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BIFURCATIONS OF LIMIT CYCLES FROM CUBIC
HAMILTONIAN SYSTEMS WITH A CENTER AND A
HOMOCLINIC SADDLE-LOOP

YULIN ZHAO AND ZHIFEN ZHANG

Abstract

It is proved in this paper that the maximum number of limit cycles
of system

dz _
d_f - y7
% =kr — (k+ 2% + 23 + e(a + Br + y22)y
is equal to two in the finite plane, where k > %, 0< el <1,
|| 4+ |8] + |v| # 0. This is partial answer to the seventh question

in [2], posed by Arnold.

1. Introduction

Consider the Abelian integral
(L.1) I0) = § Yiew)do - X(wy)dy, he
Ty

where H(z,y), X(z,y) and Y (z,y) are real polynomial of z and y, I'j
is the compact component of H(x,y) = h, ¥ is the maximal interval of
existence of I',. Finding the lowest upper bound for the number of zeros
of I(h) is called the weakend Hilber-16th problem [1], which is closed
related to determining the number of limit cycles of perturbed system

d H

_‘T = a— +€X(Jﬂ,y),
(1.2) dt Oy

dy OH

T LY

o o € (z,9),

where 0 < |e| < 1.

This work was done in 1995-1998, when the first author was a Ph.D. student in
Peking University.
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In particular, suppose
1

(13) H(z.y) = 3u* +U(x) = h,

where U(z) is a real polynomial of z with degree n. In this case, finding
the number of zeros of I(h) is one of the ten problems in [2]. When
n = 3, this problem was investigated by many authors (e.g. [7], [8], [10],
[11]). When n = 4, some results were given by [5], [12], [13], [16], [17],
but this case is far from complete solving. In this paper, we study the
case n = 4 and the Hamiltonian vector field dH = 0 possesses one center
and one homoclinic saddle-loop, which has the following normal form

dr_,
(1.4) jt

d_:: =kx — (k+1)2? + 23,
where k > 2.

The system (1.4) has the first integral
Ll 1, 5 1 3_ 1 oa_

(1.5) H(z,y) = 5Y ka +3(k+1)x 12 = h,
and the phase portrait is shown in Figure 1.1. The closed ovals T’y
are defined for Hamiltonian values h € (=25t 0). H(z,y) = =2kl

corresponds the center (1,0), I'y = {(z,y) | H(z,y) =0, 0 <z < 1 =

2D~y zékfz)(%fl)} corresponds the saddle point (0, 0) and homoclinic
loop. The critical point (k,0) is a saddle.

Figure 1.1
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Denote
(1.6) I;(h) :74 zlyde, i=0,1,2,
Ty
(1.7) I(h) = aly(h) + BI1(h) +vI2(h),

where the ovals T, h € (=251 0), has negative (clockwise) orientation
coinciding with the orientation of the vector field (1.4), a, 8 and ~ are
arbitrary constants. The central result of this paper is the following

theorem:

Theorem 1.1. The mazimum number of limit cycles of the perturbed
system

@ _y
(18). o
d_?t/ = kz — (k4 1)2? + 2% + e(a + Ba + y22)y,

is equal to two in the finite plane, where k > 11+4_\/§7 0 < le] < 1,
laf + |8 + [v] # 0.

Corollary 1.2. For k > 11+4—\/§7 either I(h) vanishes identically or its
lowest upper bound of the number of zeros is equal to two, which is partial
answer to the seventh problem in [2].

The paper is organized as follows: In section 2, Picard-Fuchs equa-
tion satisfied by Iy(h), I1(h) and I2(h) is derived and the expansions of
I(h) near its endpoints are given, the latter results reveal the connection
between the Abelian integrals I(h) and the limit cycles of system (1.8)
which tend to the center (1,0) or homoclinic loop of (1.4) as ¢ — 0. In
section 3, instead of estimating the number of zeros of I(h), we will prove
that I”(h) has at most two zeros, i.e., I(h) has at most two inflection
points in (_21’“2“'1 ,0), which implies the lowest upper bound of the num-
ber of zeros of I(h) does not exceed three in the same interval. Using the

fact w(h) = % satisfies a Riccati equation, we get w’(h) > 0. Hence,

~ I// h I// h _
the curve Q = {(w,v) | w = I(}],Eh;, v = IZ'Ehg’ h € (Z25tL0)} can be
defined. It is readily seen that the intersection points of line o + fw +

yv = 0 with Q in wv-plane correspond the zeros of I"(h), which shows
that the convexity of ) determinates the number of the zeros of I”(h).
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In section 4, we make precise connection between the intersection points

of L: a4+ BP +vQ = 0 with the centroid curve Q@ = {(P,Q) | P =
L1 (h) Q = I (h)
Io(h)> - Ii(h)
on the other hand. Finally, the main results of this paper are proved in
section 5. Some techniques in section 4 and section 5 are borrowed from

[4].

} on one hand and the zeros of Abelian integral I(h)

Remark. Unfortunately, the techniques we use in this present paper do
not fit for the case of 2 < k < H%m. Therefore, throughout this paper,

we suppose k > 111—\/@ > 4 unless the opposite is claimed. Some com-
putation in this paper is done by the computer program “Mathematica”.

