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DISKS EXTREMAL WITH RESPECT TO
INTERPOLATION CONSTANTS

Nguyen Van Trao

Abstract
We define a function µ from the set of sequences in the unit ball
to R∗

+ by taking the greatest lower bound of the reciprocal of
the interpolating constant of the sequences of the disk which get
mapped to the given sequence by a holomorphic mapping from
the disk to the ball. Its properties are studied in the spirit of the
work of Amar and Thomas.

0. Introduction

Much attention has been given to the notion of interpolating sequences
since L. Carleson introduced the concept in [C] and used it to establish
a generalization of the Pick-Schwarz theorem (see e.g., [C], [V], [B],
[B-C-L]).

In [A-T] E. Amar and P. J. Thomas gave a new approach to the
study of interpolating sequences in the unit ball Bn of Cn, by considering
maps from the unit disk to the ball, constrained to reach the points in
the sequence, and extremal in the sense that the preimages in the disk
should minimize the constant used by L. Carleson in his characterization
of interpolating sequences in the disk [C]. The aim of this paper is to
continue this approach using the interpolation constant of the sequence
of preimages. Although more technical to handle (there is no explicit
formula, unlike in the work of Amar and Thomas), it should be more
meaningful for the original problem of interpolation.

We now present more precisely the content of the paper. Let a =
{ak}k∈N a sequence of points in a domain Ω in Cn, we say that a is an
interpolating sequence if, for any bounded sequence v = {vk}k∈N, there
is a bounded holomorphic function on Ω, fv, such that fv(ak) = vk.

The constant of interpolation of a is the smallest number MΩ
a with

∀ v ∈ �∞(N), ‖fv‖∞ ≤ MΩ
a ‖v‖∞. There always is a (finite) constant

of interpolation when the sequence is interpolating. In particular, this
makes sense for any finite sequence.
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E. Amar and P. J. Thomas defined for a = {ak}k∈N ⊂ Bn,

δB
n

(a) := inf
k

∏
j:j �=k

dB
n

G (ak, aj),

where dB
n

G is the Gleason distance in Bn (in dimension 1, we denote δD(a)
instead of δB

1
(a)), and

ρ(a) := inf
{
δD(α) : α = {αk} ⊂ D, ∃ϕ ∈ Hol(D,Bn)

such that ϕ(αk) = ak, ∀ k ∈ N
}
,

where D is the open unit ball in C. We study the following analogue.

Definition.

µ(a) := inf
{

1
MD

α

: α
{
αj

}
j∈N

⊂ D, ∃ϕ ∈ Hol(D,Bn)

such that ϕ(αk) = ak, ∀ k ∈ N
}
,

where MD
α is the interpolation constant of α ⊂ D. Of course, this also

applies to the special case of finite sequences, with 1 ≤ j ≤ N .

It is easy to see that µ(a) ≥ 1
MBn

a

. Maximizing MD
α among the

sequences α ⊂ D which are preimages of a ⊂ Bn yields mappings
—if there are any— that are “the tightest” in the sense that it is more
difficult to hit the points of a with a map ϕ from the disk to the ball
when the preimage sequence α allows the interpolation by H∞ functions
of fewer values, which is the intuitive meaning of a larger value of MD

α .

We also know by Carleson [C], that for α ⊂ D, MD
α ≥ 1

δD(α)
, thus

µ(a) ≤ ρ(a). We want to study the function a 
−→ µ(a) in the same
way that ρ was studied in [A-T] and [T1]. Namely, we will prove the
following.

Theorem 2.7 (monotonicity). Let a =
{
aj

}
1≤j≤N

be a sequence of
points in Bn and a′ be a subsequence of a. Then µ(a′) ≥ µ(a).

Theorem 2.8 (continuity). µ(a) depends continuously on a in the set
of finite sequences.

Theorem 3.1 (approximation by finite sequences). Let a =
{
ak,

k ∈ Z∗
+

}
⊂ Bn. Then

µ(a) = lim
N→∞

µ
(
{aj}1≤j≤N

)
= inf

N∈Z∗
+

µ
(
{aj}1≤j≤N

)
.
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The next theorem shows that there is a large set of sequences for
which our infimum is in fact a minimum.

Theorem 3.5. For any N ∈ Z∗
+ there exists an open set U of sequences

a with #a = N such that for every a ∈ U there is α =
{
αj

}
1≤j≤N

⊂ D

such that ϕ(αj) = aj for 1 ≤ j ≤ N and µ(a) =
1

MD
α

.

