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CONVEXITY THEORIES 0 FIN.
FOUNDATIONS

Heinrich Kleisli and Helmut Röhrl*

Abstract
In this paper we study big convexity theories, that is convexity the-
ories that are not necessarily bounded. As in the bounded case (see
[4]) such a convexity theory Γ gives rise to the category ΓC of (left)
Γ-convex modules. This is an equationally presentable category,
and we prove that it is indeed an algebraic category over Set. We
also introduce the category ΓAlg of Γ-convex algebras and show
that the category Frm of frames is isomorphic to the category of
associative, commutative, idempotent DU -convex algebras satis-
fying additional conditions, where D is the two-element semiring
that is not a ring. Finally a classification of the convexity theories
over D and a description of the categories of their convex modules
is given.

0. Introduction

The set theory used in this paper has as its basic concepts “sets”,
“classes”, and “conglomerates” and is described in [1, p. 5–8]. The class
U of all sets is called the universe. Conglomerates that can be indexed
by a class are said to be legitimate and may, and indeed will, be treated
as a class. Since we will be dealing with classes that are equipped with
some structure it is convenient to replace the term “class” by “big set”
and consequently speak of, for instance, “big group” instead of “class
equipped with a group structure”.

In section 1 we present the necessary background definitions. The
“small” versions of these definitions appeared in [4]. However, here we
wish to deal with the universe U and certain maps from U to semi-
rings and similar structures. The definitions presented in this section
formalize the notion of absolutely convergent series —known from clas-
sical analysis— to include infinite series with huge numbers of summands
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from a prenormed semimodule over a prenormed semiring. A prenormed
semimodule possessing this type of structure is called a prenormed semi-
module with U -summation.

Section 2 contains several elementary results concerning prenormed
semimodules with U -summation. They deal with rearranging summands,
double sums, and similar issues.

Big convexity theories are introduced in section 3. Their definition
is identical with the definition of N -convexity theories in [4, (4.1)],
—except for the size. As in [4] we define the notions of Γ-convex modules
and their homomorphisms, leading to the category ΓC of (left) Γ-convex
modules. In the case of N -convexity theories the free Γ-convex modules
can be described without further preparation (cf. [4, proof of (4.7)]). This
is not so for big convexity theories. Hence a number of computational
rules for Γ-convex modules have to be proved directly, as was done in
[5, (2.4)]. The section closes with the definition of commutative convex-
ity theories and the notion of algebras over such convexity theories.

The main result of section 4 is the algebraicity of the category ΓC. It
is shown by involving a well known characterization theorem ([3, 3.1.13])
that, in our case, reduces the issue to the existence of free objects. If A is
an infinite set and Γ | A stands for the “restriction” of Γ toA then the free
Γ | A-convex module over A carries a unique Γ-convex module structure
that makes it the free Γ-convex module over A. As a consequence, ΓC
is an algebraic category, and the same is true for the category ΓAlgc of
associative, commutative, and unital Γ-convex algebras where Γ is any
big commutative convexity theory.

In section 5 we show that the category of frames (see [2, p. 39])
is isomorphic to the category of associative, commutative, idempotent
D
U -algebras satisfying additional conditions (see section 5); here D is

the two-element semiring that is not a ring.
The last section brings an enumeration of the big convexity theories

over D and describes the category of convex modules over those convexity
theories.

1. Prenormed semirings and prenormed semimodules
with U-summation

Let R be a semiring (in the sense of [7, section 1]) and denote by RU

the big set of all maps U → R that vanish on the complement of some
subset of U . Such maps will be denoted by lower case greek letters with
a lower placeholder symbol, e.g. α∗ or α�. We shall use freely the other
definitions and notions of [4, 1.] pertaining to RN and apply them to
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RU . In particular, RU is a big hemiring (under pointwise composition)
as well as a big left-R, right-R semimodule.

If M is a left-R semimodule we denote by MU the big set of all maps
U → M that vanish on the complement of some subset of U . The
elements of MU will be denoted by lower case greek letters with a lower
placeholder symbol, e.g. µ∗ or µ�. Again the pertinent definitions and
notions of [4, 1.] carry over to MU . MU is a big left-RU hemimodule
(under pointwise composition) as well as a left-R semimodule.

Since we are mostly dealing with left structures we will call left-R
semimodules from now on R-semimodules.

Next we repeat some of the definitions of [4, 1.] in our current setting.
The notions of positive semiring, cone semiring, prenormed semiring,
and prenormed semimodule can be found in [7].

1.1. Definition.
Let C be a positive semiring. By a U -summation for C is meant a pair

(SC ,
∑

C) consisting of a big twosided C-subsemimodule SC of CU and a
twosided C-homomorphism

∑
C : SC → C such that

(i) C(U) := {α∗ ∈ CU : suppα∗ is finite} is contained in SC and for
all α∗ ∈ C(U) the relation

∑
C(α∗) =

∑′{αu : u ∈ suppα∗} holds,
where

∑′ stands for the usual sum of the finitely many elements
in {αu : u ∈ suppα∗};

(ii) for all α∗ ∈ SC and β∗ ∈ CU with β∗ ≤ α∗, β∗ is in SC and∑
C(β∗) ≤

∑
C(α∗);

(iii) for every α∗ ∈ SC and every map ϕ : U → U , αϕ
−1(u)

∗ is in
SC for all u ∈ U , and the map

∑
C(αϕ

−1

∗ ) given by U 	 u 
→∑
C(αϕ

−1(u)
∗ ) ∈ C is in SC and satisfies

∑
C(

∑
C(αϕ

−1

∗ )) =
∑

C(α∗);

(iv) if α∗ is in CU and there exists a map ϕ : U → U such that αϕ
−1(u)

∗

is in SC for all u ∈ U and that
∑

C(αϕ
−1

∗ ) is in SC , then α∗ is in
SC .

Recall (see [4]) that, given a possibly big subset T of U , we denote by
αT∗ the map given by

U 	 u 
→
{
αu if u ∈ T
0 if u �∈ T

.

Two comments are in place concerning (1.1). Firstly, it follows from
(i) and (iii), that for any α∗ ∈ SC the relation αu ≤

∑
C(α∗) holds for
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all u ∈ U . As a consequence of this one obtains SC · SC ⊆ SC , whence
SC is a big hemiring. Secondly, one checks easily that supp

∑
C(αϕ

−1

∗ ) ⊆
ϕ(suppα∗) holds, whence for any α∗ ∈ CU the map

∑
C(αϕ

−1

∗ ) is also in
CU .

1.2. Definition.

Let R be a prenormed semiring with prenorm ‖ ‖ : R → C where
C is a cone semiring with twosided U -summation (SC ,

∑
C). By a

U -summation for R is meant a pair (SR,
∑
R) consisting of a big

twosided R-subsemimodule SR of RU and a twosided R-homomorphism∑
R : SR → R such that

(o) α∗ ∈ RU is in SR if and only if ‖α∗‖ is in SC ;

(i) R(U) := {α∗ ∈ RU : suppα∗ is finite} is contained in SR and for
all α∗ ∈ R(U) the relation

∑
R(α∗) =

∑′{αu : u ∈ suppα∗} holds,
where

∑′ stands for the usual sum of the finitely many elements
in {αu : u ∈ suppα∗};

(ii) for all α∗ ∈ SR, ‖
∑
R(α∗)‖ ≤

∑
C(‖α∗‖);

(iii) for every α∗ ∈ SR and every map ϕ : U → U , αϕ
−1(u)

∗ is in
SR for all u ∈ U , and the map

∑
R(αϕ

−1

∗ ) given by U 	 u 
→∑
R(αϕ

−1(u)
∗ )∈R is in SR and satisfies

∑
R(

∑
R(αϕ

−1

∗ ))=
∑
R(α∗).

The comments following (1.1) apply also to (1.2).

1.3. Definition.

Let R and R′ be prenormed semirings with prenorms ‖ ‖ : R → C
resp. ‖ ‖′ : R′ → C where C is a cone semiring with twosided U -sum-
mation (SC ,

∑
C). In addition, let (SR,

∑
R) resp. (S′

R,
∑′
R) be U -sum-

mations for R resp. R′. Then a map f : R → R′ is called a bounded
homomorphism of prenormed semirings with U -summation if f is a ho-
momorphism of semirings such that

(i) fU (SR) ⊆ S′
R and

∑
R

(
fU (α∗)

)
= f (

∑
R(α∗)), for all α∗ ∈ SR;

(ii) there is a c ∈ C (depending on f) with
‖

∑
R′

(
fU (α∗)

)
‖′ ≤ (

∑
C(‖α∗‖)) · c, for all α∗ ∈ SR.

