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(LB*°)-STRUCTURE OF SPACES OF GERMS OF
HOLOMORPHIC FUNCTIONS

NGUYEN DINH LAN

Abstract

We study the structure of spaces of germs of holomorphic functions
on compact sets in Fréchet spaces for (LB*) as well as for (2, 2).

Introduction

Let E be a Fréchet space and let K be a compact subset in E. By
H(K) we denote the space of germs of holomorphic functions on K
equipped with the inductive limit topology. Some linear topological in-
variants, in particular those of the (Q)-type for the strong dual [H(K)]
of the space H(K), were investigated by several authors. For example,
in the finite dimensional case, Zaharjuta proved that [H(K)]' has (Q)
if and only if K is L-regular [17]. This problem, in the infinite dimen-
sional case, has been considered already by R. Meise, D. Vogt and many
others. Meise and Vogt have shown in [7] that [H(K)]" has () for every
compact subset K in a nuclear Fréchet space E as long as E has (Q).
Recently, this result has been extended to the general case where F is
only Fréchet by Nguyen Van Khue and Phan Thien Danh [10]. For the
invariants (Q) and (Q), Meise and Vogt in [8] gave some necessary and
sufficient conditions for the compact polydiscs D in a nuclear Fréchet
space having a Schauder basis such that [H(D)]’ has (Q) and has (Q)
respectively.

The aim of the present paper is to study the invariant (LB*) as well
as (Q) and (Q) of [H(K)]’ in the case where K is a balanced convex
compact subset of a nuclear Fréchet space E. It should be mentioned
that this problem has been treated very recently by Le Mau Hai and
Nguyen Van Khue [6] in the case where E is a Fréchet-Schwartz space
having an absolute basis. Our main results are explained in Sections 2
and 3. Namely, in Section 2 by employing an important characterization
of (LB®) for Fréchet spaces [15], we prove that if B is a balanced con-

vex compact subset of a Fréchet space E having (Qp) then [H(B)]’ has
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(LB®°) (Theorem 2.1). In Theorem 2.2, under the additional assump-
tion that E has the bounded approximation property, we prove that B is
not pluripolar if [H(B)]" has (LB*). Combining this result and a char-
acterization of (Qg) in terms of the non-pluripolarity of B [2] we also
obtain a converse to Theorem 2.1 in the special case mentioned above.
In Section 3, we prove in Theorem 3.1 that if B is a balanced compact
subset of a nuclear Fréchet space having a Schauder basis then [H(B))’
has either (Qp) or (Qp) if and only if E has the same property.

Finally, we note that the invariants of (DN )-type for spaces of entire
functions of bounded type on (DF')-spaces were considered by several
authors (for example [6], [10], ... ).

1. Preliminaries

1.1. Some linear topological invariants. Let E be a Fréchet space
with a fundamental system of semi-norms {||e[|, }. For a subset B of F,
put ||lul|z = sup{|u(z)|: z € B} for u € E'.

Write [|o||; for B = U = {z € E: ||z||, < 1}.
Using this notation we say E has the property

(Q) & VpIqVk3C,d>0 ol < C o]l oIl
(@) & ¥p,d>03q¥k>03C>0 [[o] i < C o] ||o]".
Q)< VpIq,d>0Vk3IC >0 [oflzt < C o]y [lo]l?
(LB*) < Vp, T coVpIgq
Vk3n,, C >0
Vu € E'3n, € [king] ull; 7 < Cully, flull2 .

The above properties were introduced and investigated by Vogt (see
[9] or [16] for (2) and [15] for the others).

In [15] Vogt gave the following important characterization of (LB*)
for Fréchet spaces.

Vogt’s Theorem ([15, Satz 5.2]). For an arbitrary exponent sequen-

ce a = () satisfying sup “L < oo, the following assertions are equiv-
J>1 J

alent
(i) E has (LB®).
(ii) Bwvery continuous linear map from E into A2 («) is bounded on a
zero-netghbourhood, where

AZ (@) = {(&) C C: ()l = sup &k < ooVk >1}.
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1.2. Holomorphic functions. Let F, F' be locally convex spaces and
D an open subset in E. A function f: D — F'is called holomorphic if it
is continuous and u o f is Gateaux holomorphic for v € F’. By H(D, F)
we denote the space of F-valued holomorphic functions on D, equipped
with the compact-open topology. When F' is omitted, it is understood
to be the scalar field C, e.g. H(D) = H(D,C).

