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(LB∞)-STRUCTURE OF SPACES OF GERMS OF
HOLOMORPHIC FUNCTIONS

Nguyen Dinh Lan

Abstract
We study the structure of spaces of germs of holomorphic functions
on compact sets in Fréchet spaces for (LB∞) as well as for (Ω̄, Ω̃).

Introduction

Let E be a Fréchet space and let K be a compact subset in E. By
H(K) we denote the space of germs of holomorphic functions on K
equipped with the inductive limit topology. Some linear topological in-
variants, in particular those of the (Ω)-type for the strong dual [H(K)]′

of the space H(K), were investigated by several authors. For example,
in the finite dimensional case, Zaharjuta proved that [H(K)]′ has (Ω̄)
if and only if K is L-regular [17]. This problem, in the infinite dimen-
sional case, has been considered already by R. Meise, D. Vogt and many
others. Meise and Vogt have shown in [7] that [H(K)]′ has (Ω) for every
compact subset K in a nuclear Fréchet space E as long as E has (Ω).
Recently, this result has been extended to the general case where E is
only Fréchet by Nguyen Van Khue and Phan Thien Danh [10]. For the
invariants (Ω̄) and (Ω̃), Meise and Vogt in [8] gave some necessary and
sufficient conditions for the compact polydiscs D̄ in a nuclear Fréchet
space having a Schauder basis such that [H(D̄)]′ has (Ω̄) and has (Ω̃)
respectively.

The aim of the present paper is to study the invariant (LB∞) as well
as (Ω̄) and (Ω̃) of [H(K)]′ in the case where K is a balanced convex
compact subset of a nuclear Fréchet space E. It should be mentioned
that this problem has been treated very recently by Le Mau Hai and
Nguyen Van Khue [6] in the case where E is a Fréchet-Schwartz space
having an absolute basis. Our main results are explained in Sections 2
and 3. Namely, in Section 2 by employing an important characterization
of (LB∞) for Fréchet spaces [15], we prove that if B is a balanced con-
vex compact subset of a Fréchet space E having (Ω̃B) then [H(B)]′ has
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(LB∞) (Theorem 2.1). In Theorem 2.2, under the additional assump-
tion that E has the bounded approximation property, we prove that B is
not pluripolar if [H(B)]′ has (LB∞). Combining this result and a char-
acterization of (Ω̃B) in terms of the non-pluripolarity of B [2] we also
obtain a converse to Theorem 2.1 in the special case mentioned above.
In Section 3, we prove in Theorem 3.1 that if B is a balanced compact
subset of a nuclear Fréchet space having a Schauder basis then [H(B)]′

has either (Ω̄B) or (Ω̃B) if and only if E has the same property.
Finally, we note that the invariants of (DN)-type for spaces of entire

functions of bounded type on (DF )-spaces were considered by several
authors (for example [6], [10], . . . ).

1. Preliminaries

1.1. Some linear topological invariants. Let E be a Fréchet space
with a fundamental system of semi-norms {‖•‖k}. For a subset B of E,
put ‖u‖∗B = sup {|u(x)| : x ∈ B} for u ∈ E′.

Write ‖•‖∗k for B = Uk = {x ∈ E : ‖x‖k < 1}.
Using this notation we say E has the property

(Ω)⇔ ∀ p∃ q ∀ k ∃C, d > 0 ‖•‖∗1+dq ≤ C ‖•‖∗k ‖•‖
∗d
p .

(Ω)⇔ ∀ p, d > 0∃ q ∀ k > 0∃C > 0 ‖•‖∗1+dq ≤ C ‖•‖∗k ‖•‖
∗d
p .

(Ω̃)⇔ ∀ p∃ q, d > 0 ∀ k ∃C > 0 ‖•‖∗1+dq ≤ C ‖•‖∗k ‖•‖
∗d
p .

(LB∞)⇔ ∀ ρn ↑ ∞ ∀ p∃ q
∀ k ∃nk, C > 0

∀u ∈ E′ ∃nu ∈ [k;nk] ‖u‖∗1+ρnu
q ≤ C ‖u‖∗nu

‖u‖∗ρnu
p .