A bounded homomorphism of prenormed semirings with U -summation
is said to be a contractive homomorphism (or contraction) of prenormed
semirings with U -summation if (1.3), (ii), holds with c = 1.
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1.4. Definition.
Let M be a prenormed R-semimodule with prenorm ‖ ‖ :M → C over

the prenormed semiring R with prenorm ‖ ‖ : R→ C and U -summation
(SR,

∑
R). By a U -summation for M is meant a pair (SM ,

∑
M )

consisting of a R-subsemimodule SM of MU and a R-homomorphism∑
M : SM →M such that

(o) µ∗ ∈MU is in SM if and only ‖µ∗‖ is in SC ;

(i) a) M (U) := {µ∗ ∈ MU : suppµ∗ is finite} is contained in SM and
for all µ∗ ∈ M (U) the relation

∑
M (µ∗) =

∑′{µu : u ∈ suppµ∗}
holds, where

∑′ stands for the usual sum of the finitely many
elements in {µu : u ∈ suppµ∗};

(i) b) for all α∗ ∈ SR and m ∈M ,
∑
M (α∗m∗) = (

∑
R(α∗)) ·m;

(ii) for all µ∗ ∈ SM , ‖
∑
M (µ∗)‖ ≤

∑
C(‖µ∗‖);

(iii) for every µ∗ ∈ SM and every map ϕ : U → U , µϕ
−1(u)

∗ is in
SM for all u ∈ U , and the map

∑
M (µϕ

−1

∗ ) given by U 	 u 
→∑
M (µϕ

−1(u)
∗ ) ∈ M is in SM and satisfies

∑
M (

∑
M (µϕ

−1

∗ )) =∑
M (µ∗).

Again the comments following (1.1) apply here too.
We close this section with

1.5. Definition.
Let M and M ′ be prenormed R-semimodules with prenorms ‖ ‖ :

M → C resp. ‖ ‖′ : M ′ → C where C is a cone semiring with twosided
U -summation (SC ,

∑
C). In addition, let (SM ,

∑
M ) resp. (S′

M ,
∑′
M )

be U -summations for M resp. M ′. Then a map f : M → M ′ is
called a bounded homomorphism of prenormed R-semimodules with
U -summation if f is a homomorphism of R-semimodules such that

(i) fU (SM )⊆S′
M and

∑
M

(
fU (µ∗)

)
=f (

∑
M (µ∗)), for all µ∗ ∈ SM ;

(ii) there is a c ∈ C (depending on f) with
‖

∑
M ′

(
fU (µ∗)

)
‖′ ≤ (

∑
C(‖µ∗‖)) · c, for all µ∗ ∈ SM .

A bounded homomorphism of prenormed R-semimodules with U -sum-
mation is said to be a contractive homomorphism (or contraction) of
prenormed R-semimodules with U -summation if (1.5), (ii), holds with
c = 1.

If M is a prenormed R-semimodule with U -summation and m ∈ M ,
then the map fm : R → M given by R 	 r 
→ rm ∈ M is a bounded
homomorphism of prenormed R-semimodules with U -summation.
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Let R be a fixed prenormed semiring with U -summation. Then we ob-
tain a category RSmod1N whose objects are the prenormed R-semimod-
ules with U -summation and whose morphisms are the contractions of
prenormed R-semimodules with U -summation, the composition being
the set-theoretical one.

2. Some elementary results

2.1. Lemma.
Let M be a prenormed R-semimodule with U -summation (SM ,

∑
M ).

Let furthermore µ∗ ∈ SM . For T ⊆ U let µT∗ be the element of MU given
by

U 	 u 
→
{
µu if u ∈ T
0 if u �∈ T

.

Then µT∗ is in SM and ‖
∑
M (µT∗ )‖ ≤

∑
C(‖µ∗‖). In particular, if u ∈ U

then ‖µu‖ ≤
∑

C(‖µ∗‖).

Proof:

Define a map ϕ : U → U such that for some u ∈ U , ϕ−1(u) = T
holds. Then µT∗ is in SM by (1.4), (iii), and the inequality follows from
(1.4), (ii).

2.2. Lemma.
Let M be a prenormed R-semimodule with U -summation (SM ,

∑
M ).

Let furthermore µ∗ ∈ SM and ν∗ ∈ MU be such that for some sets A ⊇
suppµ∗ and B ⊇ supp ν∗ there is a bijection ϕ : A→ B with µu = νϕ(u)

for all u ∈ suppµ∗. Then ν∗ is in SM and
∑
M (ν∗) =

∑
M (µ∗).

Proof:

Extend ϕ to some map ϕ : U → U . One checks easily that
ν∗ =

∑
M (µϕ

−1

∗ ) holds. Hence (1.4), (iii), shows that
∑
M (ν∗) =∑

M (
∑
M (µϕ

−1

∗ )) =
∑
M (µ∗) holds.

2.3. Lemma.
Let C be a positive semiring with U -summation (SC ,

∑
C) and let α∗ ∈

SC satisfy the relation suppα∗ ⊆ N1 × N2 for two subsets N1 and N2

of U . Let furthermore ϕi : U → U be such that ϕi(n1, n2) = ni holds for

all (n1, n2) ∈ N1×N2 and i = 1, 2. Suppose that αϕ
−1
1 (u)

∗ is in SC for all
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u ∈ U and that
∑

C(αϕ
−1
1∗ ) is in SC. Then αϕ

−1
2 (u)

∗ is in SC for all u ∈ U ,∑
C(αϕ

−1
2∗ ) is in SC and

∑
C(

∑
C(αϕ

−1
2∗ )) =

∑
C(

∑
C(αϕ

−1
1∗ )).

Proof:

It follows directly from (1.1), (iv), that α∗ is in SC . Hence the conclu-
sion is an immediate consequence of (1.1), (iii).

Due to (2.2) we may, and will, adopt the following notation. If
µ∗ ∈ SM has the property that suppµ∗ ⊆ A then we write

∑
a∈A

(µa)

instead of
∑
M (µ∗). Hence, in the situation of (2.3), we may write∑

n2∈N2

(αn1,n2) instead of
∑

C(αϕ
−1
1 (u)

∗ ) and replace
∑

C(
∑

C(αϕ
−1
1∗ )) by

∑
n1∈N1

( ∑
n2∈N2

(αn1,n2)

)
. Therefore (2.3) means that in SC double sums

may be interchanged.

2.4. Lemma.
Let R be a prenormed semiring with U -summation (SR,

∑
R). Let

furthermore α∗ ∈ SR, β�
∗ a map from U to SR, and γ∗ a map from U

to R such that
‖γ∗‖ and

∑
C ‖β�

∗ ‖

are bounded. Then

∑
R

(
α�(

∑
R β

�
∗ γ

∗)
)

=
∑
R

(∑
R(α�β�

∗ )γ∗
)
.

Proof:

Using the axiom of choice for big sets we can establish a bijection
ψ : U → U × U . Denote ψ(u), u ∈ U , by (u1, u2) and write the map
U 	 u 
→ αu1β

u1
u2
γu2 as θ∗. We claim that θ∗ is in SR. In order to prove

this, let ϕi : U → U be maps such that ϕi ◦ ψ−1(u1, u2) = ui, i = 1, 2,
holds. Denoting by pri : U × U → U the ith projection, i = 1, 2, we
have ϕi = pri ◦ ψ, i = 1, 2. Obviously, ‖θ∗‖ is in (U, C). Moreover, the
union

⋃
{suppβu∗ : u ∈ suppα∗} is a set N and we have θu = 0 for

all elements u �∈ ψ−1(suppα∗ × N). This means that θ∗ is in RU , and

(1.2), (o), implies ‖θ∗‖ ∈ CU . Obviously we have ‖θ∗‖ϕ
−1
i

(u) = ‖θϕ
−1
1 (u)

∗ ‖
for all u ∈ U . Hence, for every u ∈ U , ‖θ∗‖ϕ

−1
1 (u) is the map

U 	 v 
−→
{ ‖αuβuv2γv2‖ if ψ(v) = (u, v2),

0 otherwise.



476 H. Kleisli, H. Röhrl

If c is a bound for ‖γ∗‖, we get

‖αuβuv2γ
v2‖ ≤ ‖αu‖ · ‖βuv2‖ · ‖γ

v2‖ ≤ (
∑

C ‖α∗‖) · ‖βuv2‖ · c.