2. Picard-Fuchs equation and the asymptotic
expansions of I(h) near its endpoints

In this section we shall derive Picard-Fuchs equation satisfied by I;(h)
and describe the behaviours of I(h) near h = 0 and h = =25+

Lemma 2.1. Iy(h), I(h) and I3(h) satisfy the following Picard-Fuchs
equation

(2.1) (4hE + S)J' = NJ,
which is equivalent to
(2.2) G(h)J =RJ,

where E is an unit matriz of order 3, J = col(ly, I1, I2), and

0 tk(k+1) Tk +k-1)
S=10 3k(k*—k+1) —El(kJrl)(k—l)Q ,
0 2k(k+1)(k—1)% L(-k*+k+k*+k—-1)
3 0 0
N = —2(k+1) 4 0],
$(-k*+k-1) —2(k+1) 5

ago(h) ao1(h) ao2(h)
R = alo(h) all(h) a12(h) y
azo(h) a2 (h) az(h)
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G(h) = 192h (h - _2]1“; 1) (h - W) ,

ago(h) = 144h* + g(—mk‘1 + 21k — k? + 21k — 10)h
— gk?’(% —1)(k —2),
ao1(h) = —g(k + 1) (k* + 5k + 1)h + %kz’(k +1)(2k — 1)(k — 2),
aoo(h) = 20(k% —  +1)h — ng(k _ )2k — 1),
aio(h) = —16(k 4+ 1)h? + %k(k +1)(2k — 1)(k — 2)h,
ay1(h) = 192h2 + §(4k4 + 6k + 8k? + 6k — T)h,
ar2(h) = 20(k +1)(k — 1)2h,
ago(h) = 16(—k? + k — 1)h% + %k@(k —2)(2k — 1)h,

aon(h) = —32(k + 1)h2 — gk(k +1)(TR? — 13k + T)h,
aga(h) = 240h? 4 20k(k* — k + 1)h.

Proof: 1t follows from (1.5) that

oy 1

2. A
(2.3) oy
and

Oy 2 3
(2.4) y%:kzx—(k—i—l)x +z°.
Obviously, (2.3) implies that
(2.5) (h) :7( “

r, Y

Mutiplying (2.4) by y and integrating over I'j, give

(2.6) Iy = —kI 4+ (k+1)I,.
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Use (1.5) and (2.5) to get

i 2
I,(h) = 7{ T g
r, Y
(2.7) _ ]{ 24 (2h + ka? — %(k; +1)2® + %x‘l)
'y Yy

dx

2

1
=2l + kIj 5 — 3 k+ 1), 4+ 511(*4'

On the other hand, using (2.3), (2.4) and integrating by parts, we have
1 .
Ii(h) = —- ]{ = dy
t+1Jp,

1 f T (kx — (k+ 1)2? + 23) d
I'y

(2.8) _

it Y *
1
= _H__l(ka(+2 —(k+ DI s+ Ii).
Eliminating I;_, from (2.7) and (2.8) yields
1
(2.9) (i+3); = 4hI + kI, — g(k + I, 5.
This gives
1
(2.10) 31y = 4hI} + kI — g(lc + 1)1,
1
(2.11) 41 = 4hI] + kI — g(k+ I,
1
(2.12) 51, = 4hI) + kI — g(k +1)1I%.

Substituting (2.6) into (2.10), we obtain the first equation of (2.1). The
formula (2.8) implies

(2.13) i =—(+DIL(h) — kI o+ (k+ 1), 5.

Taking ¢ = 0 in (2.13) and using (2.6), the formula (2.11) give the second
equation of (2.1).

Repeating the same arguments, we obtain the third equation. The
lemma has been proved.

Denote

(2.14) P(h) = Qh) = ;

where h € [Z2EEL 0]
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Proposition 2.2. P(h), Q(h) are analytic function for h € [=25EL 0),
and

i) I; <211€2+1> —0, L(h)>0, i=0,1,2,
k41 k41
i P R I V1 P >0, Qh) >0,
12 12
k41 k-2 ok 41 k-3
Gy p _ / —_ M2
i) < 12 ) a1 @ ( 12 ) 20k — 1)’

pr —2k+1Y _ (k—2)(—257 + 257k — 110k2?)
12 72(k — 1)° ’
iv)

o —2k+1\ 651 — 788k + 467k> — 110k3
12 B 72(k —1)5

Proof: The results i) and ii) follows from Green’s formula. P(=2%H) =
Q(=2:H) = 1 imply that

1+o(h— _21’3+1) _ 1+o(h— —_21k2+1)

= _ 9 Q( )_ —
1+ o(h — =2Et1) 1+ o(h — =2kt1)

as h — =2EtL - Noting [;(h) is analytic at h = =2EEL (see [15]) and
Io(h) > 0 for h € (Z2EEL 0), the formula (2.15) implies that P(h) and
Q(h) are analytic functions for h € [Z2£H ().

Using

(215  P(h)

Iy - I
= —Ig ,

150y — Il

P/
Iy

Q/
and system (2.2) give

(2.16) GP' = ao + (a11 — aoo) P + a12Q — a1 P? — ap2 PQ,
GQ' = azo + az P + (a2 — apn)Q — ag1 PQ — ap2Q?.

Differentiating (2.16) once (resp. twice) yields iii) (resp. iv)).

It is well known that I(h) has the expansion near h = =2EtL (see
[15])

—2k+1 —2k+1)\2
(2.17) I(h)—b1<h— 5 >+b2(h— 5 >+
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Theorem 2.3.
i)
—2k+1
=Gttt ().
12
(k—2)8+ k-3, (—2k+1\
by = — I b =
2 2(k — 1)2 o\ 12 ifbr =0,
5(k—2)8 ., [—2k+1 )
bs = I by =bs =0.
ST 6(k—1)3(k—3) °\ 12 ifor=b2=0
i) If by = 0 (resp. by = ba = 0), by # 0 (resp. by # 0), then there
exists one (resp. two) zero of I(h) tend to h = =2EEL je. sys-

tem (1.8). has at most one (resp. two) limit cycle tend to (1,0).
ili) The conditions by = ba = bs = 0 hold if and only if I(h) = 0.

Proof: (i) It follows from (1.7) and (2.14) that
(2.18) I(h) = Io(h)(a+ BP(h) +~vQ(h)),
which gives

(2.19) bm;%I{E:(?)ngﬂyhna+ﬁPuw+yQUmod}

Jj=1 }L:—Zlk;—l

Therefore, the result i) follows from Proposition 2.2 and above equality.