Finally, we connect our definition with a more classical extremal prob-
lem, which shows that some form of uniqueness holds for the extremal
mappings: when the αj are given, the map ϕ0 is unique.

Theorem 3.6. Let a =
{
aj

}
1≤j≤N

be a sequence of points in Bn. If there
exists a holomorphic map ϕ0 from D to Bn and α =

{
αj

}
1≤j≤N

⊂ D

such that ϕ0(αj) = aj for 1 ≤ j ≤ N and µ(a) =
1

MD
α

, then ϕ0 is a

solution of the extremal problem

inf
{
‖ψ‖∞ : ψ ∈ H(D,Cn), ψ(αj) = aj for 1 ≤ j ≤ N

}
.

We remark that some of the methods used here can be applied (indeed,
in a simpler way) to simplify the proofs of [T1].

1. Definitions and notations

For z, w ∈ Cn, z · w :=
n∑

j=1

zjwj , |z|2 := z · z

Bn :=
{
z ∈ Cn such that |z| < 1

}
, D := B1.

Let Ω be a domain in Cn and z, w ∈ Ω, the Gleason (or invariant)
distance dΩ

G(z, w) is given by dΩ
G(z, w) = sup{|f(z)| : f ∈ H∞(Ω) such

that f(w) = 0, ‖f‖∞ ≤ 1}. We know that

1 − dB
n

G (z, w)2 :=
(1 − |z|2)(1 − |w|2)

|1 − z · w|2 ,

in particular,

dD

G(z, w) =
|z − w|
|1 − zw| .
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For λ ∈ D let us denote by Φλ the Möbius map of D defined as follows:

Φλ(ζ) :=
λ− ζ

1 − λζ
.

(See [G1], [R].)
Finally, for f a bounded holomorphic function from D to Cn we write

f ∈ H∞
n (D), ‖f‖2

∞ := sup
z∈D

(
|f1(z)|2 + · · · + |fn(z)|2

)
.

2. Continuity of the function µ in the finite case

For the beginning we need some easy lemma.

Lemma 2.1. For any β1, . . . , βp ∈ ∂D, δ > 0, there exists a func-
tion hδ ∈ A(D) (i.e continuous up to the boundary) with ‖hδ‖∞ = 1,
such that

(1) hδ(βj) = 1, 1 ≤ j ≤ p;

(2) |hδ(ζ)| ≤ δ, ∀ ζ ∈ D \
p⋃

j=1

D(βj , δ).

Proof: Remark that every finite set in ∂D is a peak-interpolation set.
Let g ∈ A(D) be such that g(βj) = 1, 1 ≤ j ≤ p, and |g(ζ)| < 1,
∀ ζ ∈ D \ {βj , 1 ≤ j ≤ p}. For N large enough, gN satisfies the required
properties.

Lemma 2.2. With the hypotheses of Lemma 2.1, there exists f ∈ A(D),
‖f‖∞ ≤ 1 such that

(1) f(βj) = 0, 1 ≤ j ≤ p;

(2) |f(ζ) − 1| ≤ δ, ∀ ζ ∈ D \
p⋃

j=1

D(βj , δ).

Proof: Take δ1 ∈ (0, δ] and g = hδ1 as in Lemma 2.1. Now, for δ2 > 0,

let f(ζ) = Φ1−δ2

(
(1− δ2)g(ζ)

)
=

(1 − δ2)(1 − g(ζ))
1 − (1 − δ2)2g(ζ)

, then f(βj) = 0 and

‖f‖∞ ≤ 1 by construction. Since

f(ζ) − 1 =
−δ2

(
1 + (1 − δ2)g(ζ)

)
1 − (1 − δ2)2g(ζ)

for |g(ζ)| ≤ δ1, |f(ζ) − 1| ≤ δ2
(
1 + δ1(1 − δ2)

)
1 − δ1(1 − δ2)2

≤ δ2
1 + δ1
1 − δ1

< δ for an

appropriate choice of δ2.
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Lemma 2.3. Let α = {αj , j ∈ J} and J = J1 ∪ J2 with J1 ∩ J2 = ∅,
J1 �= ∅, J2 �= ∅. Set α(1) = {αj , j ∈ J1}, α(2) = {αj , j ∈ J2}, M1 =
MD

α(1) , M2 = MD

α(2) . Assume further that α(1) ⊂ D(0, r) ⊂⊂ D, and
there exist βj ∈ ∂D, for j ∈ J2, such that |αj − βj | ≤ δ, j ∈ J2. Fix
M > 0. Then for any g1, g2 ∈ H∞(D,Cn) and ‖g1‖∞ ≤ M , ‖g2‖∞ ≤
M , and ε > 0, there exists δ0 such that for any δ < δ0 and α as above,
there exists f ∈ H∞(D,Cn) and f(αj) = g�(αj), j ∈ J�, � = 1, 2, and
‖f‖∞ ≤ max(‖g1‖∞, ‖g2‖∞) + ε.