Since the U -summation for C is twosided, the right side of the last
inequality is in SC , and by (1.1), (ii), so is the left side. Hence∑

C ‖αuβu∗ γ∗‖ exists and we obtain by (1.1), (i) b) and (ii),

∑
C ‖αuβu∗ γ∗‖ ≤ ‖αu‖ · (

∑
C ‖βu∗ ‖) · c.

Since there is a bound c′ for the big set of elements
∑

C ‖βu∗ ‖, u ∈ U , we
get ∑

C ‖αuβu∗ γ∗‖ ≤ ‖αu‖ · c′c,

whence ‖θ∗‖ϕ
−1
1 , that is the map U 	 u 
→

∑
C ‖αuβu∗ γ∗‖ ∈ C, satisfies

‖θ∗‖ϕ
−1
1 ≤ ‖α∗‖ · c′c. Since the latter is in SC it follows from (1.1), (iv),

that ‖θ∗‖ itself is in SC . Thus (1.2), (o), implies θ∗ ∈ SR as was claimed.
At this point we can continue as in the proof of (2.3) to arrive at our
assertion.

3. Big convexity theories

3.1. Definition.
Let R be a prenormed semiring with prenorm ‖ ‖ : R → C and

U -summation (SR,
∑
R). By a big convexity theory over R is meant

a big subset Γ of SR such that
(o)

∑
C(‖α∗‖) ≤ 1, for all α∗ ∈ Γ;

(i) the map δu∗ given by

U 	 v 
→ δuv =
{

1 if u = v
0 if u �= v

is in Γ, for all u ∈ U ;

(ii) for all α∗ βu∗ in Γ, u ∈ U , the map 〈α�, β�
∗ 〉 given by U 	 u 
→∑

R{αvβvu : v ∈ U} ∈ R is in Γ.

A comment is in order concerning (3.1), (ii). Denote by α�β�
u the

map U 	 v 
→ αvβ
v
u. Then suppα�β�

u ⊆ suppα∗. Hence α�β�
u is in

RU . Moreover, ‖α�β�
u ‖ ≤ ‖α∗‖ as ‖βvu‖ ≤

∑
C(‖βv∗‖) ≤ 1. By (1.1),

(ii), and (1.2), (o), α�β�
u is in SR, implying that 〈α�, β�

∗ 〉 is defined.
In addition, since ‖αu‖ ‖βu∗ ‖ is the map U 	 v 
→ ‖αu‖ ‖βuv ‖ we have
‖αu‖ ‖βu∗ ‖ ≤ ‖βu∗ ‖ by (2.1) and (3.1), (o). Due to (1.1), (ii), ‖αu‖ ‖βu∗ ‖ is
in SC and

∑
C(‖αu‖ ‖βu∗ ‖) ≤ ‖αu‖

∑
C(‖βu∗ ‖) ≤ ‖αu‖. Therefore the map

U 	 u 
→
∑

C(‖αu‖ ‖βu∗ ‖) is ≤ ‖α∗‖. Since ‖α∗‖ is in SC , this also holds
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for the last map and
∑
u

( ∑
C(‖αu‖ ‖βu∗ ‖)

)
≤

∑
C(‖α∗‖) ≤ 1. In terms

of the notation following (2.3) this means that
∑
u

(
∑
v

(‖αu‖ ‖βuv ‖)) ≤ 1

holds. Hence (2.3) shows that
∑
v

(∑
u

(‖αu‖ ‖βuv ‖)
)
≤ 1 is satisfied. The

latter, however, is
∑

C(‖〈α�, β�
∗ 〉‖) ≤ 1. In other words, the map defined

in (3.1), (ii), satisfies without additional hypotheses the condition (3.1),
(o).

Let Γ be a big convexity theory over R such that for some set T the
condition card(suppα∗) ≤ card(T ) is satisfied for all α∗ ∈ Γ. Then
card(T ) is called a bound for Γ and Γ is said to be bounded.

3.2. Lemma.
Any big convexity theory is the union of bounded big convexity subthe-

ories.

Proof:

Let T be any infinite set. If Γ is a big convexity theory, put ΓT :=
{α∗ ∈ Γ : card(suppα∗) ≤ card(T )}. Since card(T × T ) = card(T ), it
is easy to check that ΓT is a big convexity theory with bound card(T ).
Clearly, Γ =

⋃
{ΓT : T ∈ Pinf(U)} where Pinf(U) is the totality of all

infinite subsets of U .

3.3. Definition.
Let Γ be a big convexity theory over the prenormed semiring R. By

a left Γ-convex module is meant a set X, non-empty whenever 0∗ ∈ Γ,
together with a map

Γ× (U,X) 	 (α∗, x∗) 
−→ 〈α∗, x∗〉 ∈ X

such that

(i) 〈δu∗ , x∗〉 = xu, for all u ∈ U , x∗ ∈ (U,X);

(ii)
〈
α�, 〈β�

∗ , x
∗〉

〉
=

〈
〈α�, β�

∗ 〉, x∗
〉
,

for all α∗ ∈ Γ, β�
∗ ∈ (U,Γ), x∗ ∈ (U,X).

Here, (U,X) stands for the conglomerate of all maps U → X and,
similarly, (U,Γ) for the conglomerate of all maps U → Γ.

Since we will only deal with left Γ-convex modules, we shall drop the
epithet “left” from now on.
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3.4. Definition.
Let Γ be a big convexity theory. Then a map f : X → X ′ of Γ-convex

modules is said to be a homomorphism of Γ-convex modules if

f(〈α∗, x∗〉) = 〈α∗, fU (x∗)〉, for all α∗ ∈ Γ, x∗ ∈ (U,X),

where fU (x∗) is the map U 	 u 
→ f(xu) ∈ X ′.

Given a big convexity theory Γ we denote by ΓC the category of
Γ-convex modules and their homomorphisms, with composition the set-
theoretical one.

Next we need some computational rules concerning Γ-convex modules.
Since Γ is a big convexity theory, free Γ-convex modules may not be
available and thus we can not argue that the computational rules for all
Γ-convex modules are just those for free Γ-convex modules.

We begin with a useful notation. If ψ : U → U is any map and if x∗

is in (U,X), then we denote the map U
ψ−→ U

x∗
−→ X by xψ(∗).

3.5. Lemma.
Let Γ be a big convexity theory and let X be a Γ-convex module. Let

furthermore α∗ be in Γ and let x∗, y∗ ∈ (U,X) satisfy xu = yu for all
u ∈ suppα∗. Then 〈α∗, x∗〉 = 〈α∗, y∗〉.

Proof: (see [5, (2.4), (iii)]).
Write U as the disjoint union of U ′ and U ′′ such that there are bijec-

tions ϕ′ : U ′ → U and ϕ′′ : U ′′ → U . Define z∗ ∈ (U,X) by

zu :=
{
xϕ

′(u) if u ∈ U ′,

yϕ
′′(u) if u ∈ U ′′.

Then, denoting U
ϕ′−1

−−−→ U ′ ↪→ U again by ϕ′−1,

〈α∗, x∗〉 = 〈α∗, zϕ
′−1(∗)〉 =

〈
α∗, 〈δϕ

′−1
1 (∗)

� , z�〉
〉

=
〈
〈α∗, δϕ

′−1(∗)〉, z�〉
,

where β� := 〈α∗, δϕ
′−1(∗)

� 〉 satisfies

βv =
{
αϕ′(v) if v ∈ ϕ′−1(suppα∗)
0 otherwise.

Define the map ψ : U → U by

ψ(u) :=
{
ϕ′−1(u) if u ∈ suppα∗
ϕ′′−1(u) otherwise.
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Then

〈α∗, y∗〉 = 〈α∗, zψ(∗)〉 =
〈
α∗, 〈δψ(∗)

� , z�〉
〉

=
〈
〈α∗, δψ(∗)

� 〉, z�〉
,

where γ� := 〈α∗, δψ(∗)
� 〉 satisfies

γv =
{
αψ−1(v) if v ∈ ψ(suppα∗)
0 otherwise.

Since ψ(suppα∗) = ϕ′−1(suppα∗), we obtain β∗ = γ∗ and hence
〈α∗, x∗〉 = 〈α∗, y∗〉.

3.6. Lemma.
Let Γ be a big convexity theory and let X be a Γ-convex module. If α∗

is in Γ, x∗ is in (U,X), and ϕ : U → U is a bijection, then αφ(∗) is in Γ
and 〈αϕ(∗), x

ϕ(∗)〉 = 〈α∗, x∗〉.

