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AUTO-APPLICATIONS HOLOMORPHES
PROPRES DES DOMAINES POLYNOMIAUX

RIGIDES DE C2

Abdelaziz Chaouech

Abstract
We show that proper holomorphic self maps of pseudoconvex rigid
polynomial domains in C2 are automorphisms.

0. Introduction

Les seuls exemples connus d’applications holomorphes propres d’un
domaine borné à bord régulier de Cn (n > 1) sur lui-même sont des
automorphismes. Ce phénomène constraste avec la situation unidimen-
sionnelle et l’on présume son caractère général. Les domaines strictement
pseudoconvexes vérifient cette conjecture: H. Alexander [1] a traité le
cas de la boule euclidienne et S. Pinchuk [13], celui des domaines ar-
bitraires à bord de classe C2. De façon plus générale, K. Diederich et
J. E. Fornaess ont mis en évidence le principe suivant: le lieu de branche-
ment d’une application holomorphe propre d’un domaine pseudoconvexe
borné sur un autre est vide dès que l’ensemble des points de faible pseu-
doconvexité de la frontière du domaine source est assez petit (cf. [10,
Théorème 3]). Cependant, ce principe ne permet pas de traiter le cas
des domaines faiblement pseudoconvexes dans sa généralité. A ce jour,
seuls quelques cas ont été abordés. Ainsi, E. Bedford et S. Bell [2] ont
considéré le cas des domaines pseudoconvexes bornés à bords analytiques
réels et Y. Pan [12] celui des domaines de Reinhardt de type fini (voir
aussi [9] où la preuve de Y. Pan est simplifiée et [8] où F. Berteloot et
S. Pinchuk classifient les applications holomorphes propres entre do-
maines de Reinhardt complets de C2). L’objet de cet article est d’étendre
ce type de résultats à une classe de domaines faiblement pseudoconvexes
non bornés. Notre principal résultat est le suivant:
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Théorème 1. Soit P (z, z) un polynôme sous-harmonique sans terme
harmonique. Soit Ω un domaine de C2 défini par Ω =: {(w, z) ∈ C2 :
Rew+P (z, z) < 0}. Alors toute application holomorphe propre de Ω sur
lui-même est un automorphisme.

Le principe de base de la démonstration est analogue à celui utilisé par
Y. Pan. Nous exploitons simultanément la finitude du type de la frontière
et l’existence d’un groupe à un paramètre d’automorphismes du domaine
afin de préciser la structure du lieu de branchement de l’application.
Cependant, comme les domaines que nous considérons sont non bornés
et présentent moins de symétries que les domaines de Reinhardt, de
nouvelles difficultés surgissent. En particulier, il est impossible d’établir
directement que le lieu de branchement possède au plus un nombre fini de
composantes connexes. Ainsi, après avoir montré que le lieu de branche-
ment est contenu dans une réunion dénombrable de droites complexes
(partie 1), nous sommes amenés à analyser certains biholomorphismes
locaux induits par l’application (partie 2), puis certaines applications
holomorphes propres entre domaines rigides distincts (partie 3). Nous
pouvons ensuite montrer que —génériquement— l’application est con-
juguée par des automorphismes de C2 à une application de la forme
(w, h(z)) où h est une fonction entière. Nous en déduisons que le nom-
bre de composantes connexes du lieu de branchement est en fait majoré
par le degré du polynôme P (partie 4). Pour mener à bien cette dernière
partie de la démonstration, nous établisons le résultat suivant:

Théorème 2. Soient Ω1 et Ω2 deux domaines de la forme Ωj =
{(w, z) ∈ C2 : Rew + Pj(z, z) < 0} où P1 et P2 sont des polynômes
sous-harmoniques sans terme harmonique. Soit f : Ω1 → Ω2 une appli-
cation holomorphe propre telle que:

1) f = (f1, f2) se prolonge en un biholomorphisme local d’un voisi-
nage de l’origine de C2 sur un autre.

2) f2(w, 0) ≡ 0 et f1(0, 0) = 0.
L’un des trois cas suivants est alors satisfait:
i) f1(w, z) = Γw; (Γ > 0) et f2(w, z) = f2(z).
ii) f1(w, z) = Γw; (Γ > 0) et P2(z, z) = P2(|z|, |z|).
iii) f1(w, z) = Γw

1+iλw ; (Γ > 0, λ ∈ R∗) et P2(z, z) = M |z|2m avec
M > 0, m ∈ N∗.

Dans la suite de cet article, P désignera l’ensemble des polynômes
sousharmoniques sans terme harmonique sur C.
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1. La structure du lieu de branchement

L’objet de cette partie est d’établir la proposition suivante où l’on
décrit le lieu de branchement des applications holomorphes propres du
type de celles considérées dans cet article.

Proposition 1.1. Soient Ω1 et Ω2 deux domaines de C2 de la forme:

Ωj ={(w, z) ∈ C2 : Rew+Pj(z, z) < 0} où P1 et P2 appartiennent à P.

Pour toute application holomorphe propre de Ω1 sur Ω2, il existe une
suite (zn)n de nombres complexes telle que:

Vf = ∪n∈N{(w, zn) : Rew < −P1(zn, zn)}.

La démonstration de cette proposition repose essentiellement sur les
deux lemmes énoncés ci-dessous. Le premier précise la structure locale
de V f ∩ bΩ1. Le second exhibe des fonctions p.s.h. négatives de Ω1 et
Ω2 qui permettront de déduire la structure de Vf de celle que V f ∩ bΩ1.

Lemme 1.2. Soit f : Ω1 → Ω2 une application holomorphe propre
satisfaisant les hypothèses de la Proposition 1.1 et soit (w0, z0) un point
de bΩ1.

Si l’on a

(w0, z0) ∈ V f ∩ bΩ1 et lim
(w,z)→(w0,z0)

[|f1(w, z)| + |f2(w, z)|] < +∞

alors l’ensemble {(w, z0) tel que Rew < −P1(z0, z0)} est contenu dans
Vf .

Lemme 1.3. Soit Ω =: {(w, z) ∈ C2 : Rew + P (z, z) < 0} où
P ∈ P. Alors il existe une fonction p.s.h. σ : Ω →] − ∞, 0[, telle que

lim
(|w|+|z|)→+∞

σ(w, z) = −∞. De plus, pour toute suite de nombres com-

plexes (zn)n≤1, tout a /∈ {zn;n > 1} et tout (wa, a) ∈ Ω, la fonction σ
peut être assujettie à satisfaire les conditions suivantes:

1) σ(wa, a) 
= −∞.
2) ∀n ≥ 1, ∀ (wn, zn) ∈ bΩ, lim

(w,z)→(wn,zn)
σ(w, z) = −∞.

(Dans ce cas la fonction σ prend ses valeurs dans [−∞, 0[.

Preuve de la Proposition 1.1: Supposons Vf non vide. Soit

A = {(w0, z0) ∈ V f ∩ bΩ1 : lim
(w,z)→(w0,z0)

[|f1(w, z)| + |f2(w, z)|] < +∞}
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et A2 la projection de A sur le plan de la variable z. Le Lemme 1.2 montre
que A2 est localement fini. En effet, si cela n’était pas, l’ensemble ana-
lytique Vf contiendrait une famille de demi-plans de la forme {(w, zp) :
Rew < −P1(zp, zp)}, (zp) étant convergente modulo extraction. Ces
demi-plans s’accumuleraient nécessairement sur un demi-plan de la même
forme. On en déduirait facilement que Vf = Ω1 ce qui est impossible.
Ainsi A2 est dénombrable et nous noterons (zn)n≥1 la suite ordonnée de
ses éléments.

Soit C une composante connexe de Vf . Nous achèverons la démonstra-
tion en montrant que C cöıncide avec un demi-plan de la forme {(w, zn) :
Rew < −P1(zn, zn)} où zn ∈ A2. Pour cela, procédons par l’absurde et
supposons qu’il existe (wa, a) ∈ C tel que a /∈ {zn, n ≥ 1}.

