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ON THE JACOBSON RADICAL
AND UNIT GROUPS OF GROUP ALGEBRAS

MEENA SAHAI

Abstract

In this paper, we study the situation as to when the unit
group U(KG) of a group algebra KG equals K*G(1 + J(KQG)),
where K is a field of characteristic p > 0 and G is a finite group.

1. Introduction

Let R be any associative ring with identity 1 # 0. Then R may
be treated as a Lie ring under the Lie multiplication [z,y] = zy — yz,
z, y € R. The Lie ring thus obtained is denoted by L(R) and is called
the associated Lie ring of R. The lower central chain {y,(L(R)) | n =
1,2,...} and the derived chain {6"(L(R)) |n =0,1,2,...} of L(R) are
defined inductively as follows:

1(L(R)) = 8°(L(R)) = L(R),
Yn+1(L(R)) = [w(L(R)), L(R)],
§"(L(R)) = [6""H(L(R)), 6" (L(R))].
The Lie ring L(R) is solvable of length n if 6"(L(R)) = (0) but
§"~Y(L(R)) # (0). Let J(R) denote the Jacobson radical of R. Then

1+ J(R) is a normal subgroup of the unit group U(R) and we have the
exact sequence of groups

1 — 14 J(R) = U(R) = U(R/J(R)) — 1.
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Thus U(R)/(1 + J(R)) 2 U(R/J(R)). If further 2 and 3 are invertible
in R and the associated Lie ring L(R) is solvable, then v5(L(R))R =
SY(L(R))R is a nil ideal of R by Sharma and Srivastava [7, Theorem 2.4].
Since nil ideals are always contained in the Jacobson radical, we have,
in this situation, y5(L(R))R C J(R) and thus R/J(R) is commutative.
Thus the commutator subgroup U(R)’ of U(R) is contained in 1+ J(R).
If J(R) is nilpotent as an ideal, then 1+ J(R) is nilpotent as a group and
so U(R) is solvable. In particular, in the above situation, if (J(R))? = 0,
then U(R) is metabelian.

We wish to study, in this paper, some connections in the above di-
rection when R = KG is the group algebra of the group G over the
field K, where Char K = p > 0 and G is finite. Throughout the paper,
Z, denotes the field with p elements.

2. Preliminaries

Let KG be the group algebra of the group G over the field K. We
denote by A(G), the augmentation ideal of KG. Clearly 1+ J(KG)
defines a normal subgroup of the unit group U(KG). Also there are the
trivial units of the form kg, 0 # k € K, g € G, in U(KG). Our aim, in
this paper, is to investigate situations where U(KG) = K*G(1+J(KQG)),
K* = K\{0}. Obviously U(KG) can not be smaller than this as the right
hand side is always contained in U(KG).

Almost in all the known cases the Jacobson radical J(KG) of a group
algebra K@ is a nil ideal; (see Passman [5, Chap. 8]), and at least, for
sure, this is the case for the class of solvable, linear and locally finite
groups. Suppose Char K = p, p > 0 and J(KG) is nil. Then for any
a € J(KG), a®" =0 for some n > 0 and thus (1+a)?" =1+ a?" = 1.
This shows that 1+ J(KG) is a normal p-subgroup of U(KG) if J(KG)
is a nil ideal.

We make the following observations.

Lemma 2.1. Let K be a field with Char K = p > 0 and let G be a
group. Then GN{1+ J(KG)} is a normal p-subgroup of G. Further if
G is locally finite, then O,(G) =GN {1 + J(KG)}.