The above properties were introduced and investigated by Vogt (see
[9] or [16] for (Ω) and [15] for the others).

In [15] Vogt gave the following important characterization of (LB∞)
for Fréchet spaces.

Vogt’s Theorem ([15, Satz 5.2]). For an arbitrary exponent sequen-
ce α = (αj) satisfying sup

j≥1

αj+1
αj

<∞, the following assertions are equiv-

alent
(i) E has (LB∞).
(ii) Every continuous linear map from E into Λ∞

∞(α) is bounded on a
zero-neighbourhood, where

Λ∞
∞(α) =

{
(ξj) ⊂ C : ‖(ξj)‖k := sup |ξj |kαj <∞∀ k ≥ 1

}
.
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1.2. Holomorphic functions. Let E, F be locally convex spaces and
D an open subset in E. A function f : D −→ F is called holomorphic if it
is continuous and u ◦ f is Gâteaux holomorphic for u ∈ F ′. By H(D,F )
we denote the space of F -valued holomorphic functions on D, equipped
with the compact-open topology. When F is omitted, it is understood
to be the scalar field C, e.g. H(D) = H(D,C).

Finally for each compact set K in E, by H(K) we denote the space of
holomorphic functions on K, equipped with the inductive topology, i.e.

H(K) := lim ind
U⊃K

H∞(U)

where U ranges over all neighbourhoods of K and H∞(U) denotes the
Banach space of bounded holomorphic functions on U .

For the details concerning the holomorphic functions and the germs
of holomorphic functions on compact sets in a locally convex space, we
refer to the book of Dineen [1].

2. The structure (LB∞)

Theorem 2.1. Let E be a nuclear Fréchet space and B a balanced con-
vex compact subset in E. Assume that E has (Ω̃B):

(Ω̃B) : ∀ p ∃ q, d, C > 0 ‖•‖∗1+dq ≤ C ‖•‖∗B ‖•‖
∗d
p .

Then [H(B)]′ ∈ (LB∞).

Note that in the definition of (Ω̃B), by choosing q sufficiently large,
we may assume that C = 1.

We need the following:

Lemma 2.2. Let E and B be as in Theorem 2.1. Then B is a set of
uniqueness.

Here we say that the compact set B is a set of uniqueness if for every
f ∈ H(B), f|B = 0 implies f = 0.

Proof: First, since E has (Ω̃B) by the hypothesis, it is easy to see that
spanB is dense in E. Now given f ∈ H(B) with f|B = 0, consider the
Taylor expansion of f at 0 ∈ B in a balanced convex neighbourhood W
of B in E:

f(x) =
∑
n≥0

Pnf(x), x ∈W,
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where

Pnf(x) =
1

2πi

∫
|λ|=δx>0

f(λx)
λn+1

dλ for x ∈ E.

Since Pnf are n-homogeneous polynomials and Pnf|B = 0, it follows
that Pnf|spanB = 0. By the continuity of Pnf and by spanB = E, we
have Pnf = 0 for n ≥ 0. Thus f = 0 in W and hence B is a set of
uniqueness.

Proof of Theorem 2.1: Since H(C) = Λ∞
∞(α) where α = (αj) with αj =

j for j ≥ 1, by Vogt’s theorem it suffices to show that every continuous
linear map T : [H(B)]′ −→ H(C) is compact.

(i) Consider the function f : B −→ H(C) induced by T :

f(x)(λ) = T (δx)(λ) for x ∈ B, λ ∈ C,

where δx ∈ [H(B)]′ denotes the Dirac functional associated to x ∈ B:

〈ϕ, δx〉 = ϕ(x) for ϕ ∈ H(B).

It follows that f is weakly holomorphic, i.e. µ ◦ f ∈ H(B) for µ ∈
[H(C)]′, because T ′(µ) ∈ [H(B)]′′ ∼= H(B). By Grothendieck’s factor-
ization theorem [9], this yields that f : B −→ H∞(2∆), where ∆ is
the open unit disc in C, is extended to a holomorphic function f̂ on a
neighbourhood W of B in E.