Proof: By Lemma 2.2, there exists a function h1 associated to δ1, which

we choose smaller than
1 − r

2
and ε1, where ε1 > 0 is to be chosen later.

Choose δ2 < δ1 small enough so that δ2 ≤ ε1 and min
j

|ζ−βj | ≤ δ2 implies

that |h1(ζ)| ≤ ε1. Let h2 be the function obtained from Lemma 2.1
applied with δ = δ2. We pick δ0 small enough so that min

j
|ζ − βj | ≤ δ0

implies that |h2(ζ) − 1| ≤ ε1.
Now consider the function f1(ζ) = h1(ζ)g1(ζ) + h2(ζ) g2(ζ). For

min
j

|ζ − βj | ≤ δ2, |h1(ζ)| ≤ ε1, |h2(ζ)| ≤ 1, so

‖f1(ζ)‖ ≤ ε1‖g1‖∞ + ‖g2‖∞ ≤ (1 + ε1) max(‖g1‖∞, ‖g2‖∞).

For min
j

|ζ − βj | ≥ δ2, |h2(ζ)| ≤ δ2 ≤ ε1, |h1(ζ)| ≤ 1, so

‖f1(ζ)‖ ≤ ‖g1‖∞ + ε1‖g2‖∞ ≤ (1 + ε1) max(‖g1‖∞, ‖g2‖∞).

On the other hand, for j ∈ J1,

‖f1(αj) − g1(αj)‖ = ‖(h1(αj) − 1)g1(αj) + h2(αj)g2(αj)‖
≤ ε1‖g1‖∞ + ε1‖g2‖∞ ≤ 2ε1 max(‖g1‖∞, ‖g2‖∞);

for j ∈ J2,

‖f1(αj) − g2(αj)‖ = ‖h1(αj)g1(αj) + (h2(αj) − 1)g2(αj)‖
≤ ε1‖g1‖∞ + ε1‖g2‖ ≤ 2ε1 max(‖g1‖∞, ‖g2‖∞).

We can find a map f2 such that f2(αj) = g�(αj) − f1(αj), ∀ j ∈ J�,
� = 1, 2, and ‖f2‖∞ ≤ 2ε1

√
nMD

α max(‖g1‖∞, ‖g2‖∞) (where MD
α is the

constant of interpolation of α, and it is well known MD
α is bounded by M̃ ,

which is depending only on M1, M2, and (1−r)/2, supposing as we may
that δ ≤ δ0 ≤ (1 − r)/2). Setting f = f1 + f2, we have f(αj) = g�(αj),
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∀ j ∈ J�, � = 1, 2, and

‖f‖∞ ≤ (1 + ε1) max(‖g1‖∞, ‖g2‖∞) + 2ε1

√
nM̃ max(‖g1‖∞, ‖g2‖∞)

= max(‖g1‖∞, ‖g2‖∞) + ε1 max(‖g1‖∞, ‖g2‖∞)(1 + 2
√
nM̃)

≤ max(‖g1‖∞, ‖g2‖∞) + ε1M(1 + 2
√
nM̃).

Taking ε1 =
ε

M(1 + 2
√
nM̃)

, the property is proved.

The next result follows immediately from Lemma 2.3.

Corollary 2.4. Suppose α = {αj , j ∈ J} and J = J1∪J2 with J1∩J2 =
∅, J1 �= ∅, J2 �= ∅. Set α(1) = {αj , j ∈ J1}, α(2) = {αj , j ∈ J2},
M1 = MD

α(1) , M2 = MD

α(2) . Assume further that α(1) ⊂ D(0, r) ⊂⊂ D,
and there exist βj ∈ ∂D, for j ∈ J2, such that |αj − βj | ≤ δ, j ∈ J2.
Then for any ε > 0, there exists δ0 such that for any δ < δ0 and α as
above, max(M1,M2) ≤ MD

α ≤ max(M1,M2) + ε.

