).
Décomposons les polynomes Q1 et ()2 sous la forme suivante
Q;(2,2) = 2% hj(2) + ZR;(2,%)]

ou k; € N*, h; est un polynéme holomorphe et 2; un polynéme en z, z.
En identifiant les termes de plus bas degré en Z dans (20), on obtient:

(21) Tz Ry (2) = X251 hy (fa(2)).
On déduit alors de (21) que k1 = ko =: k et

(22) Tha(2) = N hi o fa(2).

Ceci montre que le nombre de zéros de % est majoré par le degré de hy
et donc par 2m. Il s’ensuit que V]; est constitué d’au plus 2m demi-plans
de la forme 7. Il en va de méme pour V¢, puisque les automorphismes
(1 et o échangent ce type de demi-plans.

Il nous reste & envisager les cas ou @)1 ne dépend que de |z|. Con-
sidérons I'application holomorphe propre de §2; sur lui-méme définie par
g=t¢1 o fopr

Si (wo, 20) € Vg NbSy, alors d’apres la Proposition 1.1, on a 7, C V.
Quitte & composer g avec une translation (w,z) — (w + iy, z), on peut
supposer que g se prolonge différentiablement au voisinage de (wo, 2o).
Alors pour ¢ > 0 assez petit, on a:

(23) {(wo, e 2p), t € [—&,€]} C VN bQy.

En effet, sinon, on trouverait une suite (¢, )nen telle que lim¢,, =0 et
n

Jg(wp, etr) # 0.

Pour tout n > 1: on aurait alors 7[g(wo, " 29)] = 7(wo, e z) =
T(wy, 20) et T étant s.c.s., T(wo, 20) < T(g(wo, 20)). Comme, par ailleurs,
7(g(wo, 20)) < 7(wo, 20), il en résulterait que 7(g(wo, 20)) = 7(wo, 20) €t
donc que Jg(wo, z9) # 0, ce qui est contraire aux hypotheses.

Donc si zg # 0, (23) contredit la Proposition 1.1, donc V; = 7 ou
encore Vy = m,,.
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Seme étape: Conclusion: D’apres la 2eme étape, les lieux de branche-
ment Vy» ont au plus 2m composantes connexes. Comme Vini1 =
Vin U f71(Vin) D Vi, il s’ensuit que la suite (Vin) est stationnaire.

On supposera sans perte de génétalité que Vy = Vy2, ce qui signifie
que f‘l(Vf) C V¢. Notons my,... , 7y les composantes connexes de V.
Puisque f~!(m;) est un ensemble analytique dans Q contenu dans V; il
existe o(j) € {1,... , N} tel que mo(;y C f~'(m;), on voit alors facilement
que f iduit une permutation sur {r,... ,7x}. Alors fN'(m) C 7 et
donc, d’aprés la preuve du Lemme 1.2, my ¢ Vpn. Ainsi Vi = 0 et, Q
étant simplement connexe, f est un automorphisme. B
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