(ii) In a neighbourhood of (1,0), The Poincare map is
P(h) = eI(h) + o(e),
which yields ii).

(iii) The conditions by = by = b = 0 hold if and only if

at+f+y=0,
(k=2)8+(k—-3)y =0,
B=0,

which implies « = 8 = v = 0. Hence, I(h) = 0.
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Rewrite (1.5) in the form

1
(2.20) §y2 + ®(z) = h,
where ®(z) = —3ka? + 1(k + 1)2® — Ja* satisfying
(2.21) &' (x)(x—1)>0 for =€ (0,1)U(1,z).

For any z € (0,1), there is an unique Z € (1, x), such that
(2.22) O(x)=0(z), 0<ax<1<T <.

Therefore, we can define a function = Z(x) for 0 < z < 1 satisfying
(2.22). By (2.21) and (2.22), we have

Az ¥'(x)
de — /()

(2.23) <0.

Lemma 2.4. 1 <z+7 <2, 22 < 1.

Proof: Let

(2.24) a=z+72Z, and b=aT.
The equality (2.22) implies that

1 s 1, 1 1]
3(k+1)a +4a —&-b{g(k—i—l) 2(1} = 0.

Taking a = 2(k+ 1) into (2.25), we have — < (2k — 1)(k — 2) = 0, which
contradicts the assumption & > 2. This shows a # %(k + 1). Hence

1
(2.25) Sha—

_ 6ka —4(k + 1)a® + 3a®
B 6a — 4(k + 1)

(2.26) b

To find the maximal or minimal value of a(z), we consider the equa-
da(x)
dx

tion = 0, which is equivalent to
(2.27) ' (z) + @'(z) = 0.
The relationship

P+ T=a’>—2b
and (2.26) yield

(2.28) () + ¥ (F) = %a(a —9)(a - 2k).
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The inequality 0 < x < 1 < T < k implies 0 < a < 2k, hence a = 2 is
the unique root of the equation (2.27). Noting = € [0,1] and a(0) = x1,
a(l) = 2, we have

rn<a=x+2z<2,
which implies that 27 < (2 — ) < 1.
Near the value h = 0 corresponding to a saddle-loop I'g, Abelian
integral I(h) has the expansion [14]
(2.29) I(h) = co + c1hinlh| + cah + - - -
with cg = 1(0), ¢1 = ¢div(X,Y)|(0,0), c2 = I (0) if ¢; = 0, where T is a
constant. Using this formula, we obtain
Iy(h) = Ip(0) + corhin|h| + co2h + - - -,
(2.30) Li(h) = 1(0) + 11 (0)h + -+,
Iy(h) = I(0) + Iy (0)h + - -
It follows from (1.7) and (2.30) that
co = alo(0) + B1;(0) + v12(0),
(2.31) ¢ = acor, co1 # 0,
¢y = BL(0) + vI,(0) if a=0.

)
)

Lemma 2.5.
. Io(h _op
i) %(Ifghg) >0, h e (Z35,0),

i) 11(0)13(0) — I;(0)12(0) > 0
Proof: (i) Denote

1.2 _ %2 dz
&(x) = 7~ddz, x € (0,1).
T—x;
It follows from (2.23) that
k—xx

£(@) k+1l—z—2
which gives

’ A x, T

£ (@) (. 7)
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where

A@@)(%m%) (h+1—z—3)+ <1+%> (k — 27)

1
:7~~—12~—k‘2 —12 —k2.
T T~ V@ B (e~ 1P = b))
Noting 0 < z < 1 < & < k, we have A(z, ¥) < 0, which implies £ () < 0.
Use this result and Theorem 1 of [9], we get i).

(ii) By symmetry and = Z(z), z = Z(2), y(2) = y(z), y(2) = y(2),
we get

11(0)1,(0) — 1;(0)12(0)

where

O(x,2) =x2(2 —x) — 22(2 — %)—z —xzZ(Z — x)é +zZ(z—=x

&(zx) is defined as above. Since

dz dz ,
%<0,£<0 and y (r) >0 for ze€(0,1),

we get 11(0)15(0) — I5(0) 1, (0) > 0.

'(x) <0,

Theorem 2.6. i) Ifcyg =0, ¢1 # 0 (resp. co = c1 = 0), then I(h)
has at most one (resp. two) zero near h =0, i.e., system (1.8). has
at most one (resp. two) limit cycle that tend to the saddle-loop Tg
of system (1.4).

ii) The condition cy = ¢1 = c2 = 0 is equivalent to 1(h) = 0.
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Proof: (i) It follows from Theorem C of [14].
(ii) Obviously, ¢g = ¢; = ¢ = 0 if and only if
alo(0) + BI11(0) + v12(0) = 0,
a=0,
BI,(0) + 715 (0) = 0.
Lemma 2.5 implies that
Io(0) 11(0) I2(0)
L0 0 | = —[n0)10) - [0)(0)] < 0.
0 I,(0) I(0)
Thus, ¢cg = ¢ = co = 0 if and only if « = 8 = v = 0, which implies
I(h)=0.
We end this section by several inequalities, which are crucial for our
analysis in next two sections.

Lemma 2.7.
i) .[1(0) < IQ(O) < Io(O),
ii) (k—2)I5(0) — (k—3)I1(0) — IH(0) < 0.
Proof: (i) Lemma 2.5 i) and Proposition 2.2 imply that
_ B(ZEE) _ B(h) _ b(0)

C L(=2E) T L(h) T 6L(0)

for h € (=25tL0), which gives I1(0) < I5(0). On the other hand,

L) - T =2 [ @ =yde+2 [ G-1)y@E) d
(2.32) : ' /0 /1

1
= Y (o-1)G-1)G—2)(k—2—F—27) dz.
=2 [ Ss-nE-DE-a)k )d

It follows from Lemma 2.4 that k— (x+2+2x%) > k—3 > 0. Hence, appli-
cation of (2.32) yields I5(0) < I5(0). Summing up the above discussion,
we get ).

