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ON THE JACOBSON RADICAL
AND UNIT GROUPS OF GROUP ALGEBRAS

Meena Sahai

Abstract
In this paper, we study the situation as to when the unit
group U(KG) of a group algebra KG equals K∗G(1 + J(KG)),
where K is a field of characteristic p > 0 and G is a finite group.

1. Introduction

Let R be any associative ring with identity 1 6= 0. Then R may
be treated as a Lie ring under the Lie multiplication [x, y] = xy − yx,
x, y ∈ R. The Lie ring thus obtained is denoted by L(R) and is called
the associated Lie ring of R. The lower central chain {γn(L(R)) | n =
1, 2, . . . } and the derived chain {δn(L(R)) | n = 0, 1, 2, . . . } of L(R) are
defined inductively as follows:

γ1(L(R)) = δ0(L(R)) = L(R),

γn+1(L(R)) = [γn(L(R)), L(R)],

δn(L(R)) = [δn−1(L(R)), δn−1(L(R))].

The Lie ring L(R) is solvable of length n if δn(L(R)) = (0) but
δn−1(L(R)) 6= (0). Let J(R) denote the Jacobson radical of R. Then
1 + J(R) is a normal subgroup of the unit group U(R) and we have the
exact sequence of groups

1→ 1 + J(R)→ U(R)→ U(R/J(R))→ 1.

Keywords. Solvable group, p-solvable group, locally finite group.
1991 Mathematics subject classifications: 16N20, 16S34, 16U60.



340 M. Sahai

Thus U(R)/(1 + J(R)) ∼= U(R/J(R)). If further 2 and 3 are invertible
in R and the associated Lie ring L(R) is solvable, then γ2(L(R))R =
δ1(L(R))R is a nil ideal of R by Sharma and Srivastava [7, Theorem 2.4].
Since nil ideals are always contained in the Jacobson radical, we have,
in this situation, γ2(L(R))R ⊆ J(R) and thus R/J(R) is commutative.
Thus the commutator subgroup U(R)′ of U(R) is contained in 1+J(R).
If J(R) is nilpotent as an ideal, then 1+J(R) is nilpotent as a group and
so U(R) is solvable. In particular, in the above situation, if (J(R))2 = 0,
then U(R) is metabelian.

We wish to study, in this paper, some connections in the above di-
rection when R = KG is the group algebra of the group G over the
field K, where CharK = p > 0 and G is finite. Throughout the paper,
Zp denotes the field with p elements.

2. Preliminaries

Let KG be the group algebra of the group G over the field K. We
denote by ∆(G), the augmentation ideal of KG. Clearly 1 + J(KG)
defines a normal subgroup of the unit group U(KG). Also there are the
trivial units of the form kg, 0 6= k ∈ K, g ∈ G, in U(KG). Our aim, in
this paper, is to investigate situations where U(KG) = K∗G(1+J(KG)),
K∗ = K\{0}. Obviously U(KG) can not be smaller than this as the right
hand side is always contained in U(KG).

Almost in all the known cases the Jacobson radical J(KG) of a group
algebra KG is a nil ideal; (see Passman [5, Chap. 8]), and at least, for
sure, this is the case for the class of solvable, linear and locally finite
groups. Suppose CharK = p, p > 0 and J(KG) is nil. Then for any
α ∈ J(KG), αp

n

= 0 for some n ≥ 0 and thus (1 + α)p
n

= 1 + αp
n

= 1.
This shows that 1 + J(KG) is a normal p-subgroup of U(KG) if J(KG)
is a nil ideal.

We make the following observations.

Lemma 2.1. Let K be a field with CharK = p > 0 and let G be a
group. Then G ∩ {1 + J(KG)} is a normal p-subgroup of G. Further if
G is locally finite, then Op(G) = G ∩ {1 + J(KG)}.

Proof: Clearly G ∩ {1 + J(KG)} is a normal subgroup of G. Let 1 6=
x ∈ G∩{1+J(KG)}. Then x−1 ∈ J(KG) and ∆(〈x〉) = (x−1)K〈x〉 ⊆
J(K〈x〉). Thus J(K〈x〉) 6= 0 and so 〈x〉 is finite. Also J(K〈x〉) ⊇ ∆(〈x〉)
is nilpotent, since K〈x〉 is Artinian. Hence 〈x〉 is a finite p-group and
G ∩ {1 + J(KG)} is a normal p-subgroup.
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If G is locally finite, then Op(G) is a locally finite normal p-subgroup
and so ∆(Op(G)) = J(KOp(G)) ⊆ J(KG). Thus Op(G) ⊆ G ∩ {1 +
J(KG)} and by the first part, we get G ∩ {1 + J(KG)} = Op(G), as
desired.