Proof: (see [5, (2.4), (iv)]).

Since αϕ(∗) = 〈α�, δ
ϕ−1(�)
∗ 〉, (3.1), (i) and (ii), imply that αϕ(∗) is in

Γ. Hence

〈αϕ(∗), x
ϕ(∗)〉=

〈
〈α�, δ

ϕ−1(�)
∗ 〉, xϕ(∗)〉=

〈
α�, 〈δϕ

−1(�)
∗ , xϕ(∗)〉

〉
=〈α�, x

�〉.

While (3.3), (ii), means that the “sums” 〈α∗, x∗〉 in a Γ-convex module
are associative and distributive, (3.6) says that they are also commuta-
tive.

3.7. Lemma.
Let Γ be a big convexity theory and let X be a Γ-convex module. Let

furthermore α∗, β∗ ∈ Γ and x∗, y∗ ∈ (U,X) satisfy the following condi-
tions

(i) for some sets A ⊇ suppα∗ and B ⊇ suppβ∗ there is a bijection
ϕ : A→ B such that
αu = bϕ(u) for all u ∈ A;

(ii) xu = yϕ(u) for all u ∈ A.

Then 〈α∗, x∗〉 = 〈β∗, y∗〉.

Proof:

This is an immediate consequence of (3.5) and (3.6).
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3.8. Lemma.

Let X be a Γ-convex module, α∗ ∈ Γ, and x∗ ∈ (U,X). Denote the map

U
x∗
−→ X ↪→ U by ϕ and let ι∗ ∈ (U,X) be any map with ι∗ | X = idX .

Then 〈α∗, x∗〉 = 〈
∑
R(αϕ

−1

∗ ), ι∗〉.

Proof:

Let β�
∗ ∈ (U,Γ) be the map U 	 u 
→ δx

u

∗ ∈ Γ. Then x∗ = 〈β∗�, ι�〉
and hence

〈α∗, x∗〉 =
〈
α∗, 〈β∗�, ι�〉

〉
=

〈
〈α�, β

�
∗ 〉, ι∗

〉
= 〈

∑
R(αϕ

−1

∗ ), ι∗〉

since
∑
R(αϕ

−1

∗ ) = 〈α�, β�
∗ 〉 as a simple computation shows.

Let X be a Γ-convex module and let x�,∗ be any map U ×U → U . If
α∗ is in Γ, we denote by 〈α∗, x�,∗〉 the map U 	 u 
→ 〈α∗, xu,∗〉 ∈ X and
by 〈α�, x�,∗〉 the map U 	 x 
→ 〈α�, x�,u〉 ∈ X. With this notation we
have

3.9. Lemma.

Let α∗, β∗ ∈ Γ satisfy αuβv = βvαu for all u, v,∈ U . Then for any
map x�,∗ from U × U to some Γ-convex module X,

〈
α�, 〈β∗, x�,∗〉

〉
=〈

β∗, 〈α�, x�,∗〉
〉
.

Proof:

Identical with the proof of (2.4), (ix), in [5, p. 968].

A big convexity theory Γ is said to be a convexity theory with zero if
0∗ ∈ Γ holds.

3.10. Lemma.

Let Γ be a big convexity theory with zero and let X be any Γ-convex
module. Then 〈0∗, x∗〉 is independent of the choice of x∗ ∈ (U,X).

Proof:

This is an immediate consequence of (3.5).

For a big convexity theory Γ with zero and a Γ-convex module X the
element described in (3.10) is denoted by 0X .
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3.11. Lemma.

Let Γ be a big convexity theory with zero, let X be a Γ-convex mod-
ule, and denote the constant map U → X with value 0X by 0∗X . Then
〈α∗, 0∗X〉 = 0X for all α∗ ∈ Γ.

Proof:

See the proof of (2.4), (vi), in [5, p. 967].

3.12. Lemma.

Let Γ be a big convexity theory with zero, let X be a Γ-convex module,
and let x∗ be an element of (U,X), Suppose that α∗, β∗ ∈ Γ satisfy
αu = βu for all u ∈ U with xu �= 0X . Then 〈α∗, x∗〉 = 〈β∗, x∗〉.

Proof:

Identical with the proof of (2.4), (vii), in [5, p. 967].

3.13. Lemma.

Let Γ be any big convexity theory with zero, α∗ ∈ Γ, and T ⊆ U . Let
furthermore X be any Γ-convex module and x∗ ∈ (U,X). Then, for any
u �= v in U , with δu∗ + δv∗ ∈ Γ

〈α∗, x∗〉 = 〈δu∗ + δv∗ , z
∗〉

where z∗∈(U,X) is any map satisfying zu=〈αT∗ , x∗〉 and zv=〈αU\T
∗ , x∗〉.

Proof:

Since 〈δu∗ + δv∗ , z
∗〉 does not depend on z∗ | (U \ {u, v}) due to (3.5),

we may assume zw = 0X for all w ∈ U \ {u, v}. Define β�
∗ by

βt∗ :=



αT∗ , for all t = u

α
U\T
∗ , for all t = v

0∗, otherwise

, t ∈ U.

Then α∗ = 〈δu� + δv�, β
�
∗ 〉 and z� = 〈β�

∗ , x
∗〉. Hence

〈α∗, x∗〉 =
〈
〈δu� +δv�, β

�
∗ 〉, x∗

〉
=

〈
δu� +δv�, 〈β�

∗ , x
∗〉

〉
= 〈δu� +δv�, z

�〉.
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3.14. Lemma.
Let Γ be any big convexity theory with zero and let α∗ ∈ Γ. Let further-

more X be any Γ-convex module, y ∈ X, and denote by c∗y ∈ (U,X) the
constant map with value y. Then, for any u �= v in U , with δu∗ + δv∗ ∈ Γ

〈α∗, c∗y〉 = 〈(
∑
R{αw : w ∈ U})δu∗ + δv∗ , z

∗〉

where z∗ ∈ (U,X) is any map satisfying zu = y and zv = 0X .

Proof:

Define β�
∗ ∈ (U,Γ) by βt∗ := δu∗ , for all t ∈ U . Then 〈α�, β�

∗ 〉 =
(
∑
R{αw : w ∈ U}) · δu∗ and 〈β�

∗ , c
∗
y〉 = c�y . Hence

〈α∗, c∗y〉 =
〈
α�, 〈β�

∗ , c
∗
y〉

〉
=

〈
〈α�, β

�
∗ 〉, c∗y

〉
= 〈(

∑
R{αw : w ∈ U})δu∗ , c∗y〉

= 〈(
∑
R{αw : w ∈ U})δu∗ + δv∗ , z

∗〉.

3.15. Definition.
A big convexity theory Γ over R is called commutative if, for all

α∗, β∗ ∈ Γ and all u, v ∈ U , αuβv = βvαu holds.
If Γ is a big commutative convexity theory and if X and Y are Γ-

convex modules, then the tensorproduct X
⊗

Γ Y in ΓC, defined by the
standard universal property (cf. [5, section 5]), exists.

3.16. Definition.
Let Γ be a big commutative convexity theory. Then a Γ-convex algebra

is a pair (X,µ) consisting of a Γ-convex module X and a homomorphism
µ : X

⊗
ΓX → X of Γ-convex modules. A homomorphism f : (X,µ) →

(X ′, µ′) of Γ-convex algebras is a homomorphism f : X → X ′ of Γ-convex
modules satisfying f ◦ µ = µ′ ◦ (f

⊗
f).

If (X,µ) is a Γ-convex algebra and x′, x′′ are in X, then µ(x′
⊗
x′′)

is usually denoted by x′x′′ or x′ · x′′. Such an algebra is, in general, not
required to satisfy any laws involving products except those resulting
from the universal property of the tensorproduct:

〈α∗, x∗〉y = 〈α∗, x∗y〉, for all α∗ ∈ Γ, x∗ ∈ (U,X), y ∈ X,
x〈β∗, y∗〉 = 〈β∗, xy∗〉, for all x ∈ X, β∗ ∈ Γ, y∗ ∈ (U,X),
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where x∗y is the map U 	 u 
→ xuy ∈ X and xy∗ is defined similarly.
Given a big commutative convexity theory Γ we denote by ΓAlg the

category of Γ-convex algebras and their homomorphisms, with composi-
tion the set-theoretical one.