Finally for each compact set K in E, by H(K) we denote the space of
holomorphic functions on K, equipped with the inductive topology, i.e.

H(K) = h[r]njllr%dH (U)

where U ranges over all neighbourhoods of K and H>(U) denotes the
Banach space of bounded holomorphic functions on U.

For the details concerning the holomorphic functions and the germs
of holomorphic functions on compact sets in a locally convex space, we
refer to the book of Dineen [1].

2. The structure (LB*>)

Theorem 2.1. Let E be a nuclear Fréchet space and B a balanced con-
vex compact subset in E. Assume that E has (Qp):

(Qp):¥pIq.d,C>0 [ell2'" < C o]} o]
Then [H(B)]' € (LB).

Note that in the definition of (Qp), by choosing ¢ sufficiently large,
we may assume that C' = 1.
We need the following:

Lemma 2.2. Let E and B be as in Theorem 2.1. Then B is a set of
UNIqUENESss.

Here we say that the compact set B is a set of uniqueness if for every
f €H(B), fip =0 implies f = 0.

Proof: First, since F has (QB) by the hypothesis, it is easy to see that
span B is dense in £. Now given f € H(B) with fjp = 0, consider the
Taylor expansion of f at 0 € B in a balanced convex neighbourhood W
of B in E:

f(w):ZPnf(x), »’L’EW

n>0
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where

2mi Antl
[A|=6,>0

Pof(z) = — / TOT) ) for z e B

Since P, f are n-homogeneous polynomials and P, fjp = 0, it follows
that P, fispan 5 = 0. By the continuity of P, f and by span B = E, we
have P,f = 0 for n > 0. Thus f = 0 in W and hence B is a set of
uniqueness. O

Proof of Theorem 2.1: Since H(C) = AZ(a) where a = (o) with a; =
j for 7 > 1, by Vogt’s theorem it suffices to show that every continuous
linear map T': [H(B)]" — H(C) is compact.

(i) Consider the function f: B — H(C) induced by T"
f(@)(A) =T(0;)(\) for z € B, A € C,
where 0, € [H(B)]’ denotes the Dirac functional associated to x € B:

(:02) = p(x) for ¢ € H(B).

It follows that f is weakly holomorphic, i.e. po f € H(B) for u €
[H(C)])', because T"(n) € [H(B)])” = H(B). By Grothendieck’s factor-
ization theorem [9], this yields that f: B — H°(2A), where A is
the open unit disc in C, is extended to a holomorphic function f on a
neighbourhood W of B in E.

Let g: (B x C)U (W x A) — C given by

_Jf@)(A) forzeB,xeC
o) = {f(x)()\) for z € W, A € A.

Obviously g is separately holomorphic in the sense of Sciak [14], this
means that g(z,-) is holomorphic in A € C for every x € B and g(+, \) is
too in € W for every A € A. We denote by F the family of all finite
dimensional subspaces P # 0 of E(B), where E(B) is the Banach space
spanned by B. For each P € F consider gp = g((Bnp)xc)u((wnP)xA)-
Since B N P is the unit ball in P and A is not polar, by Nguyen Thanh
Van-Zeriahi [11] gp is uniquely extended to a holomorphic function gp
on (W N P) x C. The uniqueness implies that the family {gp : P € F}
defines a Géteaux holomorphic function § on (W N E(B)) x C. On
the other hand, since § is holomorphic on (W N E(B)) x A, Zorn’s
theorem [1] implies that g is holomorphic on (W N E(B)) x C. Consider
the holomorphic function g: (W N E(B)) — H(C) associated to §. We
prove that ¢ can be extended to a bounded holomorphic function on a
neighbourhood of B with values in H(C).
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(ii) The following is a modification of Meise-Vogt [8] and of Le Mau
Hai [5].