This result easily yields

Corollary 2.2. If G is locally finite and CharK = p > 0, then
∆(N)KG ⊆ J(KG) for every normal p-subgroup N of G and equality
holds if N is a normal Sylow p-subgroup of G.

It may be noted that ∆(G) = J(KG) for any locally finite p-group G
if CharK = p > 0 (Passman [5, Chap. 8]).

3. Main results

Now we start our study of the problem: When is U(KG) = K∗G(1 +
J(KG))?

Proposition 3.1. Let K be a field with CharK = p > 0 and let
G be a locally finite group having a normal Sylow p-subgroup P . Then
U(KG) = K∗G(1 + J(KG)) if and only if one of the following holds:

(i) G = P ;

(ii) K = Z2 and G/P ∼= C3;

(iii) K = Z3 and G/P ∼= C2.

Proof: First suppose that U(KG) = K∗G(1 + J(KG)). By Corol-
lary 2.2, J(KG) = ∆(P )KG and KG/J(KG) ∼= KG/P . Further
U(KG/J(KG)) ∼= U(KG)/(1+J(KG))=K∗G(1+J(KG))/(1+J(KG)).
So U(KG/J(KG)) ∼= K∗G/(G∩{1+J(KG)}). Also U(KG/J(KG)) ∼=
U(KG/P ). Since by Lemma 2.1, G ∩ {1 + J(KG)} = Op(G) = P ,
we see that U(KG/P ) = K∗ · G/P using the natural epimorphism
U(KG) → U(KG/P ). Thus the group algebra KG/P has only triv-
ial units. So by Passman [5, Lemma 13.1.1], either G/P is trivial, that
is, G = P or K = Z2 and G/P ∼= C3 since G/P is a p′-group or K = Z3

and G/P ∼= C2.
Conversely if G = P , then J(KG) = ∆(G) and we are through as

U(KG) = K∗(1 + J(KG)). In the other two cases, the units of KG/P
are trivial, J(KG) = ∆(P )KG and G∩{1+J(KG)} = P . Hence clearly
U(KG) = K∗G(1 + J(KG)).
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In fact, 1 6=G/P =G/(G∩{1+J(KG)})∼=G(1+J(KG))/(1+J(KG))
and this is a subgroup of U(KG)/(1 + J(KG)) ∼= U(KG/J(KG)) =
U(KG/∆(P )KG) ∼= U(KG/P ). But U(Z2C3) = C3 and U(Z3C2) =
±C2, hence the result.

Now we turn to finite groups. If CharK = p > 0 and G has no p-
elements, then J(KG) = 0, so our problem U(KG) = K∗G(1 + J(KG))
reduces to U(KG) = K∗G. This is the case of trivial units. So we assume
that G is finite, it has p-elements and hence J(KG) 6= 0. Also if G is a
finite p-group or G has a normal Sylow p-subgroup, then Proposition 3.1
above gives the answer.

Theorem 3.2. If CharK = p > 0 and G is a finite solvable group
having no normal Sylow p-subgroup, then U(KG) = K∗G(1+J(KG)) if
and only if K = Z2 and G/O2(G) ∼= S3.

Proof: Suppose U(KG) = K∗G(1+J(KG)). Then U(KG) is solvable.
Further G/Op(G) is not abelian, otherwise Sylow p-subgroup will be
normal. By Passman’s Theorem (see Karpilovsky [4, Theorem 3.8.9] or
Bateman [2, Theorem 5]), K = Z2 or Z3. But K = Z3 case gives that
G/O3(G) is a 2-group, so Sylow 3-subgroup is normal. Hence we are
left with only one case when K = Z2 and G/O2(G) = A〈x〉, where A is
an elementary abelian 3-group and x is an element of order 2 such that
x−1ax = a−1 for all a ∈ A. We wish to show that A = C3. Now

U(KG/J(KG)) ∼= U(KG)
1 + J(KG)

=
K∗G(1 + J(KG))

1 + J(KG)

∼= K∗G

K∗G ∩ (1 + J(KG))
=

G

G ∩ (1 + J(KG))

=
G

O2(G)
= A〈x〉.