Proof: Clearly G N {1+ J(KG)} is a normal subgroup of G. Let 1 #
z € GN{1+J(KG)}. Thenz—1 € J(KQG) and A({z)) = (z—1)K(z) C
J(K(x)). Thus J(K(z)) # 0 and so () is finite. Also J(K(z)) D A({(z))
is nilpotent, since K (x) is Artinian. Hence (z) is a finite p-group and
GN{l1+ J(KQG)} is a normal p-subgroup.
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If G is locally finite, then O,(G) is a locally finite normal p-subgroup
and so A(O,(G)) = J(KO,(G)) C J(KG). Thus O,(G) € GN{l+
J(KG)} and by the first part, we get G N {1 + J(KG)} = O,(G), as
desired. ®

This result easily yields

Corollary 2.2. If G is locally finite and Char K = p > 0, then
A(N)KG C J(KQG) for every normal p-subgroup N of G and equality
holds if N is a normal Sylow p-subgroup of G.

It may be noted that A(G) = J(KG) for any locally finite p-group G
if Char K = p > 0 (Passman [5, Chap. 8]).

3. Main results

Now we start our study of the problem: When is U(KG) = K*G(1 +
J(KG))?

Proposition 3.1. Let K be a field with Char K = p > 0 and let
G be a locally finite group having a normal Sylow p-subgroup P. Then
U(KG) = K*G(1+ J(KG)) if and only if one of the following holds:

() G=P;
(i) K =23 and G/P = Cs;
(ill) K =Z3 and G/P = Cs.

Proof: First suppose that U(KG) = K*G(1 + J(KG)). By Corol-
lary 2.2, J(KG) = A(P)KG and KG/J(KG) =2 KG/P. Further
UKG/J(KG)) 2 UKG)/(1+J(KG))=K*G(1+J(KQ))/(1+J(KQ)).
So U(KG/J(KG)) = K*G/(GN {1+ J(KG)}). Also U(KG/J(KG)) =
U(KG/P). Since by Lemma 2.1, GN {1 + J(KG)} = O,(G) = P,
we see that U(KG/P) = K* - G/P using the natural epimorphism
U(KG) — U(KG/P). Thus the group algebra KG/P has only triv-
ial units. So by Passman [5, Lemma 13.1.1], either G/P is trivial, that
is, G=Por K =75 and G/P = Cj5 since G/P is a p'-group or K = Z3
and G/P = Cs.

Conversely if G = P, then J(KG) = A(G) and we are through as
U(KG) = K*(14+ J(KG@)). In the other two cases, the units of KG/P
are trivial, J(KG) = A(P)KG and GN{1+ J(KG)} = P. Hence clearly
UKG) = K*G(1 + J(KG)).
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In fact, 1#£G/P=G/(GN{1+ J(KG)})2G(1+J(KQ))/(1+ J(KQG))
and this is a subgroup of U(KG)/(1 + J(KG)) = U(KG/J(KQG))
U(KG/AP)KG) = U(KG/P). But U(ZsC3) = C and U(Z3Cs) =
+C5, hence the result. B

Now we turn to finite groups. If Char K = p > 0 and G has no p-
elements, then J(KG) = 0, so our problem U(KG) = K*G(1+ J(KG))
reduces to U(KG) = K*G. This is the case of trivial units. So we assume
that G is finite, it has p-elements and hence J(KG) # 0. Also if G is a
finite p-group or G has a normal Sylow p-subgroup, then Proposition 3.1
above gives the answer.

Theorem 3.2. [f Char K = p > 0 and G is a finite solvable group
having no normal Sylow p-subgroup, then U(KG) = K*G(1+ J(KQG)) if
and only if K = Zy and G/02(G) = Ss.

Proof: Suppose U(KG) = K*G(1+J(KQG)). Then U(K Q) is solvable.
Further G/O,(G) is not abelian, otherwise Sylow p-subgroup will be
normal. By Passman’s Theorem (see Karpilovsky [4, Theorem 3.8.9] or
Bateman [2, Theorem 5]), K = Z5 or Z3. But K = Z3 case gives that
G/03(G) is a 2-group, so Sylow 3-subgroup is normal. Hence we are
left with only one case when K = Z; and G/O3(G) = A(x), where A is
an elementary abelian 3-group and z is an element of order 2 such that
z laxr = a~! for all @ € A. We wish to show that A = C5. Now

U(kG/IKG)) =~ _JLEG) KGO+ J(KG))