Soit σ1 une fonction p.s.h. et négative sur Ω1 associée par le Lemme 1.3
à la suite (zn)n≥1 et au point (wa, a). D’après le même lemme, il
existe également une fonction σ2, p.s.h. négative sur Ω2 et telle que

lim
(|w|+|z|)→+∞

σ2(w, z) = −∞. Considérons alors la fonction σ̃ définie par

σ̃ =: exp(σ1+σ2◦f). Cette fonction est p.s.h. sur Ω1 et prend ses valeurs
dans [0, 1]. De plus, elle satisfait les propriétés suivantes:

1) 0 ≤ lim
(|w|+|z|)→+∞

(w,z)∈C

σ̃(w, z) ≤ lim
(|w|+|z|)→+∞

eσ1(w,z) = 0.

2) Si (wn, zn) ∈ C ∩ bΩ1 et zn ∈ A2 alors on a

0 ≤ lim
(w,z)→(wn,zn)

(w,z)∈C

σ̃(w, z) ≤ lim
(w,z)→+(wn,zn)

eσ1(w,z) = 0.

3) Si (w0, z0) ∈ C ∩ bΩ1 et z0 /∈ A2 alors par définition de A, on a:
lim

(w,z)→(w0,z0)
[|f1(w, z)| + f2(w, z)] = +∞ et donc

0 ≤ lim
(w,z)→(w0,z0)

(w,z)∈C

σ̃(w, z) ≤ lim
(w,z)→(w0,z0)

eσ2◦f(w,z) = 0.

Il résulte des conditions 1), 2) et 3) et du principe du maximum que
la restriction de σ̃ à C est identiquement nulle. Ceci est absurde puisque,
par construction, σ̃(wa, a) > 0. La preuve de la proposition est donc
achevée.

Preuve du Lemme 1.3: Notons 2m le degré du polynôme P et posons

Qzn(z, z) =: P (z + zn, z + zn) − 2 Re
2m∑
j=1

1
j!
∂jP

∂zj
(zn, zn)zj − P (zn, zn).
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L’automorphisme de C2 défini par Φzn
(w, z) = (w′, z′) où w′ =

w − 2
∑2m

j=1
∂jP
∂zj (zn, zn)zj − P (zn, zn) et z′ = z + zn réalise un biholo-

morphisme du domaine Ωzn
=: {(w, z) : Rew + Qzn

(z, z) < 0} sur Ω.
Le polynôme Qzn étant sous-harmonique et sans terme harmonique,

sa partie homogène de plus haut degré l’est également, nous la noterons
Hzn

.
Pour ε > 0 fixé, on vérifie sans peine qu’il existe a > 0 tel que

Hzn(z, z) − Qzn(z, z) < a + ε|z|2m pour tout z ∈ C. Ainsi Ωzn est
contenu dans un domaine Dzn

défini par:

Dzn
=: {(w, z) : Re(w − a) + Hzn

(z; z) − ε|z|2m < 0}.

D’après E. Bedford et J. E. Fornaess ([3, Main Theorem]), il existe une
fonction gzn

holomorphe sur Dzn
et continue sur Dzn

satisfaisant les
propriétés suivantes: pour (w, z) ∈ Dzn et Nn ∈ N assez grand on a

i) Bn(|w − a| + |z|2m) ≤ |gzn
(w, z)|Nn ≤ An(|w − a| + |z|2m) où An

et Bn sont des constantes strictement positives.
ii) arg gzn

(w, z) ∈
[
−π

4 ,
π
4

]
.

Soit g la fonction ainsi obtenue lorsque zn = 0.

En posant σ = log
∣∣∣ 1
K

[
1 −

(
αg−1
αg+1

)]∣∣∣ où α > 0 est assez petit et K > 0
est assez grand, on obtient une fonction p.s.h. dans Ω prenant ses valeurs
dans ] −∞, 0[ et telle que lim

(|w|+|z|)→+∞
σ(w, z) = −∞.

Nous terminons en modifiant la fonction σ de façon à obtenir une fonc-
tion p.s.h. négative sur Ω prenant la valeur −∞ sur les droites complexes
{z = zn}.

Posons, à cet effet, h̃zn(w, z) = Bnz2m

gNn
zn (w,z)

, on définit ainsi une fonction
holomorphe de module strictement inférieur à 1 sur Dzn . La fonction
hzn

=: h̃zn
◦ Φ−1

zn
est alors holomorphe au voisinage de Ω et satisfait les

propriétés suivantes:
i) ∀ (w, z) ∈ Ω, |hzn(w, z)| < 1.
ii) ∀ (w, z) ∈ Ω, on a hzn(w, z) = 0 si et seulement si z = zn.

Choisissons une suite λn > 0 telle que
∑+∞

n=1 λn log |hzn(wa, a)| > −∞;
alors

∑+∞
n=1 λn log |hzn(w, z)| définit une fonction p.s.h. négative sur Ω et

la fonction

σ = log
∣∣∣∣ 1
K

[
1 −

(
αg − 1
αg + 1

)]∣∣∣∣ +
+∞∑
n=1

λn log |hzn |

remplit les conditions requises.
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Preuve du Lemme 1.2: Soit ((wn, zn))n≥1 une suite de points de
Ω1 qui converge vers un point (w0, z0) de bΩ1. Si lim[|f1(wn, zn)| +
|f2(wn, zn)|] < +∞ alors, l’application f étant propre, la suite
(f(wn, zn))n≥1 converge vers un point (w′

0, z
′
0) de bΩ2 après une

éventuelle extraction. Le bord de Ω2 étant de type fini, un résultat
de F. Berteloot [6] montre que l’application f se prolonge continûment
à Ω1 sur un voisinage de (w0, z0). Nous aurons également besoin de la
différentiabilité du prolongement de f , celle-ci découle des résultats de
[5].

Pour tout p ∈ bΩj , (j = 1 ou 2), on note τ(p) l’ordre d’annulation du
déterminant de Levi de bΩj en p. Plus précisément, pour toute fonction

ρ, définissante locale de bΩj en p, on pose Λp = −det
[

0 ρzk

ρzi
ρzizk

]
et τ(p) est le plus petit entier m pour lequel existe un opérateur T ,
tangentiel au bord d’ordre m, tel que TΛρ(p) 
= 0.

Ainsi, τ satisfait les propriétés suivantes (voir [12, page 291]):
1) τ est indépendant de la fonction définissante choisie.
2) τ est semi-continue supérieurement (s.c.s.).
3) τ est invariant par biholomorphisme.
4) ∀ p ∈ bΩ on a τ(p) ≥ τ(f(p)) et, en outre, τ(p) = τ(f(p)) si et

seulement si p /∈ V f .
On remarquera que lorsque Ωj est un domaine défini par Ωj ={(w, z) ∈

C2 tel que Rew + Pj(zz) < 0} où Pj ∈ P alors, pour tout (w, z) ∈ bΩj ,
τ(w, z) n’est autre que l’ordre d’annulation du Laplacien de Pj au point
z.

Nous sommes maintenant en mesure de terminer la preuve du lemme.
Il suffit d’établir que Jf (w0 + it, z0) est identiquement nul au voisinage
de t = 0. Si cela n’était pas, on trouverait une suite (tn)n∈N telle que
lim
n

tn = 0 et Jf (w0 + itn, z0) 
= 0.

Pour tout n ≥ 1, on aurait alors τ [f(w0 + itn, z0)] = τ [(w0 + itn, z0)] =
τ(w0, z0) et τ étant s.c.s., τ(w0, z0) ≤ τ(f(w0, z0)). Comme, par ailleurs,
on a τ(f(w0, z0)) ≤ τ(w0, z0), il en résulterait que τ(f(w0, z0))=τ(w0, z0)
et donc que Jf (w0, z0) 
= 0, ce qui est contraire aux hypothèses.