Let g : (B × C) ∪ (W × ∆̄) −→ C given by

g(x, λ) =

{
f(x)(λ) for x ∈ B, λ ∈ C

f̂(x)(λ) for x ∈W, λ ∈ ∆̄.

Obviously g is separately holomorphic in the sense of Sciak [14], this
means that g(x, ·) is holomorphic in λ ∈ C for every x ∈ B and g(·, λ) is
too in x ∈ W for every λ ∈ ∆̄. We denote by F the family of all finite
dimensional subspaces P �= 0 of E(B), where E(B) is the Banach space
spanned by B. For each P ∈ F consider gP = g|((B∩P )×C )∪((W∩P )×∆̄).
Since B ∩ P is the unit ball in P and ∆̄ is not polar, by Nguyen Thanh
Van-Zeriahi [11] gP is uniquely extended to a holomorphic function g̃P
on (W ∩ P )× C. The uniqueness implies that the family {g̃P : P ∈ F}
defines a Gâteaux holomorphic function g̃ on (W ∩ E(B)) × C. On
the other hand, since g̃ is holomorphic on (W ∩ E(B)) × ∆, Zorn’s
theorem [1] implies that g̃ is holomorphic on (W ∩E(B))×C. Consider
the holomorphic function ĝ : (W ∩E(B)) −→ H(C) associated to g̃. We
prove that ĝ can be extended to a bounded holomorphic function on a
neighbourhood of B with values in H(C).
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(ii) The following is a modification of Meise-Vogt [8] and of Le Mau
Hai [5].

Let
{
‖•‖γ

}∞

γ=1
and {‖•‖k}

∞
k=1 be two fundamental systems of semi-

norms of E and H(C) respectively. Since H(C) has (DN) we have

∃ p ∀ q, d > 0 ∃ k,C > 0 ‖•‖1+dq ≤ C ‖•‖k ‖•‖
d
p .

Note that by replacing k with some k′ > k, we always may assume
that C = 1. Choose α such that Uα ⊂W and

M(α, p) = sup
{
‖ĝ(x)‖p : x ∈ Uα ∩ E(B)

}
<∞.

Let ωα from E into Eα, the Banach space associated to ‖•‖α, be the
canonical map and A = ωα|E(B)

: E(B) −→ Eα. Since E is nuclear,
without loss of generality we may assume that E(B) and Eα are Hilbert
spaces.

Then, by [12, Proposition 8.6.6, p. 143], A can be written in the form

A(x) =
∑
j≥1

λj〈x, yj〉zj

where λj > 0 ∀ j ≥ 1, λ = (λj) ∈ s, the space of rapidly decreasing
sequences, (yj) is a complete orthonormal system in E(B) and (zj) an
orthonormal system in Eα.

Since

A

(
yj
λj

)
= zj ∈ ωα(Uα) ∀ j ≥ 1,

we have
yj
λj
∈ Uα ∀ j ≥ 1.

It follows that
m∑
j=1

(
µj
λj

)
yj ∈ Uα, ∀m ≥ 1,

where µj = δ
jk and δ > 0 is chosen such that

u ∈ Eα : u =
∞∑
j=1

ξjzj and |ξj | < µj ∀ j ≥ 1


 ⊂ ωα(Uα)

and

δ

∞∑
j≥1

1
jk
≤ 1.
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We set

χk ∈ E′
α : z ∈ Eα �→ 〈z, zk〉α, the scalar product in Eα.

Then

‖χk‖ = 1 ∀ k ≥ 1

and
∀ k ≥ 1 ‖A∗χk‖∗B = sup

‖x‖≤1

|χkA(x)|

= sup
‖x‖≤1

|〈A(x), zk〉|

= sup
‖x‖≤1

|λk〈x, yk〉|

= λk (by the Bessel inequality: |〈x, yk〉| ≤ ‖x‖).