Proof: Take n = 1; given values {vj , j ∈ J} ⊂ D to interpolate, we
know there exist functions g1, g2 ∈ H∞(D), g�(αj) = vj , j ∈ J� and
‖g‖∞ ≤ M�, � = 1, 2. Applying Lemma 2.3 we have the property.

The following lemma is our main technical tool, inspired to some
extent by the work of Globevnik [G2].

Lemma 2.5. Let a =
{
aj

}
1≤j≤N

be a sequence of points in Bn. Suppose
that there exist a sequence α =

{
αj

}
1≤j≤N

in D and a holomorphic map
ϕ : D → Bn such that aj = ϕ(αj) for 1 ≤ j ≤ N . Let aN+1 be a point
of Bn and ε > 0. Then there exist α′ =

{
α′

j

}
1≤j≤N

⊂ D and β ∈ D and
holomorphic map ψ from D into Bn such that ψ(α′

j) = aj, ψ(β) = aN+1

and MD

α′∪{β} ≥ MD
α − ε.

Proof: For all r < 1 such that α/r ⊂ D, MD

α/r ≤ MD
α , and we know by

the continuity of the interpolation constant that MD

α/r tends to MD
α as

r tends to 1.
Let max(|α1|, . . . , |αN |) < r < 1 and s = max

(
|a1|, . . . , |aN |, |aN+1|,

sup
Dr

|ϕ|
)
. Apply Lemma 2.3 with g1(ζ) = ϕ(rζ), ‖g1‖∞ = sup

Dr

|ϕ| ≤

s < 1; g2(ζ) = aN+1, ∀ ζ ∈ D, ‖g2‖∞ = |aN+1| ≤ s; α′
j = αj/r ∈ D

for j ∈ J1 := {1, . . . , N}; J2 := {N + 1}, and the additional one-point
sequence is chosen as α′

N+1 := 1− δ(ε1), where ε1 = ε1(r) := 1− s, and
δ(ε1) < δ0, where δ0 is given by Lemma 2.3.



Interpolation constants 125

Take Ψ(ε1) = f in Lemma 2.3; then we have Ψ(ε1)(α′
j) = g1(α′

j) = aj ,
1 ≤ j ≤ N , and Ψ(ε1)(α′

N+1) = g2(α′
N+1) = aN+1; ‖Ψ(ε1)‖∞ ≤ s + ε1 =

1.
Now MD

α′ ≥ MD

α/r, which can be made arbitrarily close to MD
α by the

considerations at the beginning of the proof.
Our lemma is completely proved.

We now remark that the solution to our extremal problem is not
modified if we only require the map ϕ to hit only a subset of the se-
quence {aj}. This would also hold for the original extremal problem in
[A-T]. The quantity µ(a) is defined in the introduction.

Theorem 2.6. Let a =
{
aj

}
1≤j≤N

be a sequence of points in Bn. Then

µ(a) = inf
{

1
MD

α

: ∃J ⊂ {1, 2, . . . , N}, ∃ϕ ∈ H(D,Bn)

and α =
{
αj

}
j∈J

⊂ D s.t. ϕ(αj) = aj , ∀ j ∈ J

}
.

Proof: By using Lemma 2.5 repeatedly to add one point at a time to the
set {aj , j ∈ J}, we have

µ(a) = inf
{

1
MD

α

: α ⊂ D, ∃ϕ∈H(D,Bn) s.t. ϕ(αj) = aj , 1 ≤ j ≤ N

}

≤ inf
{

1
MD

α

: ∃J ⊂ {1, 2, . . . , N}, ∃ϕ ∈ H(D,Bn)

and α = {αj}j∈J ⊂ D such that ϕ(αj) = aj , ∀ j ∈ J} .

The converse inequality is obvious and, hence Theorem 2.6 is proved.

Applying the above theorem we have the following.

Theorem 2.7. Let a =
{
aj

}
1≤i≤N

be a sequence of points in Bn and
a′ be a subsequence of a. Then µ(a′) ≥ µ(a).

Now we consider the continuity of the map a 
−→ µ(a).

Theorem 2.8. µ(a) depends continuously on a in the set of finite se-
quences.

Proof. First of all we prove the upper semi continuity of the map a 
−→
µ(a).
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Let a =
{
aj

}
1≤j≤N

⊂ Bn. We shall prove that ∀ ε > 0, ∃ η >

0 such that µ(a′) ≤ µ(a) + ε for every a′ =
{
a′j

}
1≤j≤N

⊂ Bn with
max

1≤j≤N
|aj − a′j | ≤ η.