2. Étude de certains biholomorphismes locaux

Nous étudions ici les biholomorphismes locaux échangeant deux ger-
mes d’hypersurfaces analytiques réelles, rigides et de type finis. Nous
supposons en outre que ces biholomorphismes préservent une droite com-
plexe transverse aux hypersurfaces. La proposition suivante résume les
résultats de cette partie.
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Proposition 2.1. Soit f = (f1, f2) un biholomorphisme local d’un
voisinage V de l’origine dans C2 sur un autre et tel que f1(0, 0) = 0,
f2(w, 0) ≡ 0.

Soient deux hypersurfaces H1 et H2 définies par:

H1 = {ρ1(w, z) =: Rew + ϕ(z, z) = 0}.
H2 = {ρ2(w, z) =: Rew + Ψ(z, z) = 0}.

où ϕ et Ψ sont des fonctions analytiques réelles sous-harmoniques défi-
nies au voisinage de l’origine, telles que: ∂kϕ

∂zk (0, 0) = 0, ∂kΨ
∂zk (0, 0) = 0

pour tout k ≥ 0 et ∂2Ψ
∂z∂z , ∂2ϕ

∂z∂z s’annulent à un ordre fini en 0. On suppose
que f(H1 ∩ V ) ⊂ H2. Alors:

a) f1 ne dépend que de w.

b) Si, de plus, f1(w) = Γw (Γ > 0) alors:
f∗

(
i ∂
∂w

)
= iΓ ∂

∂w + B(z) ∂
∂z où B est une fonction holomorphe

en z telle que B(0) = 0 et B′(0) = iβ, β ∈ R. La fonction B est
identiquement nulle, si et seulement si B′(0) = 0.

Preuve de a): Notons u et v les parties réelles et imaginaires de la
variable w. Soit A(v, z) =: (−ϕ(z) + iv, z) un paramétrage de H1. Le
champ de vecteurs L défini par L =: −∂ϕ

∂z
∂
∂w + 1

2
∂
∂z est tangent à H1

et donc L(ρ2 ◦ f) ≡ 0 sur H1 ∩ V . En posant g(w, z) = ∂
∂w (ρ2 ◦ f) =

1
2

∂f1
∂w + ∂

∂w (Ψ ◦ f2), on obtient:

(1)
(
−∂ϕ

∂z

)
· (g ◦A) +

1
2

[
1
2
∂f1

∂z
◦A +

∂Ψ
∂z

◦ (f2 ◦A) · ∂f2

∂z
◦A

]
≡ 0

au voisinage de v = 0, z = 0.
La démonstration consiste à dériver (1) par rapport à z à un ordre

arbitraire.
Començons par quelques préliminaires. En observant que, d’après la

définition de A, l’on a

∂

∂z
(f2 ◦A) = −

(
∂f2

∂w
◦A

)
· ∂ϕ
∂z

et
∂

∂z
(f2 ◦A) = −

(
∂f2

∂w
◦A

)
· ∂ϕ
∂z

+
(
∂f2

∂z
◦A

)
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on obtient

(2)
∂

∂z

[
∂jΨ
∂zj

◦ (f2 ◦A)
]

=
[
∂j+1Ψ
∂zj+1

◦ (f2 ◦A)
] [

∂f2

∂z
◦A

]

− ∂ϕ

∂z

[(
∂f2

∂w
◦A

)
· ∂

j+1Ψ
∂zj+1

◦ (f2 ◦A)+
(
∂f2

∂w
◦A

)
∂j+1Ψ
∂z∂zj

◦ (f2 ◦A)
]
.

On montre maintenant par récurrence que

(3)
∂k

∂zk

[
∂Ψ
∂z

◦ (f2 ◦A)
]

=
[
∂k+1Ψ
∂zk+1

◦ (f2 ◦A)
] [

∂f2

∂z
◦A

]k

+
k∑

j=1

[
gj

(
∂jΨ
∂zj

◦ (f2 ◦A)
)

+ hj
∂jϕ

∂zj

]
.

Les fonctions gj et hj sont analytiques réelles au voisinage de (0, 0) mais
nous ne cherchons pas à les expliciter.

Pour k = 1, il s’agit de la formule (2) avec j = 1 et g1 ≡ 0. En utilisant
(2), on voit immédiatement que

∂

∂z


 k∑

j=1

gj

(
∂jΨ
∂zj

◦ (f2 ◦A)
)

+ hj
∂jϕ

∂zj




=
k+1∑
j=1

g̃j

(
∂jΨ
∂zj

◦ (f2 ◦A)
)

+ h̃j
∂jϕ

∂zj
.

Il reste donc à noter que:

∂

∂z

{[
∂k+1Ψ
∂zk+1

◦ (f2 ◦A)
] [

∂f2

∂z
◦A

]k
}

=
[
∂

∂z

(
∂k+1Ψ
∂zk+1

◦ (f2 ◦A)
)] [

∂f2

∂z
◦A

]k

+
[
∂k+1Ψ
∂zk+1

◦ (f2 ◦A)
][

∂

∂z

(
∂f2

∂z
◦A

)k
]
.

D’autre part, une récurrence immédiate donne:

(4)
∂k

∂zk

[
∂f1

∂z
◦A

]
=

(
∂k+1f1

∂zk+1
◦A

)
+

k∑
j=1

(
∂jϕ

∂zj

)
lj .
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Là encore, les lj sont des fonctions que nous n’explicitons pas. En
utilisant l’hypothèse f2(w, 0) ≡ 0, on tire de (3) et (4):

∂k

∂zk

[
∂Ψ
∂z

◦ (f2 ◦A)
]

(iv, 0) ≡ 0, pour k ≥ 0;(5)

∂k

∂zk

[
∂f1

∂z
◦A

]
(iv, 0) =

∂k+1f1

∂zk+1
(iv, 0), pour k ≥ 0;(6)

En appliquant ∂k

∂zk à l’équation (1) et en tenant compte de (5), (6), on

trouve alors ∂k+1f1
∂zk+1 (iv, 0) ≡ 0 pour k ≥ 0, ce qui établit a).

Passons maintenant à la preuve de b).

Preuve de b): Nous utiliserons des champs de vecteurs holomorphes
tangents aux hypersurfaces Hj , ce qui désignera ici des champs de la
forme a(w, z) ∂

∂w+b(w, z) ∂
∂z où les fonctions a, b sont holomorphes et dont

les parties réelles sont des champs tangents au sens usuel. Rappelons que
cette classe de champs de vecteurs est stable par image directe par un
biholomorphisme ainsi que par crochet de Lie. La proposition suivante,
extraite de [4], sera utile à la démonstration. Pour la commodité de
lecteur, nous en donnerons la preuve à la fin de cette partie.

Proposition 2.2. Soit .X = h(w, z) ∂
∂z un champ de vecteur holomor-

phe tangent à H2 défini au voisinage de l’origine et non identiquement
nul. Alors la partie homogène de plus bas degré de h en z est égale à iβz
(β ∈ R∗) et celle de Ψ à M |z|2m, avec M > 0 et m ∈ N∗.

Notons f(w, z) =: (Γw, f2(w, z)) et considérons le champ de vecteur
holomorphe tangent à H2 c’est-à-dire f∗

(
i ∂
∂w

)
=:A(w, z) ∂

∂w +B(w, z) ∂
∂z .

On a
[
f∗

(
i ∂
∂w

)]
f(w,z)

= i∂f1
∂w

∂
∂w + i∂f2

∂w
∂
∂z d’où

(7) B(Γw, f2(w, z)) = i
∂f2

∂w
(w, z) et A ≡ iΓ.