(1)

Now put

ϕk = ω∗
αχk,(2)

and choose β such that

∃ d,C > 0 ‖•‖∗1+dβ ≤ C ‖•‖∗B ‖•‖
∗d
α .(3)

For β sufficiently large, we can choose C = 1.
From (1)–(3) we have

‖ϕk‖∗1+dβ = ‖ω∗
αχk‖

∗1+d
β ≤ ‖A∗χk‖∗B ‖χk‖

∗d
α ≤ λk ∀ k ≥ 1.

Hence

‖ϕk‖∗β ≤ (λk)
1

1+d ∀ k ≥ 1.

Let h = ωpĝ. Since M(α, p) < ∞ and A(Uα ∩ E(B)) is dense in
ωα(Uα), h is holomorphically factorized through A : Uα ∩ E(B) −→ Ûα
by ĥ : Ûα −→ [H(C)]p, where Ûα is the unit ball in Eα. This may be
illustrated in the following diagram.

Uα ∩ E(B)
ĝ ✲ H(C)

◗◗◗◗◗◗◗◗

h

�
Ûα

A

❄

ĥ
✲ [H(C)]p

ωp

❄

.

For each m = (m1,m2, . . . ,mn, 0, 0, . . . ) ∈M , with

M =
{
m = (mj) ∈ NN : mj �= 0 only for finitely many j ∈ N

}
,
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we put

am =
(

1
2πi

)n ∫
|ρ1|=µ1

∫
|ρ2|=µ2

· · ·
∫

|ρn|=µn

ĥ(ρ1z1 + ρ2z2 + · · ·+ ρnzn)
ρm+1

dρ

where

ρm+1 := ρm1+1
1 ρm2+1

2 . . . ρmn+1
n ,

dρ := dρ1dρ2 . . . dρn,

then

‖am‖p ≤
M(α, p)

µm
∀m ∈M.

From the relation
k∑
j=1

ρj
λj

yj ∈ Uα ∩ E(B) ∀ k ≥ 1,

we deduce that

ĥ


∑
j≥1

ρjzj


 = ĥA


∑
j≥1

ρj
λj

yj


 = ωpĝ


∑
j≥1

ρj
λj

yj


 .

On the other hand, by Cauchy’s theorem, we get

am=
(

1
2πi

)n ∫
|ρ1|=λ1µ1

∫
|ρ2|=λ2µ2

· · ·
∫

|ρn|=λnµn

ĥ(ρ1z1 + ρ2z2 + · · ·+ ρnzn)
ρm+1

dρ.

It follows that

am=
(

1
2πi

)n ∫
|ρ1|=λ1µ1

∫
|ρ2|=λ2µ2

· · ·
∫

|ρn|=λnµn

ωpĝ(
n∑
j=1

ρj

λj
yj)

λm+1
(
ρ
λ

)m+1 dρ

=ωp




1
λm

(
1

2πi

)n ∫
|θ1|=µ1

∫
|θ2|=µ2

· · ·
∫

|θn|=µn

ĝ(θ1y1+θ2y2+ · · ·+θnyn)
θm+1

dθ

︸ ︷︷ ︸
bm




where

θj =
ρj
λj

∀ j ≥ 1.
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We have

‖bm‖q ≤
N(q)
λmµm

∀m ∈M, ∀ q ≥ p,

where

N(q) = sup




∥∥∥ĥ(x)
∥∥∥
q

: x =
∞∑
j=1

ξjyj and |ξj | ≤ µj ∀ j ≥ 1


 <∞,

because the set 
x =

∞∑
j=1

ξjyj : ξjyj ∀ j ≥ 1




is compact in E(B).
Since H(C) has (DN), for every q ≥ p and d̄ = d

δ there exists k ≥ q
and C > 0 such that

‖•‖1+dq ≤ C ‖•‖k ‖•‖
d
p ,

where 0 < δ < 1 is chosen such that

ε := t− 1− t

1 + d̄
> 0 with t =

1
2(1 + d)

.