(ii) Using same arguments as (i), we have
(k —2)I2(0) — (k = 3)11(0) — Io(0)

1

- 2/0 %(x —1)E -G —a)k—z—F — (k — 2)a7] da.
It follows from Lemma 2.4 that k—x—2 — (k—2)zZ > 0. Since ®'(z) >0
and 0 < z < 1 < Z, the above equalities gives ii).
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3. Behaviour of curve w(h) = ﬁj—gg and relevant results
0

Lemma 3.1. For h € (Z25t0), I}/(h) > 0.

Proof: Chow [3] and Gavrilov [6] have proved that the period function

of (1.4) is monotonic, i.e., I{/(h) # 0 for h € (=250). On the other

hand, since I{j(h) > 0, the formula (2.30) implies co; < 0. This gives
Co1

as h — 07, which yields the result.

Define
AD —2k+1
(31) w(h)— I(l)/(h), h € T,O .

In this section, we shall derive the Riccati equation satisfied by w(h)
and discuss the behaviour of curve w(h). The upshot is to prove that

I(h) has at most three zeros in (=25t 0)
Lemma 3.2.
—12h
32) Ij(h) = ——+—=1(h
1 36h

T (k—2)(2k — 1) k| ).

Proof: Differentiating both sides of (2.1) yields

(3.3) (4hE + 8)J" = (N — 4E)J',
where
-1 0 0
N —4E = —3(k+1) 0 0
$(—k*+k-1) —2(k+1) 1

Eliminating [} from the first two equations of (3.3), we get (3.2).
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Lemma 3.3. The integral Iy, I satisfy the following equation
1"\ _ (A(h) B(h)) (Iy

where

48(=Tk? +22k —T7) o 4, 4 3 )
—(14k* -2 —10k* — 27k + 14)h
I R L 14

+ gk?’(% —1)(k —2),

A(h) =

1 [—432(k2 — k+1) 4

= R% 4+ = (—2k* + K3 k? 4k —2)h
B =127 [Tar— =g T3 A0k -2)
—%/&(21{ —1)(k —2)(10k* + 11k + 10) | ,
16(k+1)(Tk?> =13k +7) ., 4
= - - —2
C(h) - Dk 2) W+ Sh(k+1)(2k = 1)(k = 2)h,
—48(17k%* — 38k +17) o, 4. 4 X )
= = - - 10)h.
D(h) T 0D h? + 2 (10k* = 21k° + 10k* — 21k + 10)

Proof: Differentiate once (3.3), we get
(3.5) (4hE + 8)J" = (N — SE)J".

Substituting (3.2) into the first two equations of (3.5), we get (3.4).

Theorem 3.4. The ratio w(h) satisfies the following Riccati equation
(3.6) G(h)w'(h) = C(h) + (D(h) — A(h))w — B(h)w?.

Proof: Since

"y 1"

’_ Il 0 _Il IO

- 11\2 ’
(I5)

the equation (3.6) follows from Lemma 3.3.

12

Lemma 3.5. For h € (=2££L 0), B(h) < 0, C(h) < 0, which implies
(D(h) — A(h))* + 4B(h)C(h) > 0.
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Proof: Denote

4
Bi(h) = §(—2k‘1 + k% + 60k + k — 2)h

— %kz(% —1)(k — 2)(10k* + 11k + 10),

L6k + (TR — 13k +7), 4o 1ok — 1)k — 2),

Ci(h) = 2k —1)(k —2) 3

which gives

(3.7) B(h) =

1 [—(432(k2—k+1)h2+31(h) ,  C(h)=hC1(h).

kel | (2k—1)(k—2)

Since Bj(h) is linear function of h and

By (0) = —le(zk — 1)k — 2)(10k2 + 11k + 10) < 0,

B ( 2';; 1) 9(2k — D) [(k — 2)(10k* + 947

+ 7k* + 54k + 109) + 216] < 0,

this shows Bj(h) < 0. It follows from (3.7) that B(h) < 0.
Similarly, we get C7(h) > 0, which implies C'(h) < 0 for he (=== 2k:+1 0).

Proposition 3.6. For h € (Z25L0), w(h) is analytic and
i) w'(h) >0,

. k k
ii) 1(02_21)(321k+?1 <w(h) <O0.

Proof: By Theorem 3.4, the curve w(h) is the trajectory of system

h = G(h),
(3-8) {w = C(h) + (D(h) — A(h))w — B(h)w?

which has four critical points in {(h,w) | =25EL <A <0}: a stable node at

E1(0,0), two saddles at J; (=25t 1(5};1_);2112+2)1) and Fs (0, %),

an unstable node at Jo(=2EL 1), The isocline w®(h) is determined by
algebraic curve

(3.9) C(h) + (D(h) — A(h))w — B(h)w?(h) = 0,



220 Y. ZHAO, Z. ZHANG

where
D—A— D — A2 +4BC
(3.10) Wt (h) = vl )’ +4BC
2B
D—-—A D — A)?2 +4BC
(3.11) W (h) = V(DA
2B
with

=0.

C(=2%+1\ (R 1)@Ek-T) o)
12 )" 10k2—3lk+31 ¢

Differentiating (3.9) once, we have

—2k+1>

(3.12) (w‘)’( B

~ 35(k —2)(k+1)(2k — 1)(2k? — 11k + 11)
B (k — 1)2(10k2 — 31k + 31)2

> 0.

Assume %— =0 at h = h and (w™)/(h) > 0 for h € (Z2£EL k), which
implies (w ) (h) < 0. Differentiate (3.9) twice to get
2
432(K? —k + 1) (w™ — Bt ) (= — BEPITEIsET))
B(h)(k +1)(2k = 1)(k — 2)(w™ — 57"

By Lemma 3.5 and (3.11), we have w™ — 224 < 0, B(h) < 0 and
w™(h) < 0. Therefore, the formula (3.13) gives (w™)”(h) > 0. This
contradicts the assumption, which yields that the isocline w = w™(h) is
monotonically increasing function for h € (= 2k+1 ,0).