Puisque Γi ∂
∂w est tangent à H2, B(w, z) ∂

∂z l’est également.
Supposons B non identiquement nul. Alors en appliquant la Propo-

sition 2.2 aux champs B(w, z) ∂
∂z et

[
i ∂
∂w , B(w, z) ∂

∂z

]
= i∂B

∂w
∂
∂z , on voit

que le développement de B est de la forme suivante:

(8) B(w, z) =


iβz +

∑
k≥2

b0kz
k


 + αw


z +

∑
k≥2

b1kz
k




+
∑
q≥2

cqw
q


z +

∑
k≥2

bqkz
k


 ,
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où β et α sont des réels qui ne sont respectivement nuls que si B ≡ 0 ou
∂B
∂w ≡ 0.

Ecrivons le développement de f2(w, z) sous la forme suivante

(9) f2(w, z) =


az +

∑
k≥2

a0
kz

k


 + w


bz +

∑
k≥2

a1
kz

k




+ w2


cz +

∑
k≥2

a2
kz

k


 +

∑
q≥3

wq


dqz +

∑
k≥2

aq
kz

k


 .

En identifiant les termes en z puis en wz dans chacun des deux mem-
bres de (7), on obtient: ib = iβa et 2ic = iβb+αΓa puis donc b = βa et
c = γa, où γ = 1

2 (β2 − iαΓ).
Traduisons maintenant l’inclusion f(H1) ⊂ H2:

(10) Ψ[f2(−ϕ + iv, z)] ≡ Γϕ(z, z).

Les termes de degré 1 en z dans f2(−ϕ + iv, z) proviennent de:

az + b(−ϕ + iv)z + c(−ϕ + iv)2z +
∑
q≥3

dq(−ϕ + iv)qz.

La partie de degré 1 en z dans f2(−ϕ + iv, z) est donc égale à: az(1 +
βiv − γv2 + o(v2)).

D’après la Proposition 2.2, la partie homogène de plus bas degré dans
Ψ est égale à B|z|2m (B > 0). Par symétrie, celle de ϕ est égale à A|z|2m
(A > 0). L’identité des termes de degré 2m en z dans (10) donne alors:

B|a|2m|z|2m|1 + βiv − γv2 + o(v2)|2m ≡ ΓA|z|2m,

d’où:
|1 + βiv − γv2 + o(v2)|2 ≡ 1,

et donc: (β2 − 2γ)v2 + o(v2) = iαΓv2 + o(v2) ≡ 0.
Il s’ensuit que α = 0 et donc ∂B

∂w ≡ 0. Ceci achève la preuve de la
Proposition 2.1.

Nous terminons cette partie en donnant la démonstration de la Propo-
sition 2.2. Cette dernière résulte du lemme technique suivant:
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Lemme 2.3. Soit Q(z, z) un polynôme à valeurs réelles homogène de
degré 2m, sans terme harmonique, et soit (λ, k) ∈ R × N.

1) Si Im
(
zk ∂Q

∂z

)
= λRe

(
zk ∂Q

∂z

)
; alors:

i) Si k = 1, on a Q = M |z|2m (M > 0) et λ = 0.
ii) Si k 
= 1 on a Q ≡ 0.

2) Si Re
(
zk ∂Q

∂z

)
= 0, alors Q = 0.

Començons par la preuve du Lemme 2.3.

Preuve du Lemme 2.3: Notons:

Q =
∑

p+q=2m
p,q≥1

Apqz
pzp et Q1 =

∂Q

∂z
.

On a alors, en posant l = k − 1,

zkQ1 =
∑

p+q=2m
p,q≥1

pApqz
p+lzq

et
zkQ1 =

∑
p+q=2m
p,q≥1

qApqz
pzq+l.

On a, par hypothèse:

1
2i

(zkQ1 − zkQ1) =
λ

2
(zkQ1 + zkQ1)

ou encore:

(11)
∑

p+q=2m
p,q≥1

p(1 − λi)Apqz
p+lzq =

∑
p+q=2m
p,q≥1

q(1 + λi)Apqz
pzq+l.

Lorsque k 
= 1 (i.e. l 
= 0), on voit directement sur (11) que Q ≡ 0.
En effet, si p0 = min{p ∈ [1, 2m − 1] tels que Ap,q 
= 0, q + p = 2m}
alors les termes de plus petit degré en z de chacun de deux membres
de (11) sont respectivement égaux à p0(1 − λi)Ap0q0z

p0+lzq0 et q0(1 +
λi)Ap0q0z

p0zq0+l; où q0 = 2m− p0.
Lorsque k = 1 (i.e. l = 0) (11) devient:∑

p+q=2
p,q≥1

[p(1 − λi) − q(1 + λi)]Apqz
pzq ≡ 0,
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d’où Apq = 0 pour p 
= q et, si Q 
≡ 0, λ = 0.
Ceci établit la première assertion. La seconde s’obtient de façon ana-

logue.

Preuve de la Proposition 2.2: Soit Q la partie homogène de plus bas
degré dans le développement de Ψ au voisinage de l’origine. En vertu des
hypothèses sur Ψ, Q(z, z) est un polynême de degré 2m sous-harmonique
et sans terme harmonique.

Donnons à w (et w) le poids 2m et à z (et z) le poids 1. Ainsi le poids
d’un monôme ωk1wk2zq1zq2 est égal à (k1 + k2)2m + (q1 + q2).

Soit B(w, z) la partie homogène de plus bas poids dans le développe-
ment de h au voisinage de (0, 0). Le champ h(w, z) ∂

∂z est holomorphe
tangent à H2 c’est-à-dire:

(13) Re
[
h(−Ψ(z, z) + iv, z)

∂Ψ
∂z

(z, z)
]
≡ 0.

En notant Q1 = ∂Q
∂z , et en collectant les termes de plus bas degré en

z dans (13), on obtient:

(14) Re[B(−Q + iv, z)Q1] ≡ 0.

Supposons que B soit de poids q où q ∈ {0, . . . , 2m − 1}. On a
donc B(w, z) = γzq où γ = α + iβ 
= 0 et (14) donne: αRe(zqQ1) =
β Im(zqQ1). Le Lemme 2.3 montre alors que q = 1, α = 0 et Q =
M |z|2m.

Si maintenant B est de degré q ≥ 2m, on a B(w, z)=b0z
q+b1wz

q−2m+
· · · + bsw

szq−2ms l’équation (14) devient:

(15) Re[Q1(b0zq + b1z
q−2m(−Q+ iv)+ · · ·+ bsz

q−2ms(−Q+ iv)s)] ≡ 0.

Supposons d’abord s > 0, en derivant s fois l’équation (15) par rapport
à v, on obtient:

Re[bs!iszq−2msQ1] ≡ 0
et le Lemme 2.3 montre que:

(16) Q = M |z|2m; q = 2ms + 1 et bss!is = iλ, où λ ∈ R∗.

Dérivons maintenant (s − 1) fois l’équation (15) par rapport à v, on
obtient:

Re
{[

bs−1i
s−1(s− 1)!zq−2m(s−1) + bsi

s−1s!(−Q + iv)zq−2ms
]
Q1

}
≡ 0

d’où, en tenant compte de (16):

Re[bs−1i
s−1(s− 1)!z2m(mM |z|2m)− λmM2|z|4m + λiv(mM |z|2m)] ≡ 0.

On a alors λm ·M2 = 0, ce qui est absurde puisque bs 
= 0. Lorsque
s = 0, la contradiction découle immédiatement du Lemme 2.3. Ceci
termine la preuve de la Proposition 2.2.
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3. Applications holomorphes propres
entre domaines polynomiaux rigides

et fixant une droite complexe

Dans cette partie, nous étudions la forme des applications holomorphes
propres entre deux domaines polynomiaux rigides de C2 qui fixent une
droite de la forme {z = cte} non contenue dans le lieu de branchement.
Nous établisons la proposition suivante.

Proposition 3.1. Soient Ω1 et Ω2 deux domaines de la forme: Ωj =
{(w, z) ∈ C2 : Rew + Pj(z, z) < 0} où P1 et P2 appartiennent à P.