Let α =
{
αj

}
1≤j≤N

be a sequence in D and ϕ be a map from D to

Bn such that ϕ(αj) = aj and
1

MD
α

< µ(a) +
ε

2
.

For r < 1, put ϕr(ζ) = ϕ(rζ). Then

ϕr

(αj

r

)
= aj and ‖ϕr‖∞ = sup

D(0,r)

|ϕ| < 1.

Since MD
α depends continuously on α (see [T2, Lemma 1]), we have

1
MD

α/r

≤ 1
MD

α

+
ε

2
for r large, where

α

r
=

{αj

r

}
1≤j≤N

. Now there exists

a map fr from D to Bn such that fr

(αj

r

)
= a′j − aj and ‖fr‖∞ ≤

η
√
nMD

α/r ≤ η
√
nMD

α .

Then (fr + ϕr)
(αj

r

)
= a′j and ‖fr + ϕr‖∞ ≤ ‖ϕr‖∞ + η

√
nMD

α < 1
for η small enough. It implies that

µ(a′) ≤ 1
MD

α/r

≤ 1
MD

α

+
ε

2
< µ(a) + ε.

We now prove the lower semi continuity of the map µ(a).
Assume that ak =

{
ak

j

}N

j=1
⊂ Bn such that ak

j → aj as k → ∞. We
shall show that lim inf

k→∞
µ(ak) ≥ µ(a). Passing to a subsequence, we may

assume that lim
k→∞

µ(ak) exists, and there exist αk := {αk
j }1≤j≤N ⊂ D,

for k ≥ 1 such that lim
k→∞

µ(ak) = lim
k→∞

1
MD

αk

. It will be enough to prove

the following.

Proposition 2.9. Suppose that αk =
{
αk

j , j ∈ J
}
, k ≥ 0, J a finite set,

and lim
k→∞

MD

αk = M > 0.

Then there exist a sequence {Ψk} ⊂ Aut D, a subset J ′ ⊂ J , and an
increasing map k 
→ n(k) from N to N such that

lim
k→∞

Ψn(k)

(
α

n(k)
j

)
= α̃j ∈ D, ∀ j ∈ J ′,

and
MD

α′ = lim
k→∞

MD{
Ψn(k)(α

n(k)
j

), j∈J′
} = M.
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End of proof of the Theorem 2.8: Suppose

1
M

:= lim inf
k→∞

µ(ak) < µ(a).

Then {αj , j ∈ J ′} provides a sequence mapping by ϕ to {aj , j ∈ J ′},
and

1
MD

{αj , j∈J}
< µ(a), which contradicts Theorem 2.6.

Proof of Proposition 2.9: We will proceed by downward induction on the
set J of indices.

Claim. Given any
{
βk

j , j ∈ J
}

k≥0
as in the proposition, either

Case 1: there exists {Ψk}, k 
→ n(k) such that lim
k→∞

Ψn(k)

(
β

n(k)
j

)
=

α̃j ∈ D for all j ∈ J and we are done, or
Case 2: there exists J ′�J and k 
→n(k) such that lim

k→∞
MD

{β
n(k)
j

, j∈J′}
=

M , in which case we apply the inductive step again.

To prove the claim, consider � = lim sup
k→∞

{
max
i,j∈J

dG

(
βk

i , β
k
j

)}
. If � < 1

then taking Ψk = Φβk
j1

where j1 ∈ J is fixed, we have that all points
remain within a fixed relatively compact disk and we can choose a con-
vergent subsequence, so we are in the first case.

Suppose now � = 1. Then, passing to a subsequence, we may as-
sume that there are j1 �= j2 ∈ J such that lim

k→∞
dG

(
βk

j1
, βk

j2

)
= 1.