Since I;(h) is analytic at h = =258 it follows from (3.4) that

2k +1\ ., (—2k+1 —2k+1\ ., (—2k+1\
A( 12 )IO( 12 >+B( 12 )12 12 =0,

which implies

(3.14) w(—%“) (ke )EE-T)

(313) (W)"(R) =

12 10k2 — 31k + 31°

Lemma 3.1 and (3.14) show that w(h) is analytic for h € [=25t1 0). On
the other hand, the formula (2.30) gives
I//

(3.15) w(0) = limy g I—(}), =0.
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Hence, w(h) is the trajectory of (3.13) from J; to E;. Since (w™)'(h) > 0,
the graph of w(h) = 5—(}), must stay in the region {(h,w) |w < w™, h €
(=2k£10)}, which implies w’(h) > 0, see Figure 3.1. The inequality ii)

12
follows from i), (3.14) and (3.15).

w

2 i /{

w"'(h)

- h

FE;

wT(h)
et
Figure 3.1

Corollary 3.7. i) Ifa+ 3(vk+Bk+3) =0, v #0, then I"(h) has
h=h*=-— (7k+ﬁk+’3§é’f¥72)(2k71) as the unique zero in (Z25EL0).
If a+ 3(vk + Bk + B) # 0, then h = h* is not the zero of I" (h).
ii) If o+ 2(vk+Bk+8) >0, —£=23 < v <0, then I"(h) has at most
one zero in (=2t 0).

iit) P'(h) <0 for h € (2££L,0).

Proof: (i) Lemma 3.2 yields

2k — 1)(k — 2)a — 12vh
(2k — 1)(k —2)
367h + (vk + Bk + B)(2k — 1)(k — 2)
(k+1)(2k — 1)(k — 2)

(3.16) I"(h) = ( I

1
1.
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If a+ 3(vk + Bk + 8) = 0, then

oy 3671 (h)(w(h) = 54)(h — h*)
(h) = (Ok +1)(2k — 1)3(k -2)

which implies that I”(h) has h = h* as the unique zero. If a + 4 (vk +
Bk + B) # 0, then it follows from Lemma 3.1 and (3.16) that

I'"(h*) = a+%(7k+ﬂk+ﬂ) I (h*) # 0.

(ii) In the case of a + %(Wk—l—ﬁk—i—ﬁ) >0, —%ﬁ <y<0,h=h"is
not a zero of I'’(h), and (3.16) is equivalent to

367(h — h*)

10 = (k+1)(2k — 1)(k — 2)16/(h)q(h)’
where
q(h) = f(h) +w(h)
and
(3.18) f(h) _ (k + 1)[(2k — 1)(k _ 2)a - 12’}/]7,] ’

36y(h — h*)
which implies

(k+1)(2k — 1)(k — 2)[a + % (vk + Bk + B)]

367(h — h*)? >0

(319)  f(h) = -

Therefore, by Proposition 3.6, we have
(3.20) ¢ (h) = f'(h) + '(h) > 0.

If —2H 3 <y <0, then h* > 0. This and (3.20) imply that q(h) (i.e.,
I"(h)) has at most one zero in h € (=25EL ).

On the other hand, if —F=23 < v < =513 < 0, then h* € (=251, 0),
o> —1(vk + Bk + ). The inequality (3.19) gives

(k+1)a
h) < f(0) = ———— <0
(k) < £0) = =5

for h € (h*,0). Hence, Proposition 3.6 yields ¢(h) < 0 for h* < h < 0.
It follows from (3.20) that g(h) has at most one zero in h € (=25 p*).
We obtain ii) by using i), Lemma 3.1 and (3.17).
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(iii) Consider the Abelian integral
I(h) = ado(h) + i (h) = Io(h)(a + P(h)).

If o > 0, then I(h) > 0.
If @ < 0, then Lemma 3.1 and Proposition 3.6 show that

I"(h) = Ij (W) (@ + w(h)) <O,

which implies the curve I(h) is concave for h € (=221 (). Therefore,
noticing I(=25H) = 0 and Iy(h) # 0, a+ P(h) has at most one zero for
arbitrary constant o. This yields P(h) is monotonic for h € (Z2EEL ).
Suppose h = hy is the zero of I(h), the convexity of I(h) implies I'(h1) =
Iy(h1)P'(h1) <0, i.e. P'(hy) < 0. However, if P'(hy) = 0, then

I"(hy) = 1§/ (h1) (o + P(h1)) + 21 (k) P (ha) + To(ha) P (h1)
= Io(h1)P"(h1) <0,

which shows P”(hy) < 0, i.e., h = hy is the maximum point of P(h).
This contradicts P’(hy) < 0. The proof is finished.

Proposition 3.8. w”(h) >0 for h € (251 0).

Proof: We split the proof by several steps.

1) First, V(h,w) =2D' —2A’ —= G" — 4B'w > 0.
It is readily seen

384
(2k — 1)(k —2)
1
+ ;’(zxk2 —k+4)(k—-1)?2 >0,
vin_ 2k =7)(k+1) ) _  384(55k> — 139k + 139)h
’10k2 —31k+31) 10k2 — 31k + 31

V(h,0) = — [(k—2)(11k — 1) + 9]k

16
21 3(k — 4)(40k> — 2
(3.21) + 3(10k2_31k+31)[k (k — 4)(40k? — 58k + 287)

+ 582k3 + (211k? — 414k) + 138] > 0.