Let {"'H'y} ) and {[e]|,},—, be two fundamental systems of semi-
o=
norms of E and H(C) respectively. Since H(C) has (DN) we have
IpVa,d>03k,C>0 [efl:T" < C |, [lo]l2-

Note that by replacing k with some k' > k, we always may assume
that C' = 1. Choose « such that U, C W and

M(a,p) = sup{||g(ac)||p rx €U, ﬁE(B)} < 0.
Let w, from E into E,, the Banach space associated to | e]|, be the
canonical map and A = Walpp E(B) — E,. Since E is nuclear,
without loss of generality we may assume that E(B) and E,, are Hilbert

spaces.
Then, by [12, Proposition 8.6.6, p. 143], A can be written in the form

A(z) =D Nj(,y5)%
j=1
where A\; > 0Vj > 1, A = (A;) € s, the space of rapidly decreasing
sequences, (y;) is a complete orthonormal system in F(B) and (z;) an

orthonormal system in F,.
Since

we have

It follows that

>

%) Yj GUDH VmZL
j=1

J

where p; = Jik and ¢ > 0 is chosen such that

u€ By u= ijzj and & <pi Vi>1p Cwa(Us)
j=1

and

=1
DI
>
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We set
Xk € El: 2 € Ey — (2,2k)a, the scalar product in E,.
Then
[xell =1 Vk=>1

and
VE>1 Akl = S IxrA(z)]
z||<1

" = HSlulgl [(A(z), 21|

= sup |Ax(®, yx)|
lz]| <1

= A\ (by the Bessel inequality: |(z,yx)| < ||z|]).

Now put
2) Pr = Wi Xk
and choose § such that
*x14d * *d
(3) 3d,C >0 o[z < Clo][3; [loll"

For 3 sufficiently large, we can choose C = 1.
From (1)—(3) we have

1+d * 1+d * d
lenlly ™ = llwaxelly ™ < A" Xl Ixells’ <X VE> 1.

Hence
lowlls < W)™ Ve 2 1.

Let h = wpg. Since M(a,p) < oo and A(Uy N E(B)) is dense in
wa(Uy), h is holomorphically factorized through A: U, N E(B) — U,
by h: U, — [H(C)],, where U, is the unit ball in E,. This may be
illustrated in the following diagram.

U, NE(B) H(C)
A h Wp
Ua iL [H(C)]P
For each m = (m1, ma,... ,my,0,0,...) € M, with

M = {m = (m;) € NN m; # 0 only for finitely many j € N} ,
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we put

+ pnzn)

e (L) [ Mzt
" 2 pmtl
lo1l=p1 |p2]=p2 lon|=Hn

where

m+1 . mi+1 m+1 My, +1
p =py " py? P

dp =dprdps . .. dpn,
then

M VYm e M.

lamll, <

From the relation

Ly, €UaNE(B) Vk>1,

=

>/|b

we deduce that

~ Pj “ Pj
W\ Dopizi | =hA| D Fwi | =wd | D3 ws
J>1 j>1 "7 =17

On the other hand, by Cauchy’s theorem, we get

+ Pnzn)

183

dp

Uy = Ln/ / / h(prz1 + paza + -
m 27 pm,+1

[p1l=Ap |p2|=A2p2 |pnl=Anpn
It follows that

n

wpf](z ZUJ)

wm) [ | g

)m+1
[p1|=A1p1 [p2|=A2p2 [Pn|=Antin

dp

NI

+0nYn)

I " 9(01y1+02ya+ - -
P am A\ 27 gm+1

[01|=p1 |02|=p2  |On]|=pn

dp.

do

where
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We have

], < @)

@S Ny YmeM, VYq2>p,

where

N(g) = sup W@w;$=§:Q%MMKﬂ§MVj21 < oo,
j=1

because the set

w=Y &y &y Vi1

j=1

is compact in FE(B). B
Since H(C) has (DN), for every ¢ > p and d = ¢ there exists k > ¢
and C' > 0 such that

14+d d
[ofl, " < C o]l [l
where 0 < § < 1 is chosen such that

=t 1_t>0 ith ¢ 1
=t—- — wi = —.
1+d 2(1+d)

Again we may assume C' = 1. Then

m g

Se= 3 ™ llball, [T Iesl5™ < D2 ™ llbwll, JT )™
Jj=1 J=1

meM meM
t
= 3 el 0 = T A | A bl
meM meM
1—t
i (1-nd )\m(t71+2)
< N(g)'N(k) 71 M(a,p) 11 Y o™ 7
M m(t+1—7£+(179d)
M 1+d | 14d
t 1=t a-vd )\m(t_ﬁ)
< N(@' N T M(ap) T3 A
meM H