Enumerate J = {j1, . . . , jp} so that for 3 ≤ i ≤ p, ji ≤ ji+1. If
lim sup

k→∞
dG

(
βk

j1
, βk

ji

)
= 1, by taking a subsequence, we may assume that

lim
k→∞

dG

(
βk

j1
, βk

ji

)
= 1; we will say that ji /∈ J1. If lim sup

k→∞
dG

(
βk

j1
, βk

ji

)
<

1, keep the same sequence and say that j ∈ J1.
After a finite number of steps, we have a sequence

{
β

n(k)
j , j ∈ J

}
and

a subset J1 := {j ∈ J : lim sup dG(βk
j1
, βk

j ) < 1} such that j1 ∈ J1 and
j2 ∈ J2 := J \ J1 = {j ∈ J : lim sup dG(βk

j1
, βk

j ) = 1}. Thus, if we set

Ψk = Φβk
j1

, we have
{

Ψn(k)

(
β

n(k)
j

)
, j ∈ J1

}
contained in a relatively

compact disk, and lim
k→∞

∣∣Ψn(k)

(
β

n(k)
j

)∣∣ = 1, j ∈ J2. Passing to a further

subsequence, we may assume that lim
k→∞

Ψn(k)

(
β

n(k)
j

)
∈ D, for all j ∈ J .

Corollary 2.4 now shows that

M = lim
k→∞

max
(
MD{

Ψn(k)

(
β

n(k)
j

)
, j∈J1

}, MD{
Ψn(k)

(
β

n(k)
j

)
, j∈J2

})
,
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therefore, once more passing to a subsequence, there is a set Ji, i = 1 or
2, such that limMD{

Ψn(k)

(
β

n(k)
j

)
, j∈Ji

} = M . We pick J ′ = Ji for that i

and this proves our claim.

3. Convergence of the function µ along finite
subsequences

Fist we would like to present the “infinite version” of Lemma 2.5.

Lemma 3.1. Suppose that a is an infinite sequence in Bn and ϕ is a
holomorphic map from D to Bn, and, for 1 ≤ j ≤ N , αj ∈ D such that
ϕ(αj) = aj. Then, given any ε > 0 there exists a holomorphic map ψ
from D to Bn and a sequence β ⊂ D such that

ψ(βj) = aj ,∀ j ∈ Z+ and MD

β ≥ MD

({αj}1≤j≤N ) − ε.

Proof: Choose numbers εi > 0, i = 1, 2, . . . such that
∑∞

1 εi ≤ ε. By
applying Lemma 2.5 and using induction, for 1 ≤ i ≤ k we can find{
αk

j

}
1≤j≤N+k

⊂ D, and a holomorphic map ϕk from D to Bn such that
ϕk(αk

j ) = aj for 1 ≤ j ≤ N + k and

MD

({αk
j
}1≤j≤N+k) ≥ MD

({αj}1≤j≤N ) −
k∑

i=1

εi.

From the proof of Lemma 2.5, for ε small enough, we have

MD

({αi
j
}1≤j≤N ) ≥ MD

({αi−1
j

}1≤j≤N )
− εi, ∀ i ∈ Z∗

+(∗)

and |αk
j | = r−1

k |αk−1
j |, where we may take rk as close to 1 as we wish.

This implies

1 − |αk
j | = 1 − r−1

k |αk−1
j | ≥ 1 − |αk−1

j | − (1 − rk).

Choose 1 − rk ≤ νk min{1 − |αk−1
j |, j ≤ N + k − 1}, where 0 < νk < 1.

Then 1 − |αk
j | ≥ 1 − |αk−1

j | − νk(1 − |αk−1
j |) = (1 − |αk−1

j |)(1 − νk). By

induction, 1− |αk
j | ≥ (1− |αj |)

k∏
�=(j−N)++1

(1− ν�). Choose ν� such that

∑
ν� < ∞, then

∞∏
�=1

(1 − ν�) = c, a positive constant, and 1 − |αk
j | ≥

c(1 − |αj |). Thus |αk
j | ≤ 1 − c(1 − |αj |) < 1, ∀ k ≥ 1. By taking

subsequences if necessary, we can assume that αk
j −→ βj ∈ D as k → ∞,

∀ j ≥ 1 and ϕk → ψ as k → ∞ and ψ(βj) = aj .
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By (∗) we have

MD

β ≥ MD

({αj}1≤j≤N ) = lim
k→∞

MD

({αk
j
}1≤j≤N )

≥ lim
k→∞

(
MD

({αj}1≤j≤N ) − ε1 − · · · − εk

)
≥ MD

α − ε.

Theorem 3.2. Let a =
{
ak, k ∈ Z∗

+

}
⊂ Bn. Then

µ(a) = lim
N→∞

µ
(
{aj}1≤j≤N

)
= inf

N∈Z∗
+

µ
(
{aj}1≤j≤N

)
.

Proof: Since µ({aj}1≤j≤N ) is decreasing, the limit exists and equals the
infimum.