We shall also consider full subcategories of ΓAlg whose objects satisfy
additional sets of relations such as the category of Γ-convex associative
algebras. For Γ = ΩC and Γ = ΩR, Γ-convex associative algebras were
discussed in [6]. Later on we will have to deal with the category D

UAlgF
of associative, commutative, idempotent algebras satisfying additional
conditions (see section 5).

3.17. Proposition.
Let Γ be a bounded big convexity theory with bound card(N). Then the

categories ΓC and (Γ|N)C are canonically isomorphic.

Proof:

Let X be a Γ-convex module with composition Γ×(U,X) 	 (α∗, x∗) 
→
〈α∗, x∗〉 ∈ X. If β∗ is in Γ|N then there is a unique α∗ ∈ Γ with α∗ = αN∗
and β∗ = α∗|N . Let y∗ ∈ XN and extend y∗ to some ȳ∗ ∈ (U,X).
Put 〈β∗, y∗〉′ := 〈α∗, ȳ∗〉. Due to (3.5), 〈β∗, y∗〉′ is independent of the
extension ȳ∗ of y∗. One checks easily that the composition (Γ|N)×XN 	
(β∗, y∗) 
→ 〈β∗, y∗〉′ ∈ X makes X a Γ|N -convex module X ′. A simple
computation shows that for every map f : X → Y between Γ-convex
modules, f ∈ ΓC(X,Y ) implies f ∈ (Γ|N)C(X ′, Y ′). Conversely assume
that the map f : X ′ → Y ′ satisfies f ∈ (Γ|N)C(X ′, Y ′). If α∗ is in Γ then
there is an injective map ϕ′ : suppα∗ → N . Extend ϕ′ to a bijection
ϕ−1 : U → U . Then αϕ(∗) is in Γ and satisfies αϕ(∗) = αNϕ(∗), whence
β∗ := αϕ(∗)|N is in Γ|N . Let x∗ ∈ (U,X). Then by (3.6)

f(〈α∗, x∗〉) = f(〈αϕ(∗), x
ϕ(∗)〉)

= f(〈b∗, xϕ(∗)|N〉′)
=

〈
β∗, f

N (xϕ(∗)|N)
〉′

= 〈αϕ(∗), f
U (xϕ(∗))〉

= 〈α∗, fU (x∗)〉.

Hence ΓC(X,Y ) = (Γ|N)C(X ′, Y ′). Next let Y be a Γ|N -convex module
with composition (Γ|N) × Y N 	 (β∗, y∗) 
→ 〈β∗, y∗〉′ ∈ Y . If α∗ ∈ Γ,
choose ϕ′ as above and extend it to a bijection ϕ−1 : U → U . Let
y∗ ∈ (U, Y ) and define

(3.17.1) 〈α∗, y∗〉 := 〈αϕ(∗)|N, yϕ(∗)|N〉′.
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(3.6) implies that 〈α∗, y∗〉 is independent of the choice of ϕ. It follows
from (2.2) that for α∗ ∈ Γ and β�

∗ ∈ ΓN the relation 〈αϕ(�), β
ϕ(�)
∗ 〉 =

〈α�, β�
∗ 〉 holds, where ϕ is any bijection from U to U . Since Γ is bounded

by card(N) and since N is an infinite set, we have for A := suppα∗ ∪⋃
{suppβu∗ : u ∈ suppα∗} the relation cardA � card(N). In order to get

a better visual display we write in (3.17.1) αϕ|N(∗) instead of αϕ(∗)|N
and xϕ|N(∗) instead of xϕ(∗)|N . Then we have

〈
〈α�, β

�
∗ 〉, y∗

〉
=

〈
〈αψ(�), β

ψ(�)
∗ 〉, y∗

〉
=

〈
〈αψ(�), β

ψ(�)
ψ|N(∗)〉, y

ψ|N(∗)〉′
=

〈
〈αψ|N(�), β

ψ|N(�)
ψ|N(∗) 〉, y

ψ|N(∗)〉′
=

〈
αψ|N(�), 〈βψ|N(�)

ψ|N(∗) , y
ψ|N(∗)〉′

〉′
=

〈
〈α�, 〈β�

ψ|N(∗), y
ψ|N(∗)〉′

〉
=

〈
α�, 〈β�

∗ , y
∗〉

〉
,

which is (3.3), (ii). Since the verification of (3.3), (i), for the compo-
sition (3.17.1) is straight forward we obtain that Y equipped with the
composition (3.17.1) is a Γ-convex module Y ∼. One checks easily that
for any Γ-convex module X the relation (X ′)∼ = X and for any Γ|N -
convex module Y the relation (Y ∼)′ = Y is satisfied. Hence the asserted
isomorphy is satisfied.

4. The category ΓC is algebraic

4.1. Theorem.
Let Γ be any big convexity theory. Then ΓC is an algebraic category.

Proof:

In [3, Chap. 3, (1.13)], algebraic categories are characterized as equa-
tionally presentable categories satisfying three conditions. The last
two of these conditions are trivially satisfied by ΓC as ΓC has sepa-
rators (formed as in Set) and the underlying-set functor ΓC → Set
creates quotients of congruences. Hence it remains to be shown that
ΓC has arbitrary free objects. Let A be any set and consider the set
B := {ξ∗ ∈ Γ : supp ξ∗ ⊆ A}. If α∗ is in Γ and ξ�∗ ∈ (U,B) then
〈α�, ξ�∗ 〉 is in Γ and supp〈α�, ξ�∗ 〉 ⊆ A holds, whence 〈α�, ξ�∗ 〉 is an
element of B. Evidently, this makes B a Γ-convex module F(A). Let
δ∗ : A→ F(A) be the map A 	 a 
→ δa∗ ∈ F(A). Now let ϕ be any map
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from A to some Γ-convex module X and denote by ϕ∗ ∈ (U,X) the map
given by

ϕ∗(u) :=
{
ϕ(u), if u ∈ A
anything, if u �∈ A.

Define h : F(A) → X by h(ξ∗) := 〈ξ∗, ϕ∗〉 for all ξ∗ ∈ F(A). Due to
(3.5), h is well defined. Obviously, h◦ δ∗ = ϕ. Moreover if α∗ is in Γ and
ξ�∗ is in (U,F(A)) then

h(〈α�, ξ
�
∗ 〉) =

〈
〈α�, ξ

�
∗ 〉, ϕ∗〉 =

〈
α�, 〈ξ�∗ , ϕ∗〉

〉
= 〈α�, hU (ξ�∗ )〉,

showing that h is a homomorphism of Γ-convex modules. The uniqueness
of h (subject to h ◦ δ∗ = ϕ) follows from the fact that δ∗(A) is a system
of generators of the Γ-convex module F(A).

Let Γ be any big convexity theory over the commutative prenormed
semiring R and let X be a Γ-convex module. Let furthermore N be a
set and κ : XN → X be a map (equivalently: a composition of arity N).
Then κ is called a Γ-multi-homomorphism if for every n̄ ∈ N and every
y∗ ∈ XN\{n̄} the map

X
ψy∗−−→ XN κ−→ X

is a homomorphism of Γ-convex modules, where ψy∗ is given by

ψy∗(x)(n) :=
{
x, if n = n̄
yn, if n �= n̄.

Let T be an algebraic theory that is given by a set {κi : i ∈ I} of
compositions and a set {ρj : j ∈ J} of relations. Denote the arity of κi
by ki, i ∈ I. Then the category ΓT of Γ-convex T -algebras has as its
objects the tuples {X,κi,X : i ∈ I} where X is any Γ-convex module and
κi,X : Xki → X, i ∈ I, is a map such that

(i) every κi,X , i ∈ I, is a Γ-multi-homomorphism;

(ii) every ρj , j ∈ J , is satisfied on X.

Furthermore, ΓT has as its morphisms f : X → Y precisely those maps
that are homomorphisms of Γ-convex modules and are compatible with
the compositions κi,X and κi,Y , i ∈ I.

In order to prove that ΓT is an algebraic category we need few pre-
liminary statements.
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4.2. Lemma.
Let Γ be any big convexity theory over the prenormed semiring R. Let

furthermore α(1)
∗ , . . . , α

(k)
∗ be in Γ and denote by β∗ ∈ (U,R) the map

βu :=

{
α

(1)
u1 · . . . · α(k)

uk , if u=(u1, . . ., uk)∈suppα(1)
∗ × · · · ×suppα(k)

∗

0, otherwise.

Then β∗ is in Γ.