Soit f : Ω1 → Ω2 une application holomorphe propre telle que:

1) f = (f1, f2) se prolonge en un biholomorphisme local d’un voisi-
nage U1 de l’origine de C2 sur un autre, noté U2.

2) f2(w, 0) ≡ 0 et f1(0, 0) = 0.

Alors l’une des trois possibilités suivantes est vérifiée:

i) f1(w, z) = Γw; (Γ > 0) et f2(w, z) = f2(z).
ii) f1(w, z) = Γw; (Γ > 0) et P2(z, z) = P2(|z|, |z|).
iii) f1(w, z) = Γw

1+iλw ; (Γ > 0 et λ ∈ R∗) et P2(z, z) = M |z|2m + Q
avec M > 0, m ∈ N∗ et Q ≡ 0 ou Q ne contient que des termes
de degré > 2m.

On améliorera le contenu de cette proposition en établisant le
Théorème 2 (cf. Section 4).

Dans cette partie, nous adoptons les notations suivantes:
Soit P (z, z) ∈ P, P (z, z) peut s’écrire sous la forme P (z, z) =∑N
l=m |z|2l ReVl(z) où Vl(z) =

∑Nl

j=0 αjlz
j . Notons alors

V (z) =: Vm(z).
V ∗(z) =: V (z) − V (0).

W (z) =: z
∂V

∂z
(z).

Lorsque la partie homogène de plus bas degré de P n’est pas équilibrée
(et donc ReV (0) = 0) on dira que P ∈ P̃, “est équilibrée” veut dire “est
de la forme M |z|2m, M ∈ R∗, m ∈ N∗”.

La proposition résultera des deux lemmes techniques suivants:

Lemme 3.2. Soient γ ∈ R, P (z, z) ∈ P et A(z) une fonction holo-
morphe nulle à l’origine.
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Si les termes de la forme |z|2mzp ou |z|2mzq où (p, q ≥ 0) sont iden-
tiquement nuls dans l’expression

(∗) −γP (z, z) + Re
(
A(z) · ∂P

∂z
(z, z)

)
,

on a alors:

A(z) = z
(2γ −ma)V ∗(z) + 2m · aReV (0)
W (z) + m(V ∗(z) + 2 ReV (0))

, avec a = A′(0).

Lemme 3.3. Soit f : Ω1 → Ω2 une application holomorphe propre
satisfaisant les hypothèses de la Proposition 3.1 et soit .X = f∗

(
i ∂
∂w

)
.

Supposons que sur un voisinage U2 de l’origine le champ .X soit donné
par: .X(w,z) =: A(w) ∂

∂w + B(z)(aw + b) ∂
∂z , où (a, b) ∈ C2, A étant une

fonction entière et B une fraction rationnelle. Alors B est un polynôme
holomorphe.

Ces deux lemmes seront démontrés ultérieurement.

Preuve de la Proposition 3.1: Començons par montrer que f1 est de
la forme générale f1 = Γw

1+iλw où Γ > 0 et λ ∈ R. D’après la Propo-
sition 2.1, on a f1(w, z) = f1(w). Notons D =: {w ∈ C : Rew < 0};
f étant un biholomorphisme local au voisinage de l’origine, d’après la
Proposition 1.1, on a Jf (w, 0) 
= 0 pour tout w ∈ D. Donc f1 est un
biholomorphisme local sur D. D’autre part, f1 est une application holo-
morphe propre de D sur lui-même et donc f1 est un revêtement fini de
D sur lui-même. Comme D est simplement connexe, f1 est donc un
automorphisme de D. Il s’ensuit que f1(w) = Γw

1+iλw où Γ > 0 et λ ∈ R
puisque f1(0) = 0.

Passons maintenant à la preuve de i) et ii). D’après ce qui précède, si
λ = 0, on a f1(w) = Γw, (Γ > 0). Notons dans ce cas f = (Γw, f2(w, z))
et considérons le champ f∗

(
i ∂
∂w

)
. C’est un champ de vecteurs holo-

morphe défini sur U2 et tangent à bΩ2. D’après la Proposition 2.1,
f∗

(
i ∂
∂w

)
est de la forme

[
f∗

(
i ∂
∂w

)]
(w,z)

= iΓ ∂
∂w + B(z) ∂

∂z , où B

est une fonction holomorphe dans un voisinage de l’origine, et on a
B(z) = iβz + · · · + (β ∈ R) avec β 
= 0 si et seulement si B 
≡ 0.

D’autre part, on a
[
f∗

(
i ∂
∂w

)]
f(w,z)

= iΓ ∂
∂w + i∂f2

∂w (w, z) ∂
∂z , d’où (B ◦

f2)(w, z) = i∂f2
∂w (w, z).

Si B ≡ 0, alors ∂f2
∂w (w, z) ≡ 0 et f2(w, z) = f2(z) ce qui correspond au

cas i). Supposons maintenant B 
≡ 0. Puisque iΓ ∂
∂w est tangent à bΩ2,

B(z) ∂
∂z l’est également.
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Cela se traduit par: Re
(
B(z) ∂

∂z (Rew + P2(z, z))
)

= 0 pour tout
(w, z) tel que Rew + P2(z, z) = 0 ou encore par:

(1) Re
[
B(z) · ∂P2

∂z
(z, z)

]
= 0,

pour z assez voisin de l’origine.
D’après le Lemme 3.2, on a alors,

B(z) = iβmz
V ∗(z) + 2 ReV (0)

W (z) + m(V ∗(z) + 2 ReV (0))
.

Or, d’après le Lemme 3.3, B est un polynôme et, comme d0V ∗ = d0W ,
on a B(z) = iβz, β ∈ R∗.

L’équation (1) devient Re
[
iβz · ∂P2

∂z (z, z)
]

= 0, ce qui entrâıne
P2(z, z) = P2(|z|, |z|) puisque

Re


iβz ∂

∂z

∑
p,q≥1

Apqz
pzq


 =

iβ

2

∑
p,q≥1

Apq(p− q)zpzq.

Pour la preuve de iii), nous allons montrer que si λ 
= 0, alors P2(z, z)
n’appartient pas à P̃. Nous procédons par l’absurde et supposons que
P2(z, z) ∈ P̃. Rappelons qu’au voisinage de l’origine, on a

f(w, z) = (f1(w), f2(w, z)

f−1(w, z) = (F1(w), F2(w, z))

avec f1(w) = Γw
1+iλw et F1(w) = w

Γ−iλw .
Considérons le champ de vecteurs holomorphe

.X = f∗

(
i
∂

∂w

)
=: A(w, z)

∂

∂w
+ B(w, z)

∂

∂z
.

On a
.Xf(w,z) = i

∂f1

∂w

∂

∂w
+ i

∂f2

∂w

∂

∂z

d’où A(w, z) = i
(

∂f1
∂w ◦ F

)
(w) = i

Γ (Γ − iλw)2. Les champs .X et i ∂
∂w

sont holomorphes tangents (dans le sens évoqué juste avant la Proposi-
tion 2.2) à bΩ2 donc les crochets de Lie

[
.X, i ∂

∂w

]
et

[[
.X, i ∂

∂w

]
, i ∂

∂w

]
le

sont également.
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Or, on a [
.X, i

∂

∂w

]
= 2

λi

Γ
(Γ − λiw)

∂

∂w
+ i

∂B

∂w

∂

∂z

et [[
.X, i

∂

∂w

]
, i

∂

∂w

]
= 2

λ2i

Γ
∂

∂w
− ∂2B

∂w2

∂

∂z
.

Puisque 2iλ
2

Γ
∂
∂w est tangent à bΩ2, ∂2B

∂w2
∂
∂z l’est également. Comme

par hypothèses, P2 ∈ P̃, la Proposition 2.2 montre alors que ∂2B
∂w2 ≡ 0.