For any ε > 0, take α = {αj}1≤j≤∞ ⊂ D such that
1

MD
α

< µ(a) + ε.

Then there exists N ∈ Z∗
+ such that

1
MD

({αj}1≤j≤N )

< µ(a) + 2ε.

Since µ
(
{aj}1≤j≤N

)
≤ µ(a) + 2ε, it implies that

µ(a) ≥ inf
N∈Z∗

+

µ
(
{aj}1≤j≤N

)
.

By choosing a sequence α =
{
αj

}
1≤j≤N

such that
1

MD
α

< µ
(
{aj}1≤j≤N

)
+ ε and applying the above lemma, we have, for

ε ≤ MD
α − 1

2
,

µ(a) ≤ 1
MD

β

≤ 1
MD

({αj}1≤j≤N )

+ 2ε ≤ µ
(
{aj}1≤j≤N

)
+ 3ε,

which proves the theorem.

Lemma 3.3. Let α′ be a subsequence of a sequence α =
{
αj

}
1≤j≤N

of
points in D (α′ � α). Then MD

α > MD

α′ .

Proof: Without loss of generality we may assume that α′={αj}1≤j≤N−1.
Put

R0 :=
1

MD

α′
= sup

{
R > 0 : ∀w′

1, . . . , w
′
N−1 ∈ D(0, R), ∃ f ∈ H(D,D)

such that f(αj) = w′
j for 1 ≤ j ≤ N − 1

}
= sup

{
R > 0 : ∀w′

1, . . . , w
′
N−1 ∈ D(0, R), A(α′, w′) ≥ 0

}
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where A(α′, w′) denotes the quadratic form given by

A(α′, w′)(t) =
N−1∑
j,k=1

1 − w′
jw

′
k

1 − αjαk
tjtk for t ∈ CN−1 (see [G1, p. 7]),

and we write Q ≥ 0 (resp. Q > 0) if the quadratic form Q is non negative
(resp. positive).

Suppose that A(α′, w′) > 0, ∀w′ = (w′
1, . . . , w

′
N−1) ∈ D(0, R0)N−1.

Consider the open subset Ω := {w′ : A(α′, w′) > 0} of DN−1. Since
Ω ⊃ D(0, R0)N−1, it implies that there exists R′ > R0 such that Ω ⊃
D(0, R′)N−1. It is impossible.

So there exists w′ ∈ D(0, R0)N−1 such that A(α′, w′) is degenerate.
Consider

W :=
{
wN : ∃ f ∈ H(D,D) such that f(αN ) = wN

and f(αj) = w′
j , 1 ≤ j ≤ N − 1

}
.

If MD
α = MD

α′ =
1
R0

then W ⊃ D(0, R0). But A(α′, w′) is degenerate,

thus W is a single point (see [G1]). It is a contradiction. Thus MD
α >

MD

α′ .

Lemma 3.4. Let a = {aj}1≤j≤N ⊂ Bn. If µ(a) < min
{
µ(a′) : a′ � a

}
then there exist a sequence α =

{
αj

}
1≤j≤N

⊂ D and a holomorphic
map ϕ from D to Bn such that ϕ(αj) = aj for 1 ≤ j ≤ N and µ(a) =

1
MD

α

.

Proof: Let ϕk, αk =
{
αk

j

}
1≤j≤N

⊂ D such that ϕk(αk
j ) = aj , 1 ≤ j ≤ N

and
1

MD

αk

tends to µ(a).

Taking a subsequence, we may now assume that αk converges point-
wise to a sequence α ∈ D. By Montel’s theorem, without loss of gener-
ality we may assume that the subsequence ϕk converges to ϕ uniformly
on compact sets. It is easy to see that ϕ(αj) = aj for any 1 ≤ j ≤ N

with |αj | < 1 and ϕ(D) ⊂ B
n
. In fact, ϕ(D) ⊂ Bn, by the maximum

principle for a strictly convex ball.
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If |αj | < 1 for all 1 ≤ j ≤ N , then the proof of lemma is completed.
Now suppose that there exists j such that |αj | = 1. By applying Propo-
sition 2.9 we have a subset J ′ � {1, . . . , N} such that

1
MD

({αk
j
}1≤j≤N )

and
1

MD

({αk
j
}j∈J′ )

tend to µ(a), so that µ(a) = µ(a′) with a′ = {aj}j∈J′ . It is imposs-
ible.