Proof:

It suffices to consider the case k = 2. For u ∈ suppα(1)
∗ define βu∗ by

βuv :=

{
α

(2)
w , if v = (u,w) and w ∈ U

0, otherwise.

By (3.6) we have βu∗ ∈ Γ for all u ∈ suppα(1)
∗ . Choose βu∗ ∈ Γ arbitrarily

for all u �∈ suppα(1)
∗ . Then β∗ = 〈α�, β�

∗ 〉 and hence β∗ ∈ Γ.

4.3. Lemma.
Let Γ be any big convexity theory over the prenormed semiring R with

U -summation (SR,
∑
R). Let furthermore α∗ ∈ Γ and let ϕ : U → U be

any map. Then
∑
R(αϕ−1

∗ ) is in Γ.

Proof:

Put βu∗ := δϕ(u)
∗ , u ∈ U . Then

∑
R(αϕ

−1

∗ ) = 〈α�, β�
∗ 〉.

4.4. Theorem.
Let Γ be any big convexity theory over the commutative prenormed

semiring R. Let furthermore T be any algebraic theory that is given
by a set {κi : i ∈ I} of finitary compositions of arity ≥ 1 and a set
{ρj : j ∈ J} of relations. Then ΓT is an algebraic category.

Proof:

Let A be any set and denote B := FT ′(A) the free T ′-object on A,
where T ′ is the algebraic theory with compositions {κi : i ∈ I} and
no relations. B can be thought of as the free “T ′-multi-magma” on
A. Let F(A) be the free Γ-convex module on the set B and denote by
δ∗ the canonical map from B to F(A). If i∗A ∈ (U,F(A)) is any map
with i∗A | B = δ∗ then for every x ∈ F(A) there is a unique αx∗ ∈ Γ
with (αx∗)B = αx∗ and x = 〈αx∗ , i∗A〉. Let ki be the (finite) arity of κi,
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i ∈ I, and denote the corresponding composition Bki → B by κ′i. Given
x̄ := (x1, . . . , xki

) ∈ F(A)ki , i ∈ I, denote by βx̄∗ the map

U 	 u 
−→
∑
R{αx1

b1
· . . . ·αxki

bki
: b1, . . . , bki ∈ B and κ′i(b1, . . . , bki) = u}.

Due to (4.2) and (4.3), βx̄∗ is well defined and belongs to Γ. Now put

κ′′i (x1, . . . , xki) := 〈βx̄∗ , i∗A〉, x̄ ∈ F(A)ki .

We claim that κ′′i is a Γ-multi-homomorphism. Let ki be ≥ 2. For sim-
plicity we check this only for the first component. Put y := (x2, . . . , xki

).
For γ∗ ∈ Γ and x∗ ∈ (U,F(A)) we have

〈γ∗, x∗〉 =
〈
γ�, 〈αx

�
∗ , i

∗
A〉

〉
=

〈
〈γ�, α

x�
∗ 〉, i∗A

〉
and hence α〈γ�,x

�〉
∗ = 〈γ�, αx

�
∗ 〉. Therefore

κ′′i (〈γ∗, x∗〉, y) = 〈β̄∗, i∗A〉

where

β̄u =
∑
R{〈γ�, αx

�
b1
〉 · αx2

b2
· . . . · αxki

bki
: b1, . . . , bki

∈ B
and κ′i(b1, . . . , bki

) = u}, u ∈ U.

On the other hand,

〈γ�, κ
′′
i (x

�, y)〉 =
〈
γ�, 〈β(x�,y)

∗ , i∗A〉
〉

=
〈
〈γ�, β

(x�,y)
∗ 〉, i∗A

〉
and

=

β∗:= 〈γ�, β
(x�,y)
∗ 〉 satisfies

=

βu=
∑
R{γv · αx

v

b1
· αx2

b2
· . . . · αxki

bki
: v ∈ U, b1, . . . , bki

∈ B,
and κ′i(b1, . . . , bki

) = u}, u ∈ U.

Since β̄u =
=

βu due to (4.2) and (4.3), it is clear that κ′′i is a Γ-multi-
homomorphism. In case ki = 1 a similar, but simpler, argument can
be used to prove that κ′′i is a Γ-multi-homomorphism. Now let X be
any ΓT -object and let ϕ : A → X be any map. Since X is also a
T ′-object there is a map, indeed a T ′-homomorphism, ϕ′ : B → X with
ϕ = ϕ′ ◦ δ′∗ where δ′∗ : A → B is the canonical map. Since F(A) is
the free Γ-convex module on B there is a homomorphism of Γ-convex
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modules f : F(A) → X with ϕ′ = f ◦ δ∗. Since f ◦ i∗A | B = ϕ′ and since
ϕ′ is a T ′-homomorphism we have for every (x1, . . . , xki) ∈ F(A)ki

f
(
κ′′i (x1, . . . , xki

)
)

= f(〈βx̄∗ , i∗A〉)
= 〈βx̄∗ , fU (i∗A)〉
= 〈βx̄∗ , f ◦ i∗A〉
= κXi

(
f(x1), . . . , f(xki

)
)
,

where κXi is the composition in X that corresponds to κi. This means
that f is a T ′-homomorphism. Since X is a ΓT -object, f factors through
g : F(A) → F(A)/ ∼ where g is the quotient map with respect to
the smallest Γ-congruence relation ∼ that is compatible with the set
{ρj : j ∈ J} of relations of T . If f = f̄ ◦ g is this factorization then

ϕ = ϕ′ ◦ δ′∗ = f ◦ δ∗ ◦ δ′∗ = f̄ ◦ g ◦ δ∗ ◦ δ′∗,

and this factorization determines f̄ uniquely in terms of ϕ. Hence
F(A)/ ∼ is the free ΓT -object on A with g ◦ δ∗ ◦ δ′∗ the canonical map
A→ F(A)/ ∼. Since ΓC has separators, which are formed as in Set and
since the underlying-set functor ΓC → Set creates quotients of congru-
ences, [3, Chap. 3, (1.13)], implies that ΓT is an algebraic category.

Suppose that on each Γ-convex module X a map λX : X� → X is
given. Then λ := {λX : X ∈ 0bΓC} is called an 6-ary Γ-composition if
for every homomorphism f : X → Y of Γ-convex modules f◦λX = λY ◦f �
is satisfied. The primary example is obtained as follows. Let α∗ be given
and denote card(suppα∗) by 6. For each ϕ ∈ X� choose an x∗ϕ ∈ (U,X)
with x∗ϕ| suppα∗ = ϕ and put λX(ϕ) = 〈α∗, x∗ϕ〉, ϕ ∈ X�. Then (3.5)
implies that λ is an 6-ary Γ-composition.

4.5. Addendum.
Let Γ be any big convexity theory over the commutative prenormed

semiring R. Let furthermore T be any algebraic theory as specified in
(4.4). Given any set {λk : k ∈ K} of finitary Γ-compositions, denote by
T ∗ the set of compositions {κi : i ∈ I} together with the class of relations
{ρj : j ∈ J} ∪ {σ� : 6 ∈ L}, where each σ� involves the compositions
{κi : i ∈ I} and the Γ-compositions {λk : k ∈ K}. Then ΓT ∗ is an
algebraic category.

Proof:

Same as for (4.4), with the appropriate change in the congruence re-
lation ∼.
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5. A simple example: Frames

Let D denote the semiring consisting of the two element 0 and 1,
with 0 the neutral element for addition and 1 the neutral element for
multiplication, satisfying 1 + 1 = 1. There is only one other semiring
having precisely two elements, namely the field F2.

The ring D is a positive semiring (indeed a cone semiring) with
U -summation (DU ,

∑
), where

∑
(α∗) := max{αu : u ∈ U}. It is also

a prenormed semiring with prenorm idD : D → D and U -summation
(DU ,

∑
). Furthermore D

U is a big hemiring as well as a big commuta-
tive convexity theory.

Given a D
U -convex module X we obtain, for any α∗ ∈ D

U and any
x∗ ∈ (U,X), the element 〈α∗, x∗〉 ∈ X. Due to (3.5), 〈α∗, x∗〉 depends
only on the restriction x∗ | suppα∗. Hence 〈α∗, x∗〉 may be written as a
formal sum

∑
{xu : u ∈ suppα∗}. Conversely, if ξ : I → X is any family

of elements of X and α∗ ∈ D
U is given by

αu :=
{

1 if u ∈ I
0 otherwise

, u ∈ U,

while x∗ is any extension of ξ, then the formal sum associated with
〈α∗, x∗〉 is

∑
{xu : u ∈ suppα∗} =

∑
{xi : i ∈ I} =

∑
{ξ(i) : i ∈ I}.