1+ J(KG) 1+ J(KG)
N K*G B G
T K*GN(1+J(KG) Gn(1+J(KQ))
G
- 0:2(G) = Al

Here K = Z,, so if KG/J(KG) = [[._, M,,(D;), by Bateman [2,
Theorem 5], U(KG/J(KG)) = T[;_o K x [[j—; GL2(Z2), where K;
are finite fields of characteristic 2 and second term is a direct product
of t-copies of GL2(Z3) = S5. Also |[U(KG/J(KG))| = |G/O2(G)| =
|Al|[{z)| = 3™ -2 where A = C3 x C3 x --- x C3 (m-copies). Thus
clearly t = 1. Also |K;| = 2™ for some n;, so |K}| = 2™ — 1 for
1 =20,1,2,...,s. Thus n; = 2 for every i. We show that s = 0 and
UKG/J(KQ)) 2 G/02(G) 2 GLy(Zy) =2 S5.
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Suppose |A| = 3™ and m 1. Then there exist a, b € A such
that (a) x (b) C A, a® = 0> =1, 27tar = a7, 27 1bz = b~1. We
have A(z) = G/02(G) = [];_o K; x GLy2(Z,) and denote by ¢ the
isomorphism. Then ¢(a) = (IT;_q ki, 91), ¢(b) = ([1;_o k%, g2), a, b non-
central implies g1 # 1, g2 # 1. Also a® = b®> = 1 gives g3 = g5 = 1. In
GLy(Z3) = Ss, either g = go or g2 = g7+ = g7. If g1 = go, then ¢(a?b)
is central and so a?b is central. But = 1a?bz = (a?b)~?, so (a?b)~! = a?b
and we get a = b. If go = gfl, then ¢(ab) is central, so ab is central
and x~labxz = (ab)™! = ab. Thus a = b~!. In both cases we get a
contradiction, since (a) N (b) = 1. Thus A = (a) = C5 and G/02(G) =
GLy(Z5) = S5, as desired.

Conversely, let K = Z5 and G/02(G) = S3. By [6, 6.2, p. 215]

v

R

‘ U(2,G)

1+ A(O2(G))Z2G‘ = |U(2:G/0(@))| = |U(Z253)| = 12.

Also
U(Z:G) . U(ZG)/{1+ A(02(G))Z>G}

1+ J(Z:G) ~ {1+ J(Z:G)} /{1 + A(O2(G)) ZoG}

and so

U(Z:G) | 12
‘ 1+ J(2,G) ‘ - {1+ J(ZG)} /{1 + A(0:2(G)) Z2GH

Since the Sylow 2-subgroups are not normal, G/O2(G) contains 2-ele-
ments and J(Z2G) D A(O2(G))Z2G. Further

U(Z,G) Z,G
1+ J(Z,G) — v (J(Z2G)>

= GLy(Z,) % HK:7 K;=2m, K*=FK\{0}
=0

since U(Z2@) is solvable and U(Z>G/J(Z2@G)) is non-abelian, otherwise
G' C GN{l+ J(ZG)} = O2(@) implies that a Sylow 2-subgroup
is normal. All this forces |[(1 + J(Z2G))/{1 + A(O2(G))Z2G}| = 2
and 20 = GLy(Z) = S5 = G/05(G) = g5z Thus
U(Z>G) = G(1 + J(Z2G)), as desired. &

In general if G is a finite group and K is a field with Char K = p
such that U(KG) = K*G(1+ J(KG)), then U(KG)™ C ((U(KQ)), the
center of U(KG), for some fixed n. This can be seen as follows. Since
J(KG) is nilpotent, we have J(KG)?' = 0 for some fixed [. Now let
u € U(KQG), then u = kg(1 + «) for some k € K*, g € G, a € J(KG).
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It is easy to see that for all m, we have
um =kmgm(1+ o )1 +a" ) (14 a%)(1+ ).