Theorem 3.5. For any N ∈ Z∗
+ there exists an open set U of sequences

a with #a = N such that for every a ∈ U there is α =
{
αj

}
1≤j≤N

⊂ D

such that ϕ(αj) = aj for 1 ≤ j ≤ N and µ(a) =
1

MD
α

.

Proof: Now we give a sequence satisfying the sufficient condition of
Lemma 3.4.

Let a = {aj}1≤j≤N ⊂ Bn lie on a complex line ∆. We may assume
that ∆ = C×{0, . . . , 0} and aj = (aj , 0, . . . , 0) for 1 ≤ j ≤ N . Consider
a holomorphic map ϕ from D to Bn given by ϕ(ζ) = (ζ, 0, 0, . . . , 0). Take
α = {aj}1≤j≤N ⊂ D. It implies that ϕ(α) = a and MD

α = MB
n

a . Thus

µ(a) =
1

MBn

a

=
1

MD
α

. By applying Lemma 3.3 we have MB
n

a′ < MB
n

a for

a′ � a. Then µ(a′) > µ(a) and, hence µ(a) < min
{
µ(a′) : a′ � a

}
.

Now let b be another sequence close to a. Since min
{
µ(b′) : b′ � b

}
depends continuously on b and µ(b) is continuous, the map b 
−→ µ(b)−
min

{
µ(b′), b′ � b

}
is continuous. Since the value of this function at

b = a is negative, there exists a neighborhood U of a in (Bn)N such that
µ(b) < min

{
µ(b′) : b′ � b

}
for all b ∈ U . The proof of Theorem 3.5 will

be completed by applying Lemma 3.4 to b.

Theorem 3.6. Let a =
{
aj

}
1≤j≤N

be a sequence of points in Bn. If
there exists a holomorphic map ϕ0 from D to Bn and α =

{
αj

}
1≤j≤n

⊂

D such that ϕ0(αj) = aj for 1 ≤ j ≤ N and µ(a) =
1

MD
α

, then ϕ0 is a

solution of the extremal problem

inf
{
‖ψ‖∞ : ψ ∈ H(D,Cn), ψ(αj) = aj for 1 ≤ j ≤ N

}
.
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Proof: If ϕ0 is not of minimal norm then there is another holomorphic
map η from D to Bn and r < 1 such that η(rαj) = aj for 1 ≤ j ≤ N
(see [A-T, Lemma 7]). It is easy to see that MD

rα ≥ MD
α . Now we prove

MD
rα > MD

α .
For any ε > 0, by the definition of MD

α there exist v1, . . . , vN ∈ D

such that I := inf
{
‖f‖∞ : f(αj) = vj , 1 ≤ j ≤ N

}
≥ MD

α − ε and there

exists a map fε ∈ H∞(D) such that ‖fε‖∞ ≤ MD
rα + ε and fε(rαj) = vj

for 1 ≤ j ≤ N .
Put gε(ζ) = fε(rζ). We have gε(αj) = vj and ‖gε‖∞ ≤ sup

D(0,r)

|fε|.

Now we estimate this last quantity:

1
MD

rα + ε
fε(rα1) =

v1

MD
rα + ε

∈ D

(
0,

1
MD

rα + ε

)
⊂ D

(
0,

1
MD

rα

)
⊂ D.

By Schwarz’s lemma, fε(rα1) = v1 implies that

dG

(
fε(ζ)

MD
rα + ε

,
v1

MD
rα + ε

)
≤ dG(ζ, rα1) ≤ C < 1

for any ζ ∈ D(0, r). Thus, for ζ ∈ D(0, r),

fε(ζ)
MD

rα + ε
∈ BG

(
v1

MD
rα + ε

, C

)
:=

{
ξ : dG

(
v1

MD
rα + ε

, ξ

)
≤ C

}
.

On the other hand, we see that

BG

(
v1

MD
rα + ε

, C

)
⊂

⋃
|ξ|< |v1|

MD
rα

BG(ξ, C) ⊂ D


0,

C +
|v1|
MD

rα

1 + C
|v1|
MD

rα


 .

Put

C ′ :=
C +

|v1|
MD

rα

1 + C
|v1|
MD

rα

< 1.

Then MD
α − ε ≤ I ≤ ‖gε‖∞ ≤ C ′(MD

rα + ε). It implies that C ′(MD
rα +

ε) ≥ MD
α − ε. Since C ′ < 1, C ′MD

rα > MD
α − 2ε for any ε > 0.

Thus C ′MD
rα ≥ MD

α and hence MD
rα > MD

α .
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