In other words we have in X the (formal) sums of arbitrary set-indexed
families of elements of X. These sums are associative and distributive
by (3.3), (ii), and commutative due to (3.6).

5.1. Lemma.
Every D

U -convex module X admits the structure of a semimodule over
the semiring D.

Proof:

Since D
U is a convexity theory with zero, (3.10) shows that X has a

distinguished element 0X := 〈0∗, x∗〉. Let x′, x′′ be in X. Given any two
distinct elements u and v of U and any x∗ ∈ (U,X) with xu = x′ and
xv = x′′, 〈δu∗ + δv∗ , x

∗〉 is independent of x∗ | (U \ {u, v}) by (3.5) and is
independent of the choice of u, v by (3.6). Hence we define

x′ + x′′ := 〈δu∗ + δv∗ , x
∗〉.

(3.6) shows that x′ + x′′ = x′′ + x′ holds. It follows from (3.12) that
x + 0X = x is satisfied for all x ∈ X. Next let u, v, w be mutually
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distinct elements of U and let x∗ ∈ (U,X) satisfy xu = x′, xv = x′′,
xw = x′′′. Furthermore let

βt∗ :=



δu∗ + δv∗ , for t = u
δw∗ , for t = v
anything, otherwise

, t ∈ U.

Then β�
u = β�

v = δ�u and β�
w = δ�v . Hence 〈δu� + δv�, β

�
∗ 〉 = δu∗ + δv∗ + δw∗ .

Since 〈βu∗ , x∗〉 = x′ + x′′ and 〈βv∗ , x∗〉 = x′′′, we have

(x′+x′′)+x′′′=
〈
δu�+δv�, 〈β�

∗ , x
∗〉

〉
=

〈
〈δu�+δv�, β

�
∗ 〉, x∗

〉
=〈δu∗+δv∗+δw∗ , x

∗〉.

However, if

γt∗ :=



δu∗ , for t = u
δv∗ + δw∗ , for t = v
anything, otherwise

, t ∈ U,

then γ�
u = δ�u and γ�

v = γ�
w = δ�v . Hence 〈δu� + δv�, γ

�
∗ 〉 = δu∗ + δv∗ + δw∗ .

Since 〈γu∗ , x∗〉 = x′ and 〈γv∗ , x∗〉 = x′′ + x′′′, we have

x′ + (x′′ + x′′′) =
〈
δu� + δv�, 〈γ�

∗ , x
∗〉

〉
= 〈δu∗ + δv∗ + δw∗ , x

∗〉

and therefore (x′ + x′′) + x′′′ = x′ + (x′′ + x′′′). Finally, let x∗ ∈ (U,X)
satisfy xu = xv = x and define α�

∗ by

αt∗ :=
{
δu∗ , for t = u and t = v
anything, otherwise

, t ∈ U.

Then
〈αt∗, x∗〉 = x, for t = u and t = v.

Hence x+ x =
〈
δu� + δv�, 〈α�

∗ , x
∗〉

〉
. Since 〈δu� + δv�, α

�
∗ 〉 = δu∗ , we obtain

x+ x =
〈
δu� + δv�, 〈α�

∗ , x
∗〉

〉
=

〈
〈δu� + δv�, α

�
∗ 〉, x∗

〉
= 〈δu∗ , x∗〉 = x.

This implies that X is a unital semimodule over the semiring D.

Lemma 5.1 allows us to define a full subcategory D
UAlgF of the cat-

egory D
UAlg of D

U -convex algebras and their homomorphisms which
will be shown to be isomorphic to the category Frm of frames (see
[2, p. 39]). The objects of D

UAlgF are the associative, commutative and
idempotent D

U -convex algebras X that satisfy the Absorption Law

xy + y = y, for all x, y ∈ X.

The category D
UAlgF is a category of algebras in the sense of Adden-

dum (4.5) and therefore an algebraic category.
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5.2. Theorem.
The categories Frm and D

UAlgF are isomorphic as concrete cate-
gories (over Set).

Proof:

Let X be a frame, that is a partially ordered set (with order relation
“≤”) that is complete and satisfies the infinite distributive law. The
D
U -convex module structure on X is given by

(∗) 〈α∗, x∗〉 :=
∨
{xv : αv = 1}, for all α∗ ∈ D

U and x∗ ∈ (U,X).

We have

〈δu∗ , x∗〉 =
∨
{xv : δuv = 1} = xu, for all u ∈ U, x∗ ∈ (U,X),

which is (3.3), (i). Moreover, for α∗ ∈ D
U , β�

∗ ∈ (U,DU ) and x∗ ∈
(U,X),

〈
α�, 〈β�

∗ , x
∗〉

〉
=

∨
{
∨
{xv : βuv = 1} : αu = 1}

=
∨
{xv : max{αuβuv : u ∈ U} = 1}

=
〈
〈α�, β

�
∗ 〉, x∗

〉
,

which is (3.3), (ii). Next we define a multiplication on X by putting
x′ · x′′ := x′ ∧ x′′ for all x′, x′′ ∈ X. Then by the infinite distributive law

x′ · 〈α∗, x∗〉 = x′∧
∨
{xv : αv = 1} =

∨
{x′∧xv : αv = 1} = 〈α∗, x′ ·x∗〉,

where x′ · x∗ is the map U 	 u 
→ x′ · xu ∈ X. This shows that X
equipped with this structure is an associative, commutative, idempotent
D
U -convex algebra A(X) satisfying the Absorption Law. Indeed it fol-

lows from (∗) that the sum x′ + x′′ in the D
U -convex module X is given

by the join x′ ∨ x′′. Moreover, a frame morphism f : X → Y becomes a
homomorphism of D

U -convex algebras A(f) : A(X) → A(Y ).
Conversely, let A be an associative, commutative and idempotent

D
U -convex algebra that satisfies the Absorption Law. We define an or-

der relation “ ≤′′ on A by setting a ≤ b whenever ab = a. The resulting
partially ordered set is denoted by X(A). We claim that for all α∗ ∈ D

U

and a∗ ∈ (U,A)

(5.2.1) 〈α∗, a∗〉 =
∨
{av : αv = 1}
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holds. First we want to show that for any v with αv = 1 the equality
av · 〈α∗, a∗〉 = av is satisfied. For this purpose let u ∈ U be such that
u �= v. Define βt∗, t ∈ U , by

βt∗ :=



α
U\{v}
∗ , for t = u
δv∗ , for t = v
anything, otherwise.

Then α∗ = 〈δu� + δv�, β
�
∗ 〉. Hence by the Absorption Law

av · 〈α∗, a∗〉 = 〈α∗, av · a∗〉
=

〈
〈δu� + δv�, β

�
∗ 〉, av · a∗

〉
=

〈
δu� + δv�, 〈β�

∗ , a
v · a∗〉

〉
= 〈βu∗ , av · a∗〉+ 〈βv∗ , av · a∗〉
= av · 〈βu∗ , a∗〉+ av〈δv∗ , a∗〉
= 〈βu∗ , a∗〉 · av + av = av.

In other words, av ≤ 〈α∗, a∗〉 for all v with αv = 1. On the other hand,
if av ≤ b for all v with αv = 1, i.e., av · b = av, then by (3.5)

〈α∗, a∗〉 = 〈α∗, b · a∗〉 = b〈α∗, α∗〉

and therefore 〈α∗, a∗〉 ≤ b. This proves (5.2.1). In particular we obtain
that X(A) is a complete join-semilattice and thus a complete lattice.
Moreover we have a ∧ b = ab. Finally

b ∧
∨
{av : αv = 1} = b · 〈α∗, a∗〉 = 〈α∗, b · a∗〉 =

∨
{b ∧ av;αv = 1},

which is the infinite distributive law for X(A). Hence X(A) is a frame.
If g : A→ B is a homomorphism of D

U -convex algebras. Then by (3.4)

g(〈α∗, a∗〉) = 〈α∗, gU (a∗)〉, α∗ ∈ D
U and a∗ ∈ (U,A),

which shows that g preserves arbitrary joins. Since g preserves products,
it preserves finite meets. Hence g is a frame morphism X(g) : X(A) →
X(B). It is routine to verify that the resulting functors A : Frm →
D
UAlgF and X : D

UAlgF → Frm are inverses to each other.