Since V(h,w) is linear function of w and w'(h) > 0, _% <

w < 0 (see Proposition 3.6), it follows from (3.21) that V(h,w) > 0 for

h e (=35,0).
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2) If h = hy satisfies w”(h1) = 0, then W’ (hy) > 0.
Indeed, differentiate (3.6) twice to get

(3.22) G(h)w"'(h1) = C"(hy) + (D" (hy) — A”(h1))w(h1) — B"w?(hy)
+ V(hl,w(hl))w’(hl) — 2B(h1)(w’)2(h1).
By Lemma 3.5, Proposition 3.6 and step 1),we conclude that
C"(h1) + (D" (hy) — A" (h1))w(h1) — B" (h1)w?(h)

8642 —k+ 1) ES!
T2k -1k -2) (“’(hl) 3 )

2.1
(st EEDEE 1
(3.23) V(hi,w(h1))w' (hy) >0, —2B(hy)(w)?(hy) > 0.
Hence, the formulas (3.22) and (3.23) imply w’”’(h1) > 0.
3) w(Z2EEL) > 0.
To prove it, differentiating (3.6) twice, we get
o <2k+1> 35(k — 2)(k + 1)(2k — 1)

12 )~ -0 - stk s

(3.24)

where
g(k) = 2200k° — 24924k + 129246k* — 375481k>
+ 604833k% — 500511k + 166837.
This gives g(¥(4) > 0,4 =0,1,2,...,6, which implies
6,0
g\’ (4
(3.25) gk)=>_ @

=0

(k—4) >0, ke (4, +oo).

7!
Hence, the result w”(=25t) > 0 follows from (3.24) and (3.25).

4) Finally, we prove w” (h) > 0.

By step 3), starting from h = =281 if b = hy is the first point
satisfying w”(hy) = 0, then w"”(hy) < 0, which contradicts the result
proved in step 2). This implies that w”(h) has no zero. Therefore,

w’(h) > 0.

Theorem 3.9. I(h) has at most three zeros (counted with their multi-

plicities) inside the interval (=25tL,0).
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Proof: This theorem is proved by several parts.

1) We are going to prove that I”(h) has at most two zeros (counted
with their multiplicities), i.e., I(h) has at most two inflection points.
Since I(=25tL) = 0, this result implies that the maximum number of
zeros of I(h) is at most three on the interval (=25t 0).

It has been proved in Proposition 3.6 that w’(h) > 0. Therefore, we
can take w as a new parameter and consider the curve v = v(h(w)),

defined by

(3.26) Q= {(w,u) |w=w(h), v=urv(h)= % he (%0)}

where h = h(w) is the inverse function of w = w(h). It is easy to get
that

I"(h) = I} (h) (a + Bw(h) + v (h)),
I"(h) = I}/ (h) (B + ) it I1”(h) =0,
I®(h) = IJ (h)(Bw” + ") if I"(h)=1"(h)=0,

which implies that € has the following properties:
i) The intersection points of the lines I: a + fw + yv = 0 with the
curve €2 in wr-plane correspond to the zeros of I”(h).
ii) I"(ho) = I""(ho) = 0 hold if and only if I is tangent to the € at
the point (w(ho), v(ho)).
i) If (v"w’ — v'y")|h=h, # 0, then I"(hg) = I"(ho) = I (hg) = 0
hold if and only if « = 8=~ =0, i.e, I(h) = 0.
Lemma 3.2 gives
12h 36h k
@k -DE-2) |FrD@k—Dk-2)  kr1]Y

v(h)=—

which yields
12
(3.27) VW -V = CESCED Y [6(w)? + (k+ 1 — 3w)w"].

It follows from Proposition 3.6, Proposition 3.8 and (3.27) that

d2l/ Vo' — W'y

— =—7—>0.

dw? (W')3
This implies that Q is convex in wr-plane. Therefore, the maximum
number of intersection points of the line I: a + fw + vyv = 0 with Q is
at most two. By the properties i)-iii) of ©, I”(h) has at most two zeros

(counted with their multiplicities).
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2) The multiplicity of zero of I(h) is at most three. If h = hy is the
zero of multiplicity 3, then h = hg is an unique zero of I(h).

Otherwise, suppose the multiplicity of h = hg is great than 3, i.e.,
I(ho) = I'(ho) = I'""(ho) = I'"(hg). By step 1), I''(h) has at most two
zeros (counted with their multiplicities) in k € (=251, 0), which implies
I (hg) # 0. Without loss of generality, assume I*)(h) > 0. Hence,
I(h) is convex in the neighbourhood of h = hg. Noting I(=2:t) = 0,
there must exist one inflection point h = hy, hy € (’21’“2“,}10), see
Figure 3.2(a). Thus, I”(h) has two zeros, one is simple and another is
multiplicity two. This contradicts the conclusion proved in step 1).

Suppose h = hq is the zero with multiplicity 3, i.e., I(ho) = I'(ho) =
I"(ho) =0, I"(hg) # 0. Without loss of generality, assume I"’(hg) > 0.
Hence, the graph of I(h) is convex for h > hg and concave for h < hy,
|h — ho| < 0. Since I(=25EL) = 0, I(h) has another inflection point h =
hi between h = =25t and h = hg, see Figure 3.2(b). By step 1),
I(h) has no other inflection point except h = h;, i = 0, 1, which implies
h = hg is an unique zero of I(h).

3) If h = hg is the zero of multiplicity two of I(h), then another
zero h = hy (if there exists) must be simple.

Obviously, h = hg satisfies I(hg) = I'(hg) = 0, I"”(ho) # 0. Without
loss of generality, suppose I”(hg) > 0, i.e., h = hg is minimal point of
I(h). Suppose hi; > hg. Then there must exist two inflection points
between =241 and hy. Hence, it follows from step 1) that h = hy must
be simple zero of I(h). In the case of hy < hgy, we can get the result by
the same arguments as above.

Summing up above discussion, we get the theorem.

1 I

—2k+1
12 hi

=2ty -.__..ho \/ho

(a) (b)

Figure 3.2
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4. The geometry of the centriod curve

Definition 4.1. In PQ-plane, the curve

an a-{woir-rm. a-om. e[|}

is called centroid curve.