Again we may assume C = 1. Then

S :=
∑
m∈M

rm ‖bm‖q
∞∏
j=1

‖ϕj‖∗mj

β ≤
∑
m∈M

rm ‖bm‖q
∞∏
j=1

(λj)
mj
1+d

=
∑
m∈M

rm ‖bm‖q λ2tm =
∑
m∈M

rm
[
λm ‖bm‖q

]t
λtm ‖bm‖1−tq

≤ N(q)tN(k)
1−t

1+d M(α, p)
(1−t)d̄

1+d

∑
m∈M

rm
λ
m(t− 1−t

1+d
)

µ
m(t+ 1−t

1+d
+

(1−t)d

1+d
)

≤ N(q)tN(k)
1−t

1+d M(α, p)
(1−t)d̄

1+d

∑
m∈M

rm
λ
m(t− 1−t

1+d
)

µm
.

Since λ = (λj) ∈ s, the sequence
(
λε

j

µj

)
is in l1 and hence for R =∑

j≥1

(
λε

j

µj

)
we have

2R > R >
λεj
µj

for j ≥ 1.
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This implies

0 < sup
{

λεj
2Rµj

: j ≥ 1
}

<
1
2
.

We have

S =
∑
m∈M

rm ‖bm‖q
∞∏
j=1

‖ϕj‖∗mj

β

≤ N(q)tN(k)
1−t

1+d̄ M(α, p)
(1−t)d̄

1+d̄

∑
m∈M

(
rλε

µ

)m

= N(q)tN(k)
1−t

1+d̄ M(α, p)
(1−t)d̄

1+d̄

∞∏
j=1

1

1− rλε
j

µj

<∞.

Hence the form

x �→
∑
m∈M

bm
∏
j≥1

(ϕj(x))mj

defines a bounded holomorphic function ĥ1 on δUβ with δ = 1
4R such

that ĥ1

∣∣
δUβ∩B = ĝ

∣∣
δUβ∩B , i.e. ĥ1(z)(λ) = g(z, λ) for z ∈ δUβ ∩ B

and λ ∈ ∆̄. Since spanB = E, by considering the Taylor expansion of
ĥ1(·)(λ) − g(·, λ) in z ∈ spanB at 0 ∈ B, we get ĥ1(z)(λ) = g(z, λ) for
z ∈ δUβ ∩B and λ ∈ ∆̄.

(iii) Consider the separately holomorphic function h1 in the sense of
Siciak [14] on (δUβ ×C) ∪ (W × ∆̄), induced by ĥ1 and g. By the same
argument as in (i), h1 is holomorphically extended to a function h̄1 on
W×C. Let ˆ̄h1 : W −→ H(C) denote the holomorphic function associated
to h̄1. Since B is convex, balanced and the equality (ĥ1 − ĝ)

∣∣
δUβ∩B = 0

holds, from the Taylor expansion of (ĥ1 − ĝ) |B at 0 ∈ B it follows that
ˆ̄h1 |B = ĝ |B .

(iv) Applying a similar argument as in (ii) to each point of W , it
follows that ˆ̄h1 is locally bounded. Thus, by shrinking W , without loss of
generality, we may assume that ˆ̄h1(W ) is bounded. Define the continuous
linear map S : [H∞(W )]′ −→ H(C) as

S(µ)(λ) = µ( ˆ̄h1(•)(λ)) for µ ∈ [H∞(W )]′ and λ ∈ C.
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We have

T


 m∑
j=1

αjδxj


 (λ) =

m∑
j=1

αjT (δxj )(λ) =
m∑
j=1

αjf(xj)(λ)

=
m∑
j=1

αj ĝ(xj)(λ) =
m∑
j=1

αj
ˆ̄h1(xj)(λ)

=
m∑
j=1

αjS(δxj
)(λ) = S


 m∑
j=1

αjδxj




for x1, . . . , xm ∈ B and α1, α2, . . . , αm ∈ C.
On the other hand, since B is of uniqueness and H(B) is reflexive, it

follows that S = T . Hence T is compact.

For the formulation of the second theorem we recall the following [2],
[3]:

An upper-semicontinuous function ϕ : E −→ [−∞; +∞) is called plu-
risubharmonic if ϕ is subharmonic on every complex line in E. A sub-
set B ⊂ E is said to be pluripolar if there exists a plurisubharmonic
function ϕ on E such that ϕ �= −∞ and ϕ|B = −∞.