Thus if ng = |G|, then u™ = k™ (1 + ), for some § € J(KG). Fur-
thermore u™P' = k"oP' and thus if n = nop', then u” is central. Thus
U(KG)™ C ((U(KG)) and we can use Coelho [3, Lemma 1.1].

Let A={g € G|gisap-element}. If A consists of central elements
alone, then A is a normal subgroup of G and G = AP for any Sylow
p-subgroup P of G. Clearly then P < G and Proposition 3.1 handles
the situation U(KG) = K*G(1 + J(KG)). We wish to tackle, now, the
case when G has a non-central p’-element. By Coelho [3, Lemma 1.1]
and the above discussion we must have that K is a finite field.

Lemma 3.3. Let G be a finite group and let Char K = p > 0 such
that U(KG) = K*G(1 + J(KG)). Then U(KG) = K*G(1 + J(KG)),
where G = G/O,(G).

Proof: Since
A(0,(G)KG C J(KG),
UKG/J(KG)) 2 UKG/J(KQ)).
Therefore,

UKG)  K*GO+J(KG)) K*G

>~

1+ J(KG) 1+J(KG) — Gn(1+J(KQG))

_ K'G _ UKG)
0,(G) T 1+ J(KG)

This clearly shows that U(KG) = K*G(1 + J(KG)). &

When p’-elements are not central, A need not form a subgroup. Even
when A forms a subgroup, Sylow p-subgroup need not be normal. How-
ever, we have the following.

Theorem 3.4. Let G be a finite group such that A forms a non-central
subgroup and Char K = P > 0. IfU(KG) = K*G(1 + J(KG)) then G
s solvable and K 1is finite.
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Proof: Since U(KG) = K*G(1+ J(KQG)) and G is finite, K is a finite
field. Hence in the decomposition KG/J(KG) = [[;_, M,,(D;), each
D; = K; is a field, being finite division rings. Thus U(KG/J(KG)) =
1, GL,,(K;), K; finite, Char K; = p. If G = G/O,(G) is solvable,
then clearly G is solvable. In view of Lemma 3.3, we can assume that
0,(G) =1.

Now

KG \ . UKG) _ K*G o
v (J(KG)) IR JRG)  GnirJkay MG

Let A; denote the set of p’-elements of GL,,(K;) for all i =1,2,... ,r.
Clearly, A; is a subgroup of GL,,,(K;) for all i =1,2,... ,r. Also 4, is
non-central in GL,,(K;), if n; > 1. Therefore, n; =1 or 2 and K; 2 K
if n; = 2, where K = Zy or Z3 (see Artin [1, p. 165]). Since both
GL2(Z3) and GL2(Z3) are solvable, U(KG/J(KGQG)) is solvable and so
G < U(KG) is solvable, as desired. B

We now discuss finite p-solvable groups:

Let K be a field with Char K = p > 0 and G a finite group such
that U(KG) is p-solvable. Then U(Z,G) is p-solvable and hence
U(Z,G/J(Z,Q)) is p-solvable. But U(Z,G/J(Z,G)) = [1;—; GLn,(D;),
so each D; is a field, being a finite division ring. Thus for each i,
GL,,(D;) = GL,,(GF(qi)), ¢ = p™ and p-solvabiblity forces each
ni =1orn; =2, ¢ =p, p=2or 3 But GLy(Z2) and GLy(Z5)
are solvable. Thus U(Z,G/J(Z,G)) is solvable and therefore, U(Z,Q)
is solvable. This gives that G is solvable. Thus U(KG) is p-solvable
implies G is solvable. In particular, we have

Theorem 3.5. If Char K = p > 0 and G is a p-solvable group such
that U(KG) = K*G(1 4+ J(KG)), then G is solvable.

Proof: Clearly U(KQ) is p-solvable. Rest follows from the above dis-
cussion. H

4. Conclusion

We have covered most of the cases for finite groups except for finite
groups which are not p-solvable, in which the p’-elements are non-central
and do not form a subgroup. This problem is still open. Some prelimi-
nary results have been obtained in this direction by the author and will
be taken up separately in a subsequent paper.
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