It has been proved in Corollary 3.7 that P’(h) < 0. Therefore, P can
be taken as a new parameter and denote €2 as

Q = Q(h(p)),

where h(P) is the inverse function of P = P(h).

The importance of concept of the centroid curve lies in the fact that
its geometry contains the complete information of I(h) although the
definition of © depends only on H(x,y) = h.

From this section, denoted by L, and by L. the tangents to 2 at
(P(0),Q(0)) and (1,1), i.e., at the endpoints of Q2. L denotes the line o+

BP+~Q =0, |B]+[y] # 0.

Using same arguments as [4], we have

Theorem 4.2. i) For any hy € (251,0), the equality I(ho) = 0

holds if and only if the line L passes through the point (P(hg), Q(ho)).

ii) The equalities I(ho) = I'(ho) = 0 hold if and only if L is tangent
to the centroid curve Q at the point (P(hg), Q(ho)).

iii) If I(hg) = I'(hg) = 0, then I'"(hg) = 0 holds if and only if

P'(ho)Q"(hg) — P"(ho)Q'(ho) = 0, i.e., the curvature of Q at

(P(ho),Q(ho)) is zero.

Proof: (i) Part i) of the statement follows from (2.19).

(ii) The equation of the tangent line is
(4.2) Q'(ho) P = P'(ho)Q + Q(ho) P’ (ho) — Q'(ho) P(ho) = 0.
By (2.19), I(ho) = I'(ho) = 0 is equivalent to

(4.3)

a+ BP(ho) +~vQ(ho) =0,
BP'(ho) +~Q'(ho) = 0.
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Solving (4.3) for a and 3, we obtain that

_ PU)Q (ho) — P'(h)QUhe)
(B

Hence, the equation L: o + P +~vQ = 0 is (4.2).

(iii) The condition I"(hg) = 0 when I(hg) = I'(hg) = 0 is equivalent
to

Q' (ho)
P'(ho)

5.

ﬁP//(ho) + ’yQN(ho) =0.

This and (4.3) imply the result.
Theorem 4.3. i) The equation of L. is
(4.4) ~1—(k=3)P+(k—2)Q=0.

ii) The coefficient by = 0 if and only if L passes through (1,1).

ili) The conditions by = by = 0 hold if and only if L = L., where by

and by are defined as Theorem 2.3.

Proof: (i) Part i) of the statement follows from Proposition 2.2.

(ii) By Theorem 2.3, by = I} (=25EL) (o + B + ), which implies ii).

12
(iii) Theorem 2.3 shows that by = ba = 0 if and only if
a+p+v=0,
(k—=2)8+ (k—3)y=0.

Solving this system for a and 8, we obtain a = — 157, 8 = —§=3~,
which implies that the equation of L is (4.4).

Theorem 4.4. i) The equation of Lg is

Q_ QW)

P P(0)

il) The coefficient ¢y is zero if and only if L passes through (P(0), Q(0)).

iii) The coefficient co = ¢1 = 0 is equivalent to L = L, where co, ¢1 is
defined as (2.51).

Proof: (i) By (2.30) and Lemma 3.1, limy,_,¢ I} (h) =+00, limp_,¢ I1(h) =
I7(0), limy, o I5(h) = I5(0), limy, o I;(h) = 1;(0), i = 0,1, 2. Therefore,

(4.5)

I
dQ dQ dh . LIy— I =L Q)
= = == :llmhﬁo T T h.mh*,() T = s
dP|,_, dhdP|,_, LI — 1L, il P(0)
0

which yields that the equation of L, is (4.5).
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(ii) By (2.31), the condition ¢y = 0 is equivalent to o + BP(0) +
~Q(0) = 0, which implies ii).

(iii) It follows from (2.31) that ¢y = ¢; = 0 if and only if

{a + BP(0) +Q(0) = 0,

a=0,

_Q©O)

which implies « =0, § = P(0)

The result follows.

~. Therefore, the equation of L is (4.5).

Proposition 4.5. L., doesn’t intersect Q) for h € (_21’“2Jrl ,0), where Ls
is the line passing through both (1,1) and (P(0),Q(0)).

Proof: By the definition of L., and Theorem 4.3, Theorem 4.4, we have

atpB+v=0,
aly(0) + B11(0) + v12(0) = 0,

which implies

1,(0) — I(0)
4.6 a=—F>—"""0 ==/ -\
(10 50~ 10" 77 L0~ 1)
If 3 = 0, then v = 0, which contradicts the assumption |5] + |y| #
0. Without loss of generality, suppose 8§ > 0. The formula (4.6) and
Lemma 2.7 give that v < 0 and

B
3[12(0) — 11 (0)]
[(k —2)I2(0) — (k — 3)I1(0) — Io(0)] >0,
_9 8
(k= 3)[12(0) — Io(0)]
[(k —2)12(0) — (k — 3)11(0) — Io(0)] > 0.

a+%WhH%+m:

Corollary 3.7 yields that I(h) has at most one inflection point. Since
1(0) = I(=25H) = I'(=2EtL) = 0 (cf. Theorem 2.3), I(h) has no zero in
(=251 0). The result follows from Theorem 4.2.
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Proposition 4.6. i) Ls doesn’t intersect Q for h € [=2= QkH ,0).
il) L. doesn’t intersect Q) except the endpoint (1,1).
iii) The centroid curve Q is concave near its endpoints (1,1) and

(P(0), Q(0)).

Proof: (i) Denoted by Q(h) and by @Q the ordinates of the points on
and L respectively. By Theorem 4.4 i), we have

Q) - = o - g P = P [ 200 - 23],

Lemma 2.5 implies that % < ﬁzégg for h € (= 2’““70)7 which yields

Q(h) < @, i.e., Ly doesn’t intersect €2 except h = 0.