Theorem 2.3. Let E be a nuclear Fréchet space with the bounded ap-
proximation property and B a balanced convex compact subset in E.
Then the following assertions are equivalent:

a) E has (Ω̃B).
b) [H(B)]′ has (LB∞).
c) B is not pluripolar.

For the proof of Theorem 2.3 we need the following lemma which was
proved independently in [6].

Lemma 2.4. Let K be a compact subset of a Fréchet space E such that
[H(K)]′ ∈ (LB∞). Then K is a compact set of uniqueness.

Proof: Given f ∈ H(K) with f|K = 0. Choose a decreasing neighbour-
hood basis {Vk} of K such that εk := sup{|f(z)| : z ∈ Vk} < 1 for
k ≥ 1.
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Since f|K = 0 and K is compact, it follows that εk ↘ 0. By applying
the (LB∞) property of [H(K)]′ to the sequence ρk =

√
− log εk ↗ +∞

and to p = 1, we can find q ≥ 1, N1 ≥ 1 and C > 0 such that

∀n ∃ kn ∈ [1;N1] ‖fn‖1+ρkn
q ≤ C ‖fn‖kn

‖fn‖ρkn
1 .

This inequality gives

‖f‖q ≤ C
1
n ‖f‖

1
1+ρkn

kn
‖f‖

ρkn
1+ρkn for n ≥ 1.

Take 1 ≤ k ≤ N1 such that

8{n : kn = k} = +∞.

Then

‖f‖q ≤ ‖f‖
1

1+ρk

k ‖f‖
ρk

1+ρk
1

= (εk)
1

1+
√

− log εk (ε1)

√
− log εk

1+
√

− log εk → 0 as k → +∞.

Hence f = 0.

Proof of Theorem 2.2: a) ⇒b): By Theorem 2.1.
c) ⇒ a): By Theorem 7 in [2].
It remains to show that b) ⇒ c).
Let B be pluripolar. Choose a plurisubharmonic function ϕ �= −∞

on E such that ϕ|B = −∞. Consider the Hartogs domain Ωϕ given by

Ωϕ =
{

(x, λ) : |λ| < e−ϕ(x)
}
.

Then Ωϕ is pseudoconvex. Since E has the bounded approximation
property, there exists f ∈ H(Ωϕ) such that Ωϕ is the domain of existence
of f (by [13]). Write the Hartogs expansion of f ,

f(x, λ) =
∑
n≥0

hn(x)λn for (x, λ) ∈ Ωϕ,

where

hn(x) =
1

2πi

∫
|λ|=e−δϕ(x)

f(x, λ)
λn+1

dλ for n ≥ 0, (δ > 1).
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It is easy to see that hn are holomorphic on E, because of the upper-
semicontinuity of ϕ.

Let g : B −→ H(C) given by g(x)(λ) = f(x, λ) for x ∈ B, λ ∈ C.
Then g is weakly holomorphic. Indeed, given µ ∈ [H(C)]′, take r >

0 such that µ can be considered as a continuous linear functional on
H∞(r∆). Since B ×C ⊂ Ωϕ, we can find a neighbourhood V of B in E
such that V ×r∆ ⊂ Ωϕ. Hence f induces a holomorphic extension of µ◦g
to V . On the other hand, since B is a set of uniqueness, the form µ, �→
µ̂ ◦ g, the unique holomorphic extension of µ ◦ g for µ ∈ [H(C)]′, defines
a linear map T : [H(C)]′ −→ H(B). Again since B is a set of uniqueness,
T has a closed graph. The closed graph Grothendieck theorem [4] yields
that T is continuous. By Vogt [15] we can find a neighbourhood W of
0 ∈ [H(C)]′ such that T (W ) is bounded in H(B). By the regularity of
H(B) [1] there exists a neighbourhood V of B in E such that T (W ) is
contained and bounded in H∞(V ). This implies that g is extended to a
holomorphic function ĝ : V −→ H(C). Obviously g̃ = f on non-empty
open subset of Ωϕ, where g̃(x, λ) = ĝ(x)(λ) for x ∈ V , λ ∈ C. By the
hypothesis Ωϕ is the domain of existence of f , thus we have V ×C ⊂ Ωϕ.
Hence ϕ|V = −∞ which is impossible.