On a ainsi:
B(w, z) = A1(z) ·w+A0(z) où A0 et A1 sont deux fonctions holomor-

phes au voisinage de l’origine.
Le champ .X étant holomorphe tangent à bΩ2, on a:
Re( .X(Rew+P2(z, z))) ≡ 0 pour tout (w, z) tel que Rew+P2(z, z) = 0

c’est-à-dire Re
[

i
2Γ (Γ − iλw)2 + (A1(z) · w + A0(z))∂P2

∂z (z, z)
]
≡ 0 pour

w = −P2(z, z)+ iv, (z, v) variant dans un voisinage de (0, 0) dans C×R.
Cela se traduit par:

(1) v

(
−λ2

Γ
P2(z, z) + Re

[
iA1(z) ·

∂P2

∂z
(z, z)

])

− λP2(z, z) + Re
[
(A0(z) −A1(z)P2(z, z))

∂P2

∂z
(z, z)

]
≡ 0

et l’on en déduit:

(2) −λ2

Γ
P2(z, z) + Re

[
iA1(z) ·

∂P2

∂z
(z, z)

]
≡ 0

et

(3) −λP2(z, z) + Re
[
(A0(z) −A1(z)P2(z, z))

∂P2

∂z
(z, z)

]
≡ 0.

Désignons par H2m(z, z) la partie homogène de plus bas degré dans
P2(z, z). De (2), on tire: Re

[
iA1(0)∂H2m

∂z (z, z)
]
≡ 0. Ceci, d’après le

Lemme 2.3, entrâıne A1(0) = 0. On peut alors appliquer le Lemme 3.2
à l’équation (2) et en déduire que:

(4) A1(z) = −i

(
2λ2

Γ
+ ima1

)
z · V ∗(z)

W (z) + mV ∗(z)
où a1 = A′

1(0)

(on a utilisé le fait que ReV (0) = 0 puisque P2 ∈ P̃).
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D’autre part, B(f1(w), f2(w, z)) = i∂f2
∂w (w, z) donc B(0, 0) = 0 puisque

f2(w, 0) ≡ 0 et f1(0) = 0. On a donc A0(0) = 0. En observant que les
termes de la forme |z|2mzp ou |z|2mzq du membre gauche de (3) ne
peuvent provenir que de −λP2(z, z) + Re

[
A0(z)∂P2

∂z (z, z)
]
, on peut à

nouveau utiliser le Lemme 3.2 et obtenir

(5) A0(z) = (2λ−ma0)z
V ∗(z)

W (z) + mV ∗(z)
où a0 = A′

0(0).

En définitive f∗
(
i ∂
∂w

)
est donné par:

(6) f∗

(
i
∂

∂w

)
=

i

Γ
(Γ − λiw)2

∂

∂w
+ (aw + b)z

V ∗(z)
W (z) + mV ∗(z)

∂

∂z

où a et b sont des constantes complexes. Nous pouvons donc appliquer le
Lemme 3.3 et en déduire que z V ∗(z)

W (z)+mV ∗(z) est un polynôme holomorphe.
Comme V ∗ et W ont même degré, ce polynôme est de la forme αz, α ∈ C.
De (4) et (5), on tire alors:

(7) A0(z) = a0z et A1(z) = a1z.

Pour terminer, nous revenons à l’identité (2). Tenant compte de (7), on
a:

(8) −λ2

Γ
P2(z, z) + Re

[
ia1z

∂P2

∂z
(z, z)

]
≡ 0.

Posons P2(z, z) =
∑

p,q≥1 Apqz
pzq; en reportant dans (8), on obtient:

(9)
∑

p,q≥1

Apq

[
−2

λ2

Γ
− (p + q) Im a1 + i(p− q) Re a1

]
zpzq ≡ 0.

Comme λ 
= 0 par hypothèse, on obtient facilement de (9) que P2 est
homogène c’est-à-dire P2 = H2m. Tenant compte de (7), l’identité (3)
devient alors

(10) −λH2m(z, z) + Re
[
z(a0 − a1H2m(z, z))

∂H2m

∂z
(z, z)

]
≡ 0.

On en déduit que:

(11) −λH2m(z, z) + Re
(
a0z

∂H2m

∂z
(z, z)

)
≡ 0



58 A. Chaouech

et

(12) H2m(z, z) Re
(
a1z

∂H2m

∂z
(z, z)

)
≡ 0.

D’après le Lemme 2.3, (12) force H2m a être équilibré. Ce qui est ab-
surde.

Preuve du Lemme 3.2: On pose

A(z) = z(a + S(z)) où S(z) =
+∞∑
k=2

akz
k−1.

En tenant compte des notations adoptées, les termes de la forme
|z|2mzp ou |z|2mzq (p, q ≥ 0) dans (∗) ne peuvent provenir que de:

(13) −γ(|z|2m ReV (z)) + Re
[
A(z) · ∂

∂z
(|z|2m ReV (z))

]
.

Par ailleurs, on a:

(14) A(z) · ∂

∂z
(|z|2m ReV (z)) = |z|2m(a + S)

(
mReV +

1
2
W

)

et

(15) Re
[
(a + S)

(
mReV +

1
2
W

)]

=
(

Re a +
S + S

2

)
×

(
m

(
V ∗ + V

∗

2
+ ReV (0)

)
+

1
4
(W + W )

)

+
(
i Im a +

S − S

2

) (
W −W

4

)
.

Les termes harmoniques de (15) sont:

2 Re
[
S

4
(mV ∗ + 2mReV (0) + W ) +

a

4
W

+
m

2
(Re a) · V ∗ + m

(Re a) ReV (0)
2

]
=: 2 Re[K(z)].

Donc les termes de la forme |z|2mzp ou |z|2mzq (p, q ≥ 0) dans (13)
sont: |z|2m Re[−γV (z) + 2K(z)]. Par hypothèse, ils sont identiquement
nuls, d’où:

(16) −γV (z) + 2K(z) = −γV (0) + 2K(0).
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En remplaçant K par son expression et V par V ∗ + V (0) dans (16),
on obtient:

(17)
S

2
(mV ∗ + 2mReV (0) + W ) +

a

2
W + V ∗(mRe a− γ) = 0

ou encore:

S(z) = − 2(mRe a− γ)V ∗(z) + aW (z)
W (z) + mV ∗(z) + 2mReV (0)

.

Puisque A(z) = z(a + S(z)), on a donc:

A(z) = z
(2γ −ma)V ∗(z) + 2maReV (0)
W (z) + mV ∗(z) + 2mReV (0)

où a = A′(0).

Preuve du Lemme 3.3: Supposons que B ait des pôles.
Soit S l’ensemble des pôles de B dans Ω2, c’est-à-dire S = Ω2 ∩

(B−1(∞)).
Soient z1 un élément de S, w1 un nombre complexe tel que (w1, z1) ∈ S

et, en outre, aw1 + b 
= 0. (Ce dernier choix est toujours possible quitte
à faire une translation en Imw1.)

Soit (w0, z0) un point fixé dans U2\f(Vf ); puisque Ω\(f(Vf ) ∪ S) est
connexe et dense dans Ω2, il existe un chemin continu γ : [0, 1] → Ω2 tel
que: γ(0) = (w0, z0); γ(1) = (w1, z1) et ∀ t ∈ [0, 1[, γ(t) /∈ f(Vf ) ∪ S.

L’application f étant holomorphe propre, f : Ω1\f−1[f(Vf )] →
Ω2\f(Vf ) est un revêtement fini, il existe donc γ̃ : [0, 1[→ Ω1\Vf un
relèvement de γ par f c’est-à-dire ∀ t ∈ [0, 1[, (f ◦ γ̃)(t) = γ(t).