(ii) By Theorem 4.3 iii), L. is tangent to © at (1,1) if and only if
by = by =0, ie., v = ﬁ:g, a = % This gives o + %(vk—kﬂk-i-
B) = 0. It follows from Corollary 3.7 that h = h* = =2Etl i an
unique zero of I"(h), which shows that I(h) has no inflection point for
h € (Z2££L10). Since the curve I(h) is tangent to h-axis at h = =2
(cf. Theorem 2.3 and Theorem 4.3) and I(=2£EL) = 0, I(h) has no zero
in the interval (%,0). By Theorem 4.2, L. does not intersect €2
for h € (=2k£1 (). Since Proposition 4.5 shows that L. doesn’t pass

through (P(l(%), Q(0)), we get ii).

(iii) Proposition 2.2 gives

o 20(k—1)
T3k —92)2
h:% 3(k 2)

d*Q

Q//P/ _ P//Q/
dpP? TPy

Py <

(1,1 -

which shows that € is concave near the endpoint (1,1).
From (2.30), near h = 0, we have

d2Q 1 { Co1

B hIg(0)

= (LO10) - O)L(0) + o)}

In the proof of Lemma 3.1, one gets cg; < 0. It follows from Lemma 2.5

and Lemma 2.7 iii) that ZP% < 0as h— 07, ie.,  is cancave near the
endpoint (P(0), Q(0)).
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The analysis we have done shows that

Corollary 4.7. The centriod curve Q) is entirely placed in the triangle
formed by Lg, L. and L.s, see Figure 4.1.

Figure 4.1

5. Proof of main theorem

Theorem 4.2—4.4 reduce the proof of Theorem 1.1 to showing that
each line L: a+ 8P +v@Q = 0 intersects the centriod curve € in at most
two points, which implies () is a strictly concave curve.

As a sequence of Theorem 3.9 and Theorem 4.2, the following assertion
holds:

Lemma 5.1. If the line L does not pass through (1,1) or (P(0), Q(0)),
then L intersects Q2 in at most three points (counted with their multiplic-
ities).

Lemma 5.2. Fach line L intersects the centriod curve Q in at most two
points (counted with their multiplicities).

Proof: We split the proof in several steps.

1) Each line L, passing through (1,1) or (P(0), Q(0)), intersects € in
at most two points (counted with their multiplicities).

For L = L., L or L.s, we have proved the conclusion in Proposi-
tion 4.5 and Proposition 4.6. Suppose now that L is a line through
(1,1), L # L., L # L.s, which has another common point M with Q,
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M # (1,1) and (P(0),Q(0)). Then obviously the points of  near (1,1)
and those near (P(0),Q(0)) lie on different side of L (cf. Corollary 4.7),
which yields that either L has no other common point with 2 than (1, 1)
and M (M is simple), or the total number of intersection points is at
least 3 except (1,1) (see Figure 5.1(a)). Now we prove the latter case is
impossible.

Indeed, by the conclusion proved in step 1) of the proof of Theo-
rem 3.9, we know that I(h) has at most two inflection points in (=25, 0).
Since I(=25H) = ['(=25tL) = 0 when L passes through (1,1) (cf. Theo-
rem 2.3 and Theorem 4.3), I(h) has at most two zeros except h = =2EtL,
see Figure 5.1(b), i.e., L has at most two common points with  except
(1,1), which contradicts the latter case.

If L is a line through (P(0),Q(0)) and L # Ls, L # Lgs, then
I(=2Et1) = J(0) = 0. Using the result proved in step 1) of the proof
of Theorem 3.9 again, we have that I(h) has at most two zeros except
h=0and h = % Using the same arguments as above, we get that
L intersects € in at most two points including (P(0), Q(0)).

2) Each tangent L(h), h € (Z25EL0), to  at point (P(h), Q(h)) has
exactly one common double point with Q (the point of tangence).
Indeed, starting from (P(0), Q(0)), suppose that Mo=(P(ho), Q(ho)),
ho € (=250 is the first point for which L(ho) has another common
point M; with Q (i.e., My = (P(h1),Q(h1), h # hg). By the result
proved in step 1), M; doesn’t coincide with (1,1) and (P(0), Q(0)). The
choice of M7 being the first such point implies L(hg) is tangent to  also
at M, (see Figure 5.2), which contradicts Lemma 5.1. Consequently,
there is no hy € [=2EtL 0], for which L(hg) has another common point
with € except the tangency point. To prove that is a double intersection
point, assume the contrary. Then by Lemma 5.1 the point (P(hg), @Q(ho))
is a triple point of intersection. Theorem 4.2 yields I(hg) = I'(hg) =
I"(hg) = 0. Slightly moving the tangent L(hg), we find suitable hq, ho
near hg, for which I(hy) = I'(h1) = 0, I(h2) = 0. Then accordingly to
Theorem 4.2, L(h;) is tangent to Q at (P(h1),Q(h1)), which intersects
Q in another point (P(hg), Q(hz2)). This contradicts the fact we proved

above.

3) Suppose that L is not a tangent to Q at any point, L # L., Ls and
L.s. By step 2), Q is placed entirely on one side of each of its tangents,
otherwise the number of the intersection points would be at least 3. This
implies € is strictly concave. Therefore, L intersects € in at most two
simple points. Lemma is proved.



BIFURCATIONS OF LIMIT CYCLES 233

Figure 5.1

My

Figure 5.2

Proof of Theorem 1.1: For a given perturbation (1.8)., if 8 = v = 0,
then either the divergenve in (1.8). vanishes identically or it is nowhere
zero. In the first case, (1.8), is a Hamiltonian system and in second one

no limit cycle can appear in (1.8).. Suppose |8| + || # 0, which means
that the line L is defined. By Lemma 5.2, Theorem 2.3, Theorem 2.6

and Theorem 4.2-4.4, the theorem follows.
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