€

Since A = (\;) € s, the sequence (2—;) is in {! and hence for R =
> (§> we have
i>1 Hj

AE
2R >R > L for j > 1.
s
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This implies

| =

AE
0< I i>1%<
o gy 92 1)
We have

S= Y ™ llomly [T lesllz™
j=1

meM

1—t (1—t)d

< N(a)'N(k) 51 M (,p) =0 3 (W\E)m

Hence the form

e Y b [T (ps(@)™

meM j>1

defines a bounded holomorphic function z; on Uy with § = 4= such

that h1 |su,ne = §|susns, ie. hi(2)(A) = g(z,)) for z € 6Us N B
and A € A. Since span B = E, by considering the Taylor expansion of
hi(-Y(N) — g(-,\) in z € span B at 0 € B, we get hy(z)()\) = g(z,\) for
2z €6UsN B and X € A.

(iii) Consider the separately holomorphic function hy in the sense of
Siciak [14] on (6Us x C) U (W x A), induced by h; and g. By the same
argument as in (i), hq is holomorphically extended to a function hy on

W xC. Let hy: W — H(C) denote the holomorphic function associated
to hy. Since B is convex, balanced and the equality (h; — §) |5UBQB =0
holds, from the Taylor expansion of (h; — §) | at 0 € B it follows that

hilg =§ls.
(iv) Applying a similar argument as in (ii) to each point of W, it
follows that h; is locally bounded. Thus, by shrinking W, without loss of

generality, we may assume that hy (W) is bounded. Define the continuous
linear map S: [H®(W)]" — H(C) as

S()(\) = p(hy(8)(N)) for p € [HZ(W)] and A € C.
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We have
T\ D aide; | () =D a;T(0:,)(N) = a;f(z;)(N)
j=1 j=1 j=1
=Y ag(x)(N) = Y ajhi(z;)(N)
j=1 j=1
=3 a;8(0,,)(N) =5 Y ;b
Jj=1 j=1
for z1,... ,z,, € B and ay,qs, ... ,a, € C.
On the other hand, since B is of uniqueness and H(B) is reflexive, it
follows that S = T. Hence T is compact. O

For the formulation of the second theorem we recall the following [2],
[3]:
An upper-semicontinuous function ¢: F — [—00; +00) is called plu-
risubharmonic if ¢ is subharmonic on every complex line in E. A sub-
set B C F is said to be pluripolar if there exists a plurisubharmonic
function ¢ on E such that ¢ # —oo and p g = —o0.

Theorem 2.3. Let E be a nuclear Fréchet space with the bounded ap-
proximation property and B a balanced convexr compact subset in E.
Then the following assertions are equivalent:

a) E has (Qp).
b) [H(B)] has (LB*).
¢) B is not pluripolar.

For the proof of Theorem 2.3 we need the following lemma which was
proved independently in [6].

Lemma 2.4. Let K be a compact subset of a Fréchet space E such that
[H(K)]" € (LB*). Then K is a compact set of uniqueness.

Proof: Given f € H(K) with fjx = 0. Choose a decreasing neighbour-
hood basis {Vi} of K such that e, := sup{|f(z)] : z € V;} < 1 for
k> 1.
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Since fix = 0 and K is compact, it follows that £ \, 0. By applying
the (LB*°) property of [H(K)]’ to the sequence p, = /—logey / 400
and to p =1, we can find ¢ > 1, N; > 1 and C' > 0 such that

Vi 3k € [N < CIF e, 11T

This inequality gives

pkn,
fl|*ern for n > 1.

1
171, < C* LA™
Take 1 < k < Nj such that

H{n:k, =k} =+oc0.
Then

1

Pk
£l < WA A1

. NarTn
= (g)1tV-logsk (g) 1V -loger — () as k — +oo.

Hence f = 0. O

Proof of Theorem 2.2: a) =-b): By Theorem 2.1.

¢) = a): By Theorem 7 in [2].

It remains to show that b) = c).

Let B be pluripolar. Choose a plurisubharmonic function ¢ # —oo
on E such that ¢|p = —oo. Consider the Hartogs domain €2, given by

Q, = {(z,)\) A < eﬂp(z)}.