Here K = Z2, so if KG/J(KG) ∼=
∏r
i=1Mni(Di), by Bateman [2,

Theorem 5], U(KG/J(KG)) ∼=
∏s
i=0K

∗
i ×

∏t
j=1GL2(Z2), where Ki

are finite fields of characteristic 2 and second term is a direct product
of t-copies of GL2(Z2) ∼= S3. Also |U(KG/J(KG))| = |G/O2(G)| =
|A| |〈x〉| = 3m · 2 where A = C3 × C3 × · · · × C3 (m-copies). Thus
clearly t = 1. Also |Ki| = 2ni for some ni, so |K∗i | = 2ni − 1 for
i = 0, 1, 2, . . . , s. Thus ni = 2 for every i. We show that s = 0 and
U(KG/J(KG)) ∼= G/O2(G) ∼= GL2(Z2) ∼= S3.
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Suppose |A| = 3m and m > 1. Then there exist a, b ∈ A such
that 〈a〉 × 〈b〉 ⊆ A, a3 = b3 = 1, x−1ax = a−1, x−1bx = b−1. We
have A〈x〉 = G/O2(G) ∼=

∏s
i=0K

∗
i × GL2(Z2) and denote by φ the

isomorphism. Then φ(a) = (
∏s
i=0 ki, g1), φ(b) = (

∏s
i=0 k

′
i, g2), a, b non-

central implies g1 6= 1, g2 6= 1. Also a3 = b3 = 1 gives g3
1 = g3

2 = 1. In
GL2(Z2) ∼= S3, either g1 = g2 or g2 = g−1

1 = g2
1 . If g1 = g2, then φ(a2b)

is central and so a2b is central. But x−1a2bx = (a2b)−1, so (a2b)−1 = a2b
and we get a = b. If g2 = g−1

1 , then φ(ab) is central, so ab is central
and x−1abx = (ab)−1 = ab. Thus a = b−1. In both cases we get a
contradiction, since 〈a〉 ∩ 〈b〉 = 1. Thus A = 〈a〉 = C3 and G/O2(G) =
GL2(Z2) ∼= S3, as desired.

Conversely, let K = Z2 and G/O2(G) ∼= S3. By [6, 6.2, p. 215]∣∣∣∣ U(Z2G)
1 + ∆(O2(G))Z2G

∣∣∣∣ = |U(Z2G/O2(G))| = |U(Z2S3)| = 12.

Also
U(Z2G)

1 + J(Z2G)
∼= U(Z2G)/{1 + ∆(O2(G))Z2G}
{1 + J(Z2G)}/{1 + ∆(O2(G))Z2G}

and so ∣∣∣∣ U(Z2G)
1 + J(Z2G)

∣∣∣∣ = 12
|{1 + J(Z2G)}/{1 + ∆(O2(G))Z2G}|

.

Since the Sylow 2-subgroups are not normal, G/O2(G) contains 2-ele-
ments and J(Z2G) ⊃ ∆(O2(G))Z2G. Further

U(Z2G)
1 + J(Z2G)

∼= U

(
Z2G

J(Z2G)

)
= GL2(Z2)×

s∏
i=0

K∗i , Ki = 2ni , K∗ = K\{0}

since U(Z2G) is solvable and U(Z2G/J(Z2G)) is non-abelian, otherwise
G′ ⊆ G ∩ {1 + J(Z2G)} = O2(G) implies that a Sylow 2-subgroup
is normal. All this forces |(1 + J(Z2G))/{1 + ∆(O2(G))Z2G}| = 2
and U(Z2G)

1+J(Z2G)
∼= GL2(Z2) ∼= S3

∼= G/O2(G) = G
G∩(1+J(Z2G)) . Thus

U(Z2G) = G(1 + J(Z2G)), as desired.

In general if G is a finite group and K is a field with CharK = p
such that U(KG) = K∗G(1 + J(KG)), then U(KG)n ⊆ ζ(U(KG)), the
center of U(KG), for some fixed n. This can be seen as follows. Since
J(KG) is nilpotent, we have J(KG)p

l

= 0 for some fixed l. Now let
u ∈ U(KG), then u = kg(1 + α) for some k ∈ K∗, g ∈ G, α ∈ J(KG).
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It is easy to see that for all m, we have

um = kmgm(1 + αg
m−1

)(1 + αg
m−2

) . . . (1 + αg)(1 + α).