3. The structure (Ω̄, Ω̃)

Theorem 3.1. Let E be a nuclear Fréchet space with a basis and B a
balanced compact subset in E. Then [H(B)]′ has either (Ω̃B) or (Ω̄B) if
and only if E has the same property.

Proof: Necessity. Since the forms f �→ f ′(0) and u �→ [u], where [u]
denotes the element of H(B) induced by u ∈ E′, define the continuous
linear maps P : H(B) −→ E′ and Q : E′ −→ H(B) satisfying P ◦Q = id,
it follows that E′ can be considered as a subspace of H(B). Hence
E ∼= E′′ which is a quotient space of [H(B)]′. This proves the necessity
of the theorem.

Sufficiency. It suffices to prove the case E ∈ (Ω̃B).
Let (ej) be a basis of E and (e∗j ) its dual basis in E′. Since E is

nuclear, without loss of generality we may assume that

∑
j≥1

∥∥e∗j∥∥∗
q+1
‖ej‖q <

1
e2

for q ≥ 1.
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Write each f ∈ H∞(B + Uq) in the form

f(x + u) =
∑
n≥0

Pnf(x)(u) =
∑
n≥0

Pnf(x)


∑
j≥1

e∗j (u)ej




=
∑
n≥0

∑
j1,j2,... ,jn≥1

e∗j1(u) . . . e∗jn
(u)Pnf(x)(ej1 , . . . , ejn

)

where

Pnf(x)(u) =
1

2πi

∫
|λ|=1

f(x + λu)
λn+1

dλ, u ∈ Uq and x ∈ B.

The above equality is correct, because

∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗
q+1

. . .
∥∥e∗jn

∥∥∗
q+1
‖ej1‖q . . . ‖ejn

‖q

×
∣∣∣∣∣Pnf(x)

(
ej1
‖ej1‖q

, . . . ,
ejn

‖ejn
‖q

)∣∣∣∣∣
≤ ‖f‖B+Uq

∑
n≥0

nn

n!


∑
j≥1

∥∥e∗j∥∥∗
q+1
‖ej‖q


n

≤ ‖f‖B+Uq

∑
n≥0

( n

e2

)n 1
n!

<∞.

From the above inequalities, it follows also that H(B) ∼= lim ind
q
Hq,

where

Hq =
{
f ∈ H∞(B + Uq) : |‖f‖|q <∞

}
with

‖|f |‖q := sup
x∈B


∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗
q
. . .

∥∥e∗jn

∥∥∗
q
|Pnf(x)(ej1 , . . . , ejn)|


 .
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Applying (Ω̃B) with C = 1 we have

‖|f |‖1+dq

= sup
x∈B


∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗
q
. . .

∥∥e∗jn

∥∥∗
q
|Pnf(x)(ej1 , . . . , ejn

)|




1+d

≤ sup
x∈B


∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗ 1
1+d

B
. . .

∥∥e∗jn

∥∥∗ 1
1+d

B
|Pnf(x)(ej1 , . . . , ejn)|

1
1+d

×
∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗ d
1+d

p
. . .

∥∥e∗jn

∥∥∗ d
1+d

p
|Pnf(x)(ej1 , . . ., ejn)|

d
1+d




1+d

≤ sup
x∈B


∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗
B
. . .

∥∥e∗jn

∥∥∗
B
|Pnf(x)(ej1 , . . . , ejn

)|




× sup
x∈B


∑
n≥0

∑
j1,j2,... ,jn≥1

∥∥e∗j1∥∥∗
p
. . .

∥∥e∗jn

∥∥∗
p
|Pnf(x)(ej1 , . . . , ejn

)|



d

= ‖|f |‖B ‖|f |‖
d
p

for f ∈ H∞(B + Uq).
Hence [H(B)]′ ∈ (Ω̃B) because H(B) is reflexive.
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