Then €, is pseudoconvex. Since E has the bounded approximation
property, there exists f € H({2,) such that 2, is the domain of existence
of f (by [13]). Write the Hartogs expansion of f,

F@,X) =Y ha(2)A" for (z,)) € Qy,

n>0

where

b () = L / f;\fﬁ) dX\ forn >0, (6 > 1).

[A|=e—Sw ()
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It is easy to see that h,, are holomorphic on E, because of the upper-
semicontinuity of ¢.

Let g: B — H(C) given by g(z)(A) = f(z,\) for z € B, A € C.

Then g is weakly holomorphic. Indeed, given p € [H(C)]’, take r >
0 such that u can be considered as a continuous linear functional on
H>®(rA). Since B x C C €, we can find a neighbourhood V' of B in E
such that V xrA C Q. Hence f induces a holomorphic extension of yog
to V. On the other hand, since B is a set of uniqueness, the form y,+—
o g, the unique holomorphic extension of u o g for p € [H(C))’, defines
a linear map T': [H(C))) — H(B). Again since B is a set of uniqueness,
T has a closed graph. The closed graph Grothendieck theorem [4] yields
that T is continuous. By Vogt [15] we can find a neighbourhood W of
0 € [H(C)]’ such that T (W) is bounded in H(B). By the regularity of
‘H(B) [1] there exists a neighbourhood V of B in E such that T'(W) is
contained and bounded in H*° (V). This implies that g is extended to a
holomorphic function §: V. — H(C). Obviously § = f on non-empty
open subset of Q,, where g(z,\) = g(z)(\) for z € V, A € C. By the
hypothesis €2, is the domain of existence of f, thus we have V' x C C Q.
Hence ¢y, = —oo which is impossible. O

3. The structure (2, Q)

Theorem 3.1. Let I be a nuclear Fréchet space with a basis and B a
balanced compact subset in E. Then [H(B)]" has either (Ug) or (Qp) if
and only if E has the same property.

Proof:  Necessity. Since the forms f — f'(0) and u — [u], where [u]
denotes the element of H(B) induced by u € E’, define the continuous
linear maps P: H(B) — E’ and Q: E' — H(B) satisfying PoQ = id,
it follows that E’ can be considered as a subspace of H(B). Hence
E =~ E" which is a quotient space of [H(B)]’. This proves the necessity
of the theorem.

Sufficiency. Tt suffices to prove the case FE € (QB).

Let (ej) be a basis of ' and (e}) its dual basis in £’. Since E is

nuclear, without loss of generality we may assume that

%
E :||ej

1

*

41 llesll, < s for ¢ > 1.
i>1
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Write each f € H>(B + U,) in the form

flz+u) ZPf ZPf Ze;(u)ej

n>0 n>0 i>1

=Y D e (u). el (W) Puf(x)(eyy, - eg,)

n2071,J2,. ,jn2>1

where

A
P = o [ LA
IAl=1

d\, weU;andze€ B.

The above equality is correct, because

Z Z He]1||q+l ||e;n :

* el Nl
n>0 j1,52,- ,dn>1
« Pnf(if) Cj1 Cin
e
Tenl.” " Tl

n
<N, S (Sl N,
n>0 j>1
n\" 1
<fllpsw, > () o <oo
n>0 ’

From the above inequalities, it follows also that H(B) = limind H,,
q

where
= {rem=B+0):1Ifll, <}

with

1111, = sup Yoo > el e E 1 Paf @) (s e,

n2>0j1,42,... ,jn2>1
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Applying (Qp) with C' = 1 we have

1+d

I11£11l,

1+d
=swp o> D el el B @) ey ves)
TEB | 02041520 jn>1
< * *14%1 * *H%i P, . N\
= sup Z Z |ej1|B ‘ inllB ‘ nf(x)(e]u"'vejn)'
T€B | 5051 gor in>1

1+d

_d_ _d_ _d_
XZ Z ||6;1H;Hd"'||6;n||;1+d |P”f(x)(ej17"'7ejn,)|l B

n2071,j2;. ,Jn 21

IN

2 D ONED DI T I E L CICRTN

n2071,42,- jn21

*
J1

w2 e

n>0j1,j2,... ,jn 21

= 1£1ll I1£11

for f € H*(B+1U,).
Hence [H(B)] € (2p) because H(B) is reflexive. d

|
"

e |10 1Paf (@) (egis - ve5,)]
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