Par hypothèse, au voisinage de l’origine le champ de vecteurs holomor-
phes .X = f∗

(
i ∂
∂w

)
est de la forme: .X(w,z) = A(w) ∂

∂w +B(z)(aw + b) ∂
∂z

où A est une fonction entière et B est une fraction rationnelle.
L’existence du relèvement γ̃ permet de prolonger holomorphiquement

f∗
(
i ∂
∂w

)
le long de γ([0, 1[) en un champ .̃X tel que

∀ t ∈ [0, 1[: .̃Xγ(t) =
[
f∗

(
i
∂

∂w

)]
γ(t)

= i
∂f1

∂w
(γ̃(t))

∂

∂w
+ i

∂f2

∂w
(γ̃(t))

∂

∂z
.

Par ailleurs, puisque γ([0, 1[) ⊂ Ω2\S, le champ A(w) ∂
∂w +B(z)(aw+

b) ∂
∂z est également un prolongement de .X le long de γ([0, 1[).
Par unicité du prolongement, on a donc:

(18) ∀ t ∈ [0, 1[, i
∂f1

∂w
(γ̃(t)) = A(γ1(t))

et

(19) ∀ t ∈ [0, 1[: i
∂f2

∂w
(γ̃(t)) = B(γ2(t))(aγ1(t) + b) où γ = (γ1, γ2).

Comme (aw1+b) 
= 0, on déduit immédiatement de (19) que |B(z1)| <
+∞ ce qui est impossible.
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4. Preuve des Théorèmes 1 et 2

Preuve du Théorème 2: On se place dans le cas iii) de la Proposi-
tion 3.1. La partie homogène de plus bas degré de P2 est égale à M |z|2m
(M > 0) et comme le montre un calcul élémentaire celle de P1 est aussi
égale à M ′|z|2m (M ′ > 0). Notons 2k le degré du polynôme P2 et H2k

sa partie homogène de plus haut degré, il nous faut montrer que k = m.
Nous utiliserons pour cela la méthode de dilatation des coordonnées.

Considérons à cet effet la suite de points de Ω1 :
(
− 1

n + i
λ , 0

)
, la suite de

points de Ω2 : f
(
− 1

n + i
λ , 0

)
=

(
− iΓ

λ − nΓ
λ2 , 0

)
et deux suites de dilata-

tions (Sn)n, et (∆n) définies par:

Sn(w, z) =:
(
nw, zn

1
2m

)
.

∆n(w, z) =:
λ2

Γ

(
w

n
,

z

n
1
2k

)
.

Soit h l’application holomorphe propre de Ω1 sur Ω2 donnée par:

h : Ω1 → Ω2

(w, z) �→ f

(
w +

i

λ
, z

)
+

(
Γi
λ
, 0

)
.

On définit alors une suite d’applications holomorphes propres (Fn)n
de Sn(Ω1) sur ∆n(Ω2) par Fn = ∆n ◦ h ◦ S−1

n .
On vérifie sans peine que:

1) Fn(w, z) =
(

1
w , λ2

Γ n− 1
2k f2

(
w
n + i

λ , zn
− 1

2m

))
.

2) Pour tout n : Fn(w, 0) =
(

1
w , 0

)
et Fn(−1, 0) = (−1, 0).

3) Pour tout n, la multiplicité de Fn est égale à celle de f .
4) Sn(Ω1) converge vers D1 =: {(w, z) ∈ C2 : Rew + M ′|z|2m < 0}.
5) ∆n(Ω2) converge vers D2 =:{(w, z)∈C2 :Rew+

(
Γ
λ

)2k−1
H2k(z, z)<

0}.
D’autre part, d’après ([7, Lemme 2.3]) et après une éventuelle extrac-

tion, la suite (Fn)n converge uniformémemnt sur tout compact de D1

vers une application holomorphe: F : D1 → D2 telle que:
a) F (w, z) =

(
1
w , F2(w, z)

)
.

b) F2(w, z) ≡ 0.
Admettons momentanément que pour w, fixé, F2(w, ·) est surjective

finie. Il en va alors de même pour F . Montrons que F est propre. Posons:

ρ1(w, z) =: Rew + M ′|z|2m

ρ2(w, z) =: Rew +
(

Γ
λ

)2k−1

H2k(z, z).
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On a:

D1 = {(w, z) ∈ C2 : ρ1(w, z) < 0}
D2 = {(w, z) ∈ C2 : ρ1(w, z) < 0}

sur D2, on définit la fonction σ(w, z) =: sup
F (u,v)=(w,z)

ρ1(u, v). Puisque F

est surjective et finie σ est p.s.h. et strictement négative sur D2.
Supposons qu’il existe une suite (wn, zn)n de points de D1 qui converge

vers un point de bD1 et telle que (F (wn, zn))n converge vers un point de
D2. Deux cas sont à distinguer. Commençons par supposer que la limite
de (wn, zn) est finie, soit (w0, z0) cette limite et soit (w1, z1) la limite de
(F (wn, zn))n. On a: σ(F (wn, zn)) ≥ ρ1(wn, zn), et puisque σ est (s.c.s.)
σ(w1, z1) ≥ ρ1(w0, z0) = 0. Ce qui est absurde puisque σ est strictement
négative. Supposons maintenant que (|wn|+|zn|) → +∞, (wn, zn)n étant
dans D1 on a |wn| → +∞ et d’après a) F (wn, zn) → (0, z), par hypothèse
(0, z) ∈ D2 donc il existe N ∈ N∗ tel que pour n ≥ N : (0, z) ∈ ∆n(Ω2).
Comme Fn est propre, il existe (u, v) ∈ Sn(Ω1) tel que Fn(u, v) = (0, z),
d’après 1) ceci est impossible. Nous avons donc montré que F est propre.
Etablissons maintenant que m ≥ k.

Soit (wn, 0) une suite de points de D1 qui converge vers un point
(w0, 0) de bD1 où w0 
= 0. La suite (F (wn, 0))n converge vers le point(

1
w0

, 0
)

de bD2, le bord de D2 étant de type fini, on sait d’après [6]

que l’application F se prolonge continûment à D1 sur un voisinage de
(w0, 0), et d’après Bell et Catlin [5] F se prolonge différentiablement à
D1 sur un voisinage de (w0, 0). Donc si τ1 (respectivement τ2) désigne
la fonction type de bD1 (respectivement de bD2) alors:

τ1(w0, 0) ≥ τ2(F (w0, 0)) = τ2

(
1
w0

, 0
)
,

d’où m ≥ k.
Ceci termine la preuve du Théorème 2.
Montrons maintenant que pour w fixé, F2(w, ·) est finie.
On vérifie facilement que:

Sn(Ω1) =: {(w, z) ∈ C2 : Rew + M ′|z|2m + Qn(z, z) < 0}

et

∆n(Ω2) =:

{
(w, z) ∈ C2 : Rew +

(
Γ
λ

)2k−1

H2k(z, z) + Q̃n(z, z) < 0

}
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où Qn(z, z) et Q̃n(z, z) sont des polynômes qui convergent uniformément
sur tout compact de C vers le polynôme nul.

Soit w ∈ C∗, un point fixé tel que Rew < 0. On notera:

Ωn,w =: {z ∈ C : M ′|z|2m + Qn(z, z) < −Rew}.

Dn,w =:

{
z ∈ C :

(
Γ
λ

)2k−1

H2k(z, z) + Q̃n(z, z) < −Rew
|w|2

}
.

Ω∞,w =: {z ∈ C : M ′|z|2m < −Rew}.

D∞,w =:

{
z ∈ C :

(
Γ
λ

)2k−1

H2k(z, z) < −Rew
|w|2

}
.

∆(0, R) =: {z ∈ C : |z| < R}.