Thus if n0 = |G|, then un0 = kn0(1 + β), for some β ∈ J(KG). Fur-
thermore un0p

l

= kn0p
l

and thus if n = n0p
l, then un is central. Thus

U(KG)n ⊆ ζ(U(KG)) and we can use Coelho [3, Lemma 1.1].
Let A = {g ∈ G | g is a p′-element}. If A consists of central elements

alone, then A is a normal subgroup of G and G = AP for any Sylow
p-subgroup P of G. Clearly then P C G and Proposition 3.1 handles
the situation U(KG) = K∗G(1 + J(KG)). We wish to tackle, now, the
case when G has a non-central p′-element. By Coelho [3, Lemma 1.1]
and the above discussion we must have that K is a finite field.

Lemma 3.3. Let G be a finite group and let CharK = p > 0 such
that U(KG) = K∗G(1 + J(KG)). Then U(KḠ) = K∗Ḡ(1 + J(KḠ)),
where Ḡ = G/Op(G).

Proof: Since

∆(Op(G))KG ⊆ J(KG),

U(KG/J(KG)) ∼= U(KḠ/J(KḠ)).

Therefore,

U(KG)
1 + J(KG)

=
K∗G(1 + J(KG))

1 + J(KG)
∼= K∗G

G ∩ (1 + J(KG))

=
K∗G

Op(G)
∼= U(KḠ)

1 + J(KḠ)
.

This clearly shows that U(KḠ) = K∗Ḡ(1 + J(KḠ)).

When p′-elements are not central, A need not form a subgroup. Even
when A forms a subgroup, Sylow p-subgroup need not be normal. How-
ever, we have the following.

Theorem 3.4. Let G be a finite group such that A forms a non-central
subgroup and CharK = P > 0. If U(KG) = K∗G(1 + J(KG)) then G
is solvable and K is finite.
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Proof: Since U(KG) = K∗G(1+J(KG)) and G is finite, K is a finite
field. Hence in the decomposition KG/J(KG) ∼=

∏r
i=1Mni(Di), each

Di = Ki is a field, being finite division rings. Thus U(KG/J(KG)) ∼=∏r
i=1GLni(Ki), Ki finite, CharKi = p. If Ḡ = G/Op(G) is solvable,

then clearly G is solvable. In view of Lemma 3.3, we can assume that
Op(G) = 1.

Now

U

(
KG

J(KG)

)
∼= U(KG)

1 + J(KG)
∼= K∗G

G ∩ {1 + J(KG)} = K∗G.

Let Ai denote the set of p′-elements of GLni(Ki) for all i = 1, 2, . . . , r.
Clearly, Ai is a subgroup of GLni(Ki) for all i = 1, 2, . . . , r. Also Ai is
non-central in GLni(Ki), if ni > 1. Therefore, ni = 1 or 2 and Ki

∼= K
if ni = 2, where K = Z2 or Z3 (see Artin [1, p. 165]). Since both
GL2(Z2) and GL2(Z3) are solvable, U(KG/J(KG)) is solvable and so
G ≤ U(KG) is solvable, as desired.

We now discuss finite p-solvable groups:
Let K be a field with CharK = p > 0 and G a finite group such

that U(KG) is p-solvable. Then U(ZpG) is p-solvable and hence
U(ZpG/J(ZpG)) is p-solvable. But U(ZpG/J(ZpG)) =

∏r
i=1GLni(Di),

so each Di is a field, being a finite division ring. Thus for each i,
GLni(Di) = GLni(GF (qi)), qi = pni and p-solvabiblity forces each
ni = 1 or ni = 2, qi = p, p = 2 or 3. But GL2(Z2) and GL2(Z3)
are solvable. Thus U(ZpG/J(ZpG)) is solvable and therefore, U(ZpG)
is solvable. This gives that G is solvable. Thus U(KG) is p-solvable
implies G is solvable. In particular, we have

Theorem 3.5. If CharK = p > 0 and G is a p-solvable group such
that U(KG) = K∗G(1 + J(KG)), then G is solvable.

Proof: Clearly U(KG) is p-solvable. Rest follows from the above dis-
cussion.

4. Conclusion

We have covered most of the cases for finite groups except for finite
groups which are not p-solvable, in which the p′-elements are non-central
and do not form a subgroup. This problem is still open. Some prelimi-
nary results have been obtained in this direction by the author and will
be taken up separately in a subsequent paper.
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