5.3. Addendum.
Let F(A) be the free D

U -convex module on the set A. Then the
corresponding partial order relation (see proof of (5.2)) satisfies the infi-
nite distributive law. In particular, F(A) always carries an associative,
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commutative, idempotent D
U -algebra structure satisfying the Absorp-

tion Law. Moreover, if f : F(A) → X is a surjective homomorphism of
D
U -convex modules then for any x′, x′′ ∈ X

(5.3.1) f(
∨
{f−1(x′)} ∧

∨
{f−1(x′′)}) = x′ ∧ x′′.

Proof:

The elements of F(A) (see proof of (4.1)) are certain maps ϕ : A→ R.
In addition, ϕ1+ϕ2, as defined above, is the map given by (ϕ1+ϕ2)(a) :=
ϕ1(a) + ϕ2(a), a ∈ A, that is ϕ1 + ϕ2 is the pointwise sum. Since D

U is
the set of all maps U → D whose support is a set, ϕ1 ≤ ϕ2 is equivalent
to ϕ1(a) ≤ ϕ2(a). Hence arbitrary joins and meets are formed pointwise.
This shows that the validity of the infinite distributive law needs to be
checked only pointwise, which means in D itself. D, however, satisfies the
infinite distributive law. Now let X be any D

U -convex module and let f :
F(A) → X be a surjective homomorphism of D

U -convex modules. Due
to (5.2.1), f preserves arbitrary joins. In particular, f(

∨
{f−1(x)}) = x

for all x ∈ X. Hence, if ϕ ∈ F(A) satisfies ϕ ≤
∨
{f−1(x′)}∧

∨
{f−1(x′′)}

then

f(ϕ) ≤ f(
∨
{f−1(x′)} ∧

∨
{f−1(x′′)})

≤ f(
∨
{f−1(x′)}) ∧ f(

∨
{f−1(x′′)}) = x′ ∧ x′′.

On the other hand if y ≤ x′ then there is a ȳ ∈ X with y + ȳ = x′.
Suppose ψ, ψ̄ ∈ F(A) satisfy f(ψ) = y and f(ψ̄) = ȳ. Then f(ψ + ψ̄) =
f(ψ) + f(ψ̄) = y+ ȳ = x′ and thus ψ ≤

∨
{f−1(x′)}. This means that f

maps {ϕ : ϕ ≤
∨
{f−1(x′)} ∧

∨
{f−1(x′′)}} onto {y : y ≤ x′ ∧ x′′}. As a

consequence we obtain formula (5.3.1).

6. Classification of convexity theories over D

By a level we mean either the cardinal number of a set or the cardinal
number of U . As usual we define for two levels λ1 and λ2, λ1 � λ2

provided there are sets A1 and A2 with card(Ai) = λi, i = 1, 2, for
which there is an injective map A1 → A2; we write λ1 ≺ λ2 in case
λ1 � λ2 and λ1 �= λ2.

6.1. Proposition.
Let Γ be a big convexity theory over D. Then there exists a unique

level λ, which is either 1 or infinite, such that Γ is one of the following:
(λ1) = {α∗ ∈ D

U : card(suppα∗) � λ} and λ �= cardU ;
(λ2) = {α∗ ∈ D

U : 1 � card(suppα∗) � λ} and λ �= cardU ;
(λ3) = {α∗ ∈ D

U : card(suppα∗) ≺ λ} and λ is infinite;
(λ4) = {α∗ ∈ D

U : 1 � card(suppα∗) ≺ λ} and λ is infinite.
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Conversely, if λ is equal to 1 or λ is an infinite level, then each of the
big sets (λ1)− (λ4) is a big convexity theory over D.

Proof:

One checks easily that {0∗} ∪ {δu∗ : u ∈ U} and {δu∗ : u ∈ U} are
convexity theories over D. They correspond to (λ1) and (λ2) for λ = 1.
Suppose that there is an α∗ ∈ Γ with 1 ≺ card(suppα∗). Let A be any
non-empty subset of U such that card(A) � card(suppα∗) holds. Then
there is an injective map j : A → suppα∗. Choose a ∈ A and define
βu∗ , u ∈ U , by

βu∗ :=
{
δa∗ if u = j(a) or u ∈ suppα∗ \ j(A),
δb∗ if u = j(b) and b �= a. .

Then a simple computation leads to supp〈α�, β�
∗ 〉 = A. Consequently, Γ

contains all elements γ∗ ∈ D
U with 1 � card(supp γ∗) � card(suppα∗).

In particular, Γ contains a γ∗ ∈ D
U with card(supp γ∗) = 2, and con-

sequently all γ∗ ∈ D
U with non-empty finite support belong to Γ. The

map
Γ 	 α∗ 
−→ card(suppα∗)

is either bounded by the cardinality of some set or for each set B there
is an α∗ ∈ Γ with card(B) ≺ card(suppα∗). In the latter case Γ is
either D

U or D
U \ {0∗}. Both of these big sets are convexity theories.

They correspond to (λ3) and (λ4) in case λ = card(U). In the first case,
however, λ := sup{card(suppα∗) : α∗ ∈ Γ} is the cardinality of some set,
and hence λ �= card(U). If there is an α∗ ∈ Γ with λ = card(suppα∗),
then Γ is either of the type (λ1) or of the type (λ2). Otherwise we have
card(suppα∗) ≺ γ for all α∗ ∈ Γ, and Γ is either of the type (λ3) or of
the type (λ4). This discussion also shows that λ is either equal to 1 or
else infinite. A simple computation shows that for the stated values of λ
each of the sets (λ1)− (λ4) is a big convexity theory over D.

6.2. Addendum.
Suppose that N is a set. Let Γ be a N -convexity theory over D. Then

there exists a unique cardinal number λ, which is either 1 or infinite and
� card(N), such that Γ is one of the following:

(λN1 ) {α∗ ∈ D
U : card(suppα∗) � λ};

(λN2 ) {α∗ ∈ D
U : 1 � card(suppα∗) � λ};

(λN3 ) {α∗ ∈ D
U : card(suppα∗) ≺ λ} and λ is infinite;

(λN4 ) {α∗ ∈ D
U : 1 � card(suppα∗) ≺ λ} and λ is infinite.
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Conversely, if λ is equal to 1 or λ is an infinite cardinal number with
λ � card(N), then each of the sets (λN1 )− (λN4 ) is a N -convexity theory
over D.

Proof:

Nearly identical with the proof of (6.1).

6.3. Proposition.
Suppose that N is a set and that λ is a cardinal number, which is either

1 or infinite and � card(N). Then for each i = 1, . . . , 4 the categories
(λi)C and (λNi )C are isomorphic.

Proof:

Under the stated assumptions we have λNi ∼= λi | N . Hence (3.17)
leads to our statement.

The convexity theories listed in (6.2) are briefly mentioned and the
associated convex module categories (λNi )C, i = 1, . . . , 4, are touched
upon in [4]. Finally the proof of (5.2) shows that (card(U)3)C =
(DU )C is canonically isomorphic with the category CSLat of complete
(join-)semilattices and their homomorphisms. (Observe that although
the objects are in fact complete lattices, the homomorphisms are only
required to preserve joins.) Denoting card(U)4 by D

U∗ = {α∗ ∈ D
U :

α∗ �= 0∗}, it remains to describe (DU∗)C.

6.4. Proposition.
The category (DU∗)C is isomorphic to the category CSLat∗, whose ob-

jects are those ordered sets that have joins for all non-empty subsets and
whose morphisms are those order-preserving maps that preserve these
joins.

Proof:

Let X be a D
U∗ -convex module. As in the proof of (5.2) one defines

an addition X ×X 	 (x′, x′′) 
→ x′ + x′′ ∈ X and a relation “x′ ≤ x′′”
on X, and shows as there that X equipped with this addition is a unital
hemimodule over the hemiring D

∗ := {1} and that the relation x′ ≤ x′′
is an order relation with respect to which X has joins for arbitrary non-
empty subsets of X. The morphisms of D

U∗ -convex modules satisfy
(3.4) and hence preserve joins since 〈α∗, x∗〉 =

∨
{xu : αu = 1} holds.

Conversely, if X is an ordered set with the property stated in (6.4),
then 〈α∗, x∗〉 :=

∨
{xu : αu = 1} makes X a D

U∗ -convex module. If
a map between two such ordered sets preserves joins then it satisfies,
by definition of 〈α∗, x∗〉, the defining property (3.4) of morphisms of
D
U∗ -convex modules.
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