Fn =:
(

1
w ;Fn,2

)
la suite d’applications holomorphes propre de Sn(Ω1)

sur ∆n(Ω2).
Soit R > 0 tel que Rew + R2m > 0. Pour n assez grand, on a

Ωn,w∩{|z| = R} = ∅, on en déduit que la composante connexe de l’origine
de Ωn,w est contenue dans {|z| < R}. Notons Ω0

n,w cette composante, il
est clair que Ω0

n,w converge vers Ω∞,w. La composante connexe, D0
n,w,

de l’origine dans Dn,w con̈ıncide avec Fn(Ω0
n,w). En observant que D∞,w

est connexe (étoilé par rapport à l’origine) on vérifie facilement que D0
n,w

converge vers D∞,w.
Ainsi la suite d’applications holomorphes propres

hn : Ω0
n,w → D0

n,w

z �→ Fn,2(w, z)

est telle que (modulo extraction)
1) hn(0) = 0, ∀n.
2) hn est de multiplicité finie.
3) hn converge vers F2(w, ·) : Ω∞,w → D∞,w uniformément sur tout

compact, et il existe R > 0 tel que Ω0
n,w ⊂ {|z| < R} pour tout n.

On en déduit par des arguments standards que F2(w, ·) est surjective
et finie.

Preuve du Théorème 1: Nous supposons Vf 
= ∅ et montrons que cela
conduit à une contradiction, nous procédons en trois étapes.

1ère étape: Il existe deux automorphismes de C2, ϕ1 et ϕ2 tels que
l’application f̃ = ϕ−1

1 ◦ f ◦ ϕ2 satisfait les hypothèses du Théorème 2.
Pour tout z ∈ C, notons πz le demi-plan {(w, z) : w ∈ C} ∩ Ω, et

désignons par fn la nième itérée de f . Comme Vf est supposé non vide,
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la Proposition 1.1 assure l’existence d’un demi-plan πz0 contenu dans Vf .
En utilisant l’inclusion f−1(Vfn) ⊂ Vfn+1 et le fait que, toujours d’après
la Proposition 1.1, Vfn est une réunion de demi-plan, on construit par
récurrence une suite (zn)n de nombres complexe telle que:

i) ∀n ≥ 1 : πzn
⊂ Vfn .

ii) ∀n ≥ 1 : f(πzn+1) ⊂ πzn .

On observera pour cela que: si (wn+1, zn+1) ∈ f−1(πzn
) ∩ πzn+1 alors

f(πzn+1) ⊂ πzn . En effet, dans le cas contraire, wn+1 serait un zéro isolé
de f2(w, zn+1) − zn et (wn+1, zn+1) serait un zéro isolé de f2(w, z) − zn
puisque f−1(πzn

) est contenu dans une réunion de demi-plan πz.
Notons τn la valeur de τ sur le bord de πzn

. Il résulte de ii) et des
propiétés de τ que la suite (τn)n≥1 est croissante. Comme les valeurs
de τ sont entières et majorées par le degré de P . Il existe n0 ∈ N∗

tel que τn0+1 = τn0 . Pour fixer les idées, nous supposons que n0 = 1.
Alors f(πz2) ⊂ πz1 et, puisque τ2 = τ1, πz2 
⊂ Vf . Quitte à composer
f avec des translations (w, z) �→ (w + it0, z), on peut supposer que f
induit un difféomorphisme local sur bΩ au voisinage de (−P (z2), z2) et
que f(−P (z2), z2) = (−P (z1), z1). Définissons les automorphismes de
C2, ϕ1 et ϕ2, par:

ϕj(w, z) = (w′, z′)

où 


w′ = w − P (zj , zj) − 2
2m∑
i=1

1
i!
∂iP

∂zi
(zj , zj)zi.

z′ = z + zj .

Ils induisent des automorphismes de Ωj sur Ω où

Ωj =: {(w, z) ∈ C2 : Rew + Qj(z, z) < 0},

Qj(z, z) = P (z + zj , z + zj) − P (zj , zj) − 2 Re
2m∑
i=1

∂iP

∂zi
(zj , zj)zi.

Par construction, l’application f̃ = ϕ−1
1 ◦ f ◦ ϕ2 est propre de Ω2 sur

Ω1, fixe la droite complexe z = 0 et l’origine (0, 0). D’après [11], f̃ se
prolonge en un biholomorphisme local au voisinage de (0, 0).

2ème étape: Vf est contenu dans une réunion d’au plus (2m) = degP
droites complexes.

Soit f̃ l’application fournie par la première étape. D’après le
Théorème 2, deux cas sont à distinguer. Commençons par supposer
que f̃ est de la forme (Γw, f̃2(z)). Alors f̃2 est une fonction entière telle
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que f̃2(0) = 0 et ∂f̃2
∂z (0) = λ 
= 0. L’inclusion f̃(bΩ2) ⊂ bΩ1 se traduit au

voisinage de l’origine par l’identité:

(20) ΓQ2(z, z) = Q1 ◦ f̃2(z).

Décomposons les polynômes Q1 et Q2 sous la forme suivante

Qj(z, z) = zkj [hj(z) + zRj(z, z)]

où kj ∈ N∗, hj est un polynôme holomorphe et Rj un polynôme en z, z.
En identifiant les termes de plus bas degré en z dans (20), on obtient:

(21) Γzk2h2(z) = λ
k1
zk1h1(f̃2(z)).

On déduit alors de (21) que k1 = k2 =: k et

(22) Γh2(z) = λ
k
h1 ◦ f̃2(z).

Ceci montre que le nombre de zéros de ∂f̃2
∂z est majoré par le degré de h2

et donc par 2m. Il s’ensuit que Vf̃ est constitué d’au plus 2m demi-plans
de la forme πz. Il en va de même pour Vf , puisque les automorphismes
ϕ1 et ϕ2 échangent ce type de demi-plans.

Il nous reste à envisager les cas où Q1 ne dépend que de |z|. Con-
sidérons l’application holomorphe propre de Ω1 sur lui-même définie par
g =: ϕ−1

1 ◦ f ◦ ϕ1.
Si (w0, z0) ∈ V g ∩ bΩ1, alors d’après la Proposition 1.1, on a πz0 ⊂ Vg.

Quitte à composer g avec une translation (w, z) → (w + iy, z), on peut
supposer que g se prolonge différentiablement au voisinage de (w0, z0).
Alors pour ε > 0 assez petit, on a:

(23) {(w0, e
itz0), t ∈ [−ε, ε]} ⊂ V g ∩ bΩ1.

En effet, sinon, on trouverait une suite (tn)n∈N telle que lim
n

tn = 0 et

Jg(w0, e
itn) 
= 0.

Pour tout n ≥ 1: on aurait alors τ [g(w0, e
itnz0)] = τ(w0, e

itnz0) =
τ(w0, z0) et τ étant s.c.s., τ(w0, z0) ≤ τ(g(w0, z0)). Comme, par ailleurs,
τ(g(w0, z0)) ≤ τ(w0, z0), il en résulterait que τ(g(w0, z0)) = τ(w0, z0) et
donc que Jg(w0, z0) 
= 0, ce qui est contraire aux hypothèses.

Donc si z0 
= 0, (23) contredit la Proposition 1.1, donc Vg = π0 ou
encore Vf = πz1 .
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3ème étape: Conclusion: D’après la 2ème étape, les lieux de branche-
ment Vfn ont au plus 2m composantes connexes. Comme Vfn+1 =
Vfn ∪ f−1(Vfn) ⊃ Vfn , il s’ensuit que la suite (Vfn) est stationnaire.

On supposera sans perte de génétalité que Vf = Vf2 , ce qui signifie
que f−1(Vf ) ⊂ Vf . Notons π1, . . . , πN les composantes connexes de Vf .
Puisque f−1(πj) est un ensemble analytique dans Ω contenu dans Vf il
existe σ(j) ∈ {1, . . . , N} tel que πσ(j) ⊂ f−1(πj), on voit alors facilement
que f iduit une permutation sur {π1, . . . , πN}. Alors fN !(π1) ⊂ π1 et
donc, d’après la preuve du Lemme 1.2, π1 
⊂ VfN! . Ainsi Vf = ∅ et, Ω
étant simplement connexe, f est un